Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 09:56:22 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Системы автоматизации производства и ремонта вагонов

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль) / специализация

Грузовые вагоны

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (по очной форме обучения - 9 семестр, по заочной форме обучение – 5 курс)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции	
ПК-6: Способен планировать и организовывать работы по техническому развитию подразделения вагонного хозяйства	ПК-6.1: Разрабатывает предложения по внедрению в производственные процессы средств автоматизации и современного технологического оборудования	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные	
достижения компетенции		материалы	
ПК-6.1: Разрабатывает предложения по	Обучающийся знает: методы разработки	Вопросы (№1 -	
внедрению в производственные	предложений по внедрению в производственных	Nº5)	
процессы средств автоматизации и	процессов средств автоматизации и современного		
современного технологического	технологического оборудования.		
оборудования.	Обучающийся умеет: применять методы разработки предложений по внедрению в производственных процессов средств автоматизации и современного технологического оборудования.	Задания (№1 - №3)	
	Обучающийся владеет: навыками разработки предложений по внедрению в производственных процессов средств автоматизации и современного технологического оборудования.	Задания (№4 - №6)	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) ответ на вопрос, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС ПривГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наимен	ование индикатора	Образовательный результат		
достижени	я компетенции			
ПК-6.1:	Разрабатывает	Обучающийся знает: методы разработки предложений по внедрению		
предложения	по внедрению в	производственных процессов средств автоматизации и современного		
производстве	ные процессы	технологического оборудования.		
средств ав	томатизации и			
современного	технологического			
оборудования				
П				

Примеры вопросов:

- 1. Коэффициент технологической оснащенности определяется как:
- а) отношение трудоемкости деталей (изделий), обрабатываемых, собираемых на предприятии, к трудоемкости обработки изделий на поточных линиях;
- б) отношение трудоемкости деталей (изделий), обрабатываемых, собираемых на поточных линиях, к общей трудоемкости по соответствующей производственной единице;
- в) отношение числа деталеопераций, выполненных с применением приспособлений, к общему числу деталеопераций.
- 2. Коэффициент поточности производства определяется как:
- а) отношение трудоемкости деталей (изделий), обрабатываемых, собираемых на предприятии, к общей трудоемкости по соответствующей производственной единице;
- б) отношение трудоемкости деталей (изделий), обрабатываемых, собираемых на поточных линиях, к общей трудоемкости по соответствующей производственной единице;
- в) отношение трудоемкости деталей (изделий), обрабатываемых, собираемых на предприятии, к трудоемкости обработки изделий на поточных линиях.
- 3. Что характеризует коэффициент автоматизации?
- а) Характеризует общий штат рабочих;
- б) Характеризует уровень технологии;
- в) Характеризует трудоемкость технологического процесса.
- 4. Что характеризует коэффициент механизации производства?
- а) Характеризует уровень технологии;
- б) Характеризует общий штат рабочих;
- в) Характеризует трудоемкость технологического процесса.
- 5. Окончательно объекты автоматизации выбирают на основе следующего:
- а) определения параметров силового привода;
- б) комплексного анализа предварительно намеченных объектов и расчетов параметров привода;
- в) комплексного анализа предварительно намеченных объектов и укрупненных расчетов экономической эффективности.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат			
индикатора достижения				
компетенции				
ПК-6.1: Разрабатывает	Обучающийся умеет: применять методы разработки предложений по внедрению в			
предложения по внедрению в	производственных процессов средств автоматизации и современного			
производственные процессы	технологического оборудования.			
средств автоматизации и				
современного				
технологического				
оборудования				

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Задание 1. Определить уровень механизации сварочных работ для вагоносборочного цеха депо по ремонту грузовых вагонов.

Уровень механизации рассчитывается по формулам:

$$M1 = (T_m \cdot \Pi)/((T_m \cdot \Pi) + T_p) \cdot 100\%$$
 (1)

$$M2 = ((T_{(m)} \cdot \Pi) - T_{(m)})/((T_{(m)} \cdot \Pi) + T_{(m)}) \cdot 100\%$$
(2)

$$M3 = P_m/(P_m+P_p) \cdot 100\%$$
 (3)

где: М1 - количественный показатель уровня механизации; М2 - качественный показатель уровня механизации; М3 - степень охвата рабочих механизированным трудом; Тм - трудоемкость операции, выполняемой механизированным способом; Тр - суммарная трудоемкость операций, выполняемых ручным способом; П - коэффициент производительности оборудования; Рм - число рабочих, выполняющих работу механизированным способом; Рр - число рабочих, выполняющих работу вручную.

Коэффициент П характеризует рост производительности при замене ручной операции (или механизированной, принятой за базу) механизированной и определяется как отношение трудоемкости до проведения механизации Тр к трудоемкости, достигае¬мой в результате механизации Тм:

$$\Pi = T_p/T_m \tag{4}$$

Исходные данные:

Вид	N₂	Число рабочих		Трудоемкость ч/ч	
производственного	варианта	$P_{\scriptscriptstyle M}$	P_p	До	После
процесса	•		<u>r</u>	механизации	механизации
Сварочные работы при	1	34	44	36000	23000
ремонте вагонов	2	23	56	35890	22350
	3	15	11	45000	20020
	4	21	34	47500	36550
	5	34	22	60500	42600
	6	45	34	52000	25600
Входной/выходной	7	34	44	35400	23000
контроль деталей	8	26	12	35890	22350
вагонов	9	16	17	45000	22020
	10	25	11	47300	36450
	11	37	32	60500	42100
	12	55	24	52100	25100
Мойка деталей	13	36	41	36200	23700
вагонов	14	23	56	35790	22350
	15	35	21	45600	20520
	16	21	34	47800	36550
	17	34	22	60200	41600
	18	45	34	52100	25600
Испытание узлов и	19	34	44	36300	23000
систем вагонов после	20	43	66	35790	22350
ремонта	21	15	11	45100	20020
	22	25	14	46500	36550
	23	35	22	61500	41600
	24	45	24	54000	26600

Задание 2. Определить степень автоматизации труда, обеспечиваемую производственной машиной.

Степень механизации и автоматизации труда, обеспечиваемая производственной машиной, характеризуется коэффициентами механизации km и автоматизации kц.

$$k_{M} = t_{M}/t_{O}\Pi \tag{1}$$

$$k\mu = t_a/t_o\pi \tag{2}$$

 Γ де tм — машинное время выполнения процесса; tа — время автоматического выполнения процесса; tоп — оперативное время.

Исходные данные:

No	t_m	t_a	t_оп
варианта			
1.	34	23	56
2.	22	15	11
3.	34	21	34
4.	44	34	22
5.	12	45	34
6.	17	34	44
7.	11	26	12
8.	32	16	17
9.	24	25	11
10.	41	37	32
11.	56	55	24
12.	21	36	41
13.	34	23	56
14.	22	35	21
15.	34	21	34
16.	44	34	22
17.	66	45	34
18.	11	34	44
19.	14	43	66

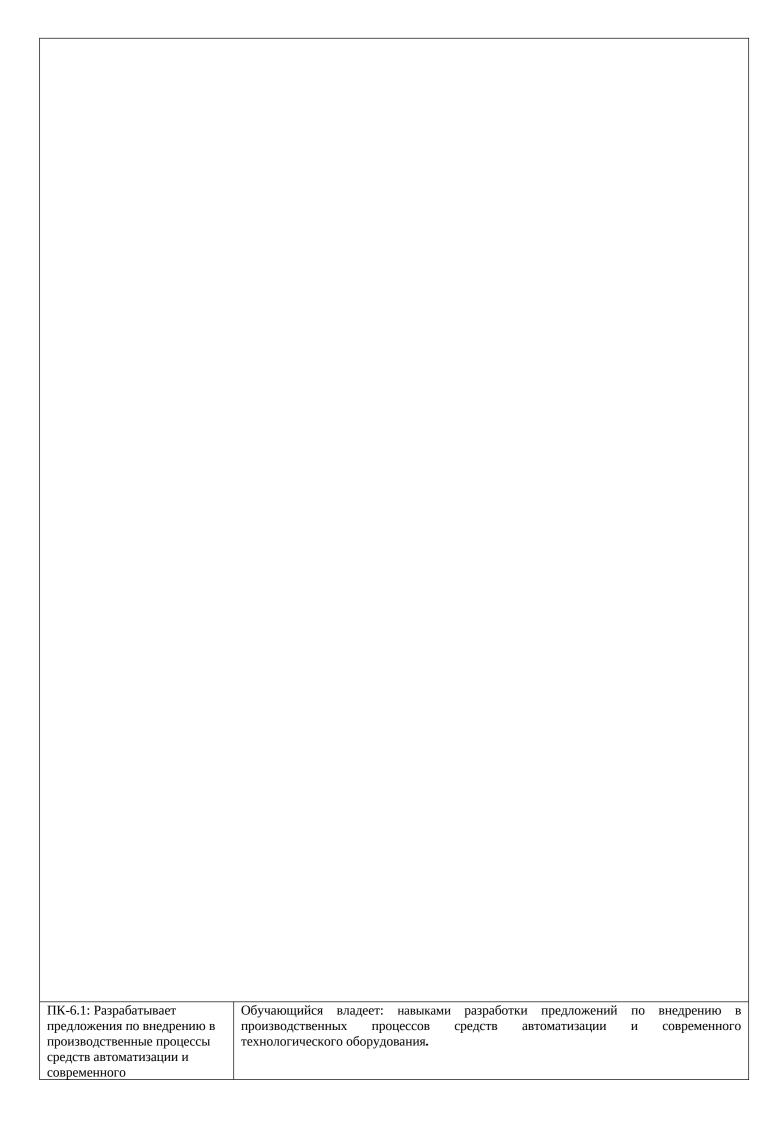
Задание 3. Определить индуктивность L (Γ н $_$ генри) катушки индуктивного датчика, используемого в системах автоматики производственных процессов.

Индуктивность L (Гн _ генри) катушки с магнитопроводом при наличии воздушного зазора δ равна:

$$L = w2 / (l_M / S_M + 2\delta / S\delta).$$
 (1)

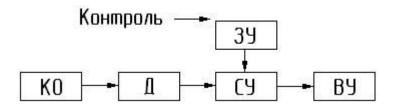
где w - число витков катушки;

lм – средняя длина стального магнитопровода;

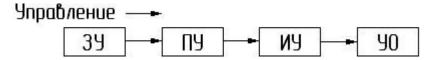

 δ - длина воздушного зазора;

Ѕм – площадь поперечного сечения стального магнитопровода;

 $S\delta$ - площадь поперечного сечения воздушного зазора.


Исходные данные:

исходные да	аппыс.	I		I	
No	w - число	l _м – средняя длина	δ - длина	S _м − площадь	S _δ - площадь
варианта	витков	стального	воздушного	поперечного сечения	поперечного
	катушки	магнитопровода, м	зазора, м	магнитопровода, см ²	сечения
					воздушного зазора,
					CM ²
1	12	0,02	0,02	23	2
2	13	0,32	0,03	12	4,3
3	21	0,35	0,01	22	2,6
4	23	0,56	0,015	18	2,1
5	15	0,02	0,012	35	1,6
6	10	0,05	0,015	15	3,2
7	32	0,56	0,03	54	5,6
8	33	0,65	0,032	65	4,3
9	25	0,85	0,021	75	2,1
10	27	0,23	0,06	42	2,2
11	30	0,45	0,04	28	2,4
12	45	0,52	0,042	26	2,8
13	51	0,46	0,03	35	4,2
14	18	0,45	0,023	42	5,1
15	33	0,25	0,011	19	2,3


технологического оборудования.

Задание 4. Выделить основные элементы и описать принцип работы на примере структурной схемы систем автоматики технологических процессов при ремонте грузовых вагонов и произвести оценку ее устойчивости к внешним возмущениям.

Задание 5. Произвести доработку блок-схемы системы управления технологическим процессом при ремонте грузовых вагонов исключив «человеческий» фактор в управлении технологическим процессом. Описать принцип работы блок-схемы после доработки.

Исходная блок-схема:

Задание 6. Привести особенности конструкции датчиков и реле систем автоматики; заполнить исходную таблицу. В автоматизированных системах управления устройствами, применяемыми при ремонте вагонов применяют следующие типы датчиков и реле:

- датчики уровня для подачи импульсов на включение и остановку насосов при изменении уровня воды в баках и резервуарах моечных машин;
- датчики, или электроконтактные манометры, для управления цепями автоматики при изменении давления в трубопроводе гидроприводов манипуляторов;

реле времени - для отсчета времени, необходимого для протекания определенных процессов при работе агрегатов;

- термические реле для контроля за температурой подшипников и сальников, а в некоторых случаях за выдержкой времени;
 - вакуум-реле для поддержания определенного разрежения в насосе или во всасывающем трубопроводе;
- промежуточные реле для переключения отдельных цепей управления вагоноремонтными установками в установленной последовательности;
 - реле напряжения для обеспечения работы агрегатов на определенном напряжении;
 - аварийные реле для отключения агрегатов при нарушении установленного режима работы.

Исходная таблица

№ п/п	Наименование	Назначение	Элементы	Эскиз
			конструкции	
1	Датчик давления			
2	Датчик контроля за заливкой			
	насоса			
3	Реле времени			
4	Электромагнитные реле			
			I .	

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Перечень вопросов для зачета:

1. Цели и задачи систем автоматизации производства и ремонта вагонов.

- 2. Основные принципы, тенденции автоматизации производства.
- 3. Основные направления совершенствования автоматизированного производства.
- 4. Этапы развития автоматики и автоматизации производственных процессов.
- 5. Основные проблемы автоматизации производства.
- 6. Трудности автоматизации вагоностроительного производства.
- 7. Трудности автоматизации вагоноремонтного производства.
- 8. Единство средств автоматизации технологического оборудования.
- 9. Основные типы автоматических линий, их использование в различных по серийности производствах.
- 10. Порядок перехода от ручного управления к автоматическому.
- 11. Системы автоматического управления (САУ). Основные понятия.
- 12. Виды воздействий на системы управления и управляемыми ими объекты.
- 13. Основные виды управления в зависимости от характера и вида задающего воздействия.
- 14. Функциональная схема системы управления, ее основные элементы.
- 15. Типовые управляемые объекты, используемые в ж.д. технике. Уравнения, описывающие их состояние.
- 16. Классификация САУ по характеру алгоритма управления.
- 17. Классификация САУ по характеру алгоритма функционирования и по способности к адаптации.
- 18. Классификация САУ по типу оператора системы и по наличию вспомогательной энергии.
- 19. Статистические характеристики элементов и систем САУ. Основные режимы работы САУ.
- 20. Звенья САУ. Основные понятия. Методы записи уравнений динамики звеньев САУ.
- 21. Передаточная, весовая и переходная функции звена. Соотношения между этими функциями.
- 22. Частотные характеристики звена САУ, их свойства и графическое построение.
- 23. Логарифмические частотные характеристики, их особенности и назначение.
- 24. Характеристика звеньев в установившимся режиме работы. Способы линеаризации уравнения звена.
- 25. На ремонтных предприятиях (заводах, депо) применяют.
- 26. К возможным и наиболее важным объектам автоматизации при ремонте и техническом обслуживании вагонов

относятся.

- 27. Автоматические выключатели: конструкция, принцип работы.
- 28. Величины, характеризующие процесс управления, носят название.
- 29. Теоретической базой автоматического управления техническими системами является.
- 30. Что называют алгоритмом функционирования.
- 31. Что называют алгоритмом.
- 32. Что называют автоматическим управляющим устройством.
- 33. Что называют принципом обратной связи.
- 34. Что называют принципом компенсации.
- 35.К чему сводятся задачи технологии производства.
- 36. Что относится к показателям уровня технологии.
- 37. Что характеризует коэффициент механизации работ Км.р.
- 38. Что характеризует коэффициент поточности характеризует.
- 39. Чем определяется производительность технологического процесса.
- 40. Какими особенностями обладают адаптивные системы.
- 41. Манипулятор это.
- 42. Что характеризует производительность технологического процесса.
- 43. Состав автооператора.
- 44. Промышленный робот это.
- 45. На чем основывается методика анализа организационно-технического уровня.
- 46. Чем управляют централизованные САУ
- 47. Что обрабатывают простейшие разомкнутые САУ?
- 48. Реле в системах автоматики
- 49. Автоматизация обмывки и очистки вагонов и их узлов
- 50. Механизация и автоматизация подъемных и подъемно-транспортных работ
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

- «Отлично/зачтено» ставится за работу, выполненную полностью без ошибок и недочетов.
- **«Хорошо/зачтено»** ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.
- **«Удовлетворительно/зачтено»** ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.
- **«Неудовлетворительно/не зачтено»** ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Критерии формирования оценок по зачету

«зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«не зачтено» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.