Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 29.10.2025 14:11:47 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электротехника и электромеханика

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.06 Строительство железных дорог, мостов и транспортных тоннелей

(код и наименование)

Направленность (профиль)/специализация

«Мосты»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (4 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции	
ОПК-1: Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук,	ОПК-1.2: Применяет основные понятия и законы	
математического анализа и моделирования.	естественных наук для решения предметно-	
	профильных задач.	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы(семестр)
ОПК-1.2: Применяет основные	Обучающийся знает: основные законы	Вопросы (№ 1 - № 15)
понятия и законы естественных	электротехники.	
наук для решения предметно-	Обучающийся умеет: понимать назначение	Задания (№ 1 - № 6)
профильных задач.	основных узлов электрооборудования;	
применять электротехнические законы для		
	решения практических задач по	
	специальности; пользоваться основными	
	электроизмерительными приборами и	
	оценивать результаты измерений.	
Обучающийся владеет: методами расчета		Задания (№ 7 - № 14)
	электрических цепей; проведения	
	измерений в электрических цепях;	
	испытания электронных устройств.	

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из тестовых вопросов, задач и практических заданий;
- 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

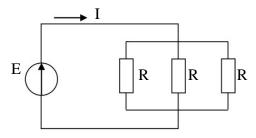
2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименован	ние индикатора	Образовательный результат
достижения компе	генции	
ОПК-1.2:	Применяет	Обучающийся знает: основные законы электротехники.
основные понят	гия и законы	
естественных	наук для	
решения	предметно-	
профильных зад	цач.	

Примеры вопросов/заданий

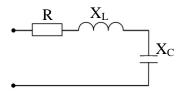
1. Коэффициент мощности пассивной электрической цепи синусоидального тока равен...:

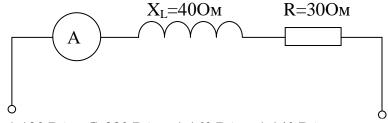

cos φ;

 $\cos \varphi + \sin \varphi$;

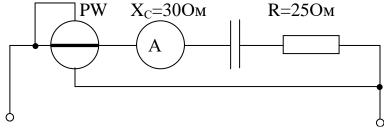
 $sin \varphi$;

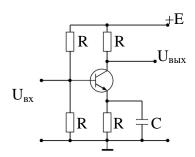
tg φ.

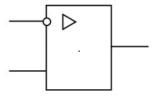

- 2. Отношение напряжений на зажимах первичной и вторичной обмоток трансформатора при холостом ходе приближённо равно:
- а) отношению магнитных потоков рассеяния;
- б) отношению токов первичной и вторичной обмоток трансформатора в номинальном режиме;
- в) отношению мощностей на входе и выходе трансформатора;
- г) отношению чисел витков обмоток.
- 3. Магнитопровод трансформатора выполняется из электротехнической стали для:
- а) повышения жёсткости конструкции;
- б) уменьшения ёмкостной связи между обмотками;
- в) увеличения магнитной связи между обмотками;
- г) удобства.
- 4. Если R = 30 Ом, а E = 20 В, то сила тока через источник составит:

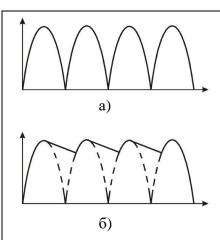

a)1,5 A; б) 2 A; 0,67 A; 0,27 A.

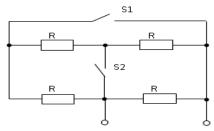
5. Если R=3 Ом, $X_L=10$ Ом, $X_C=6$ Ом, то полное сопротивление Z цепи равно:

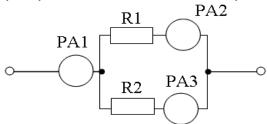

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

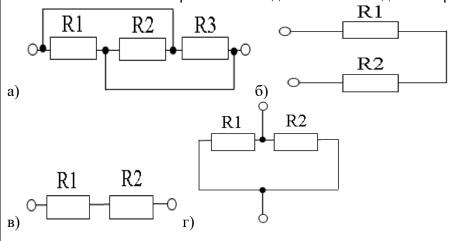

- а) 3 Ом; б) 7 Ом; в) 19 Ом; г) 3 Ом.
- 6. Если амперметр, реагирующий на действующее значения измеряемой величины, показывает 2A, то реактивная мощность Q цепи составляет:


- а) 120 BAp; б) 280 BAp; в) 160 BAp; г) 140 BAp.
- 7. Если амперметр, реагирующий на действующее значения измеряемой величины, показывает 2A, то показания ваттметра составляет:


- а) 100 Вт; б) 220 Вт; в) 120 Вт; г) 110 Вт.
- 8. На рисунке приведена схема:


- а) однополупериодного выпрямителя;
- б) мостового выпрямителя;
- в) усилителя с общим эмиттером;
- г) делителя напряжения.
- 9. На рисунке приведено условно-графическое обозначения:


- а) мостовой выпрямительной схемы;
- б) делителя напряжения;
- в) операционного усилителя;
- г) однополупериодного выпрямителя.
- 10. По приведенным диаграммам на входе а) и выходе б). определить устройство:

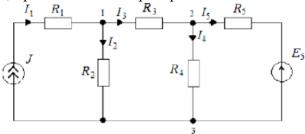

- а) выпрямитель; б) трехфазный выпрямитель; в) сглаживающий емкостной фильтр; г) стабилизатор напряжения.
- 11. Проанализируйте, при каком положении ключей S1 и S2 эквивалентное сопротивление будет минимальным:

- а) S2 замкнут б) S1 разомкнут; в) S1 замкнут; г) S2 разомкнут
- 12. Определить показания амперметра PA1, если показания амперметров PA3 = 0.7 A; PA2 = 0.3 A.

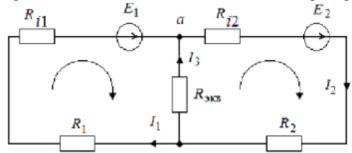
- a) 0,7 A; б) 1,3 A; в) 0,3 A; г) 1 A
- 13 .Какие из перечисленных величин относятся к характеристикам переменного тока:
- а) частота б) амплитуда в) период г) время
- 14. На каких схемах изображено последовательное соединение резисторов:

15. По каким формулам можно рассчитать действующее значение силы тока:

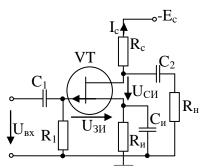
a)
$$I = \frac{I_m}{2}$$
 6) $I = 0.707 I_{m B}$ $I = \frac{I_m}{\sqrt{2}}$ Γ $I = \frac{I_m}{\sqrt{3}}$

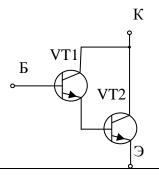

2.2 Типовые задания для оценки навыкового образовательного результата

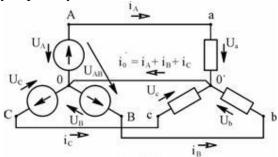
Проверяемый образовательный результат


ОПК-1.2: Применяет основные понятия и законы естественных наук для решения предметнопрофильных задач.

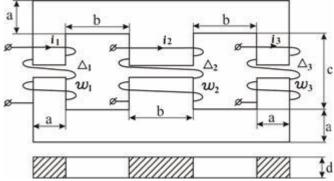
Обучающийся умеет: понимать назначение основных узлов электрооборудования; применять электротехнические законы для решения практических задач по специальности; пользоваться основными электроизмерительными приборами и оценивать результаты измерений.


Задача 1. Для цепи измерить параметры: E_5 =1 B; J=1 A; R_1 =1 Ом; R_2 =10 Ом; R_3 =20 Ом; R_4 =30 Ом; R_5 =5 Ом. Определить ток I_5 , применив метод преобразований.


Задача 2. В электрической цепи измерить параметры: E_1 =20 B; E_2 = 1,1 B; R_{i1} =0,2 Ом; R_{i2} =0,4 Ом; R_1 = R_2 =5 Ом; R_3 =7 Ом. Определить токи в ветвях цепи по законам Кирхгофа.


Задача 3. Для каскада на полевом транзисторе КП103M, включенном с общим истоком, начертить схему замещения в динамическом режиме и рассчитать динамические параметры при S=2 мA/B, $R_i=60$ кОм, $R_1=2$ МОм, $R_C=1,75$ кОм, $R_H=7$ кОм.

Задача 4. Найти коэффициент усиления по току транзистора, составленного по схеме Дарлингтона, если h_{21} $_{31}$ = h_{21} $_{32}$ = 50.



Задача 5. В симметричной трёхфазной цепи, представляющей собой соединение генератора и приёмника возникает аварийная ситуация в виде короткого замыкания или обрыва провода, приводящая через определённое время к установившемуся несимметричному режиму. Для цепи, соответствующей конкретному варианту:

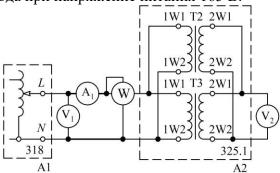
- Рассчитать действующие и мгновенные значения фазных и линейных токов в нагрузке до и после аварийной коммутации.
- Рассчитать действующие и мгновенные значения фазных и линейных напряжений на нагрузке до и после аварийной коммутации.
- Построить в выбранных масштабах для тока и напряжения топографические диаграммы напряжений и векторные диаграммы токов на нагрузке до и после аварийной коммутации. Диаграммы напряжений и токов должны быть совмещены.
- Сравнить активные и реактивные мощности потребления нагрузки до и после аварийной коммутации. Упругие волны в твердых телах Теория электромагнитного поля.

Задача 6. Схема, представляющая магнитопровод из ферромагнитного материала, магнитная проницаемость которого постоянна и не зависит от напряжённости магнитного поля.

Геометрические размеры магнитопровода указаны на рисунке. Конкретный расчётный вариант, выбирается в соответствие с буквенной литерой. Конструкция включает две обмотки, по одной из которых протекает электрический ток. Один из трёх стержней магнитопровода имеет воздушный зазор. Для всех вариантов величина тока определяется по формуле: i = 1 + 0.1 (n/m) A.

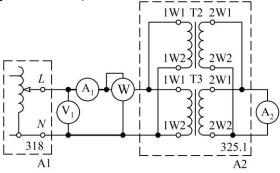
Воздушный зазор D = (0,3+0,1m) мм. Число витков: $w1 = \{|(m-4)|+1\}'100$; $w2 = \{|(m-3)|+1\}'100$; $w3 = \{|(m-2)|+1\}'100$. Отношение m/m = 400+100 m.

Определить магнитные потоки, индукцию и напряжённость магнитного поля во всех участках магнитной цепи. При расчёте магнитными потоками рассеяния пренебречь. Вычислить объёмную плотность энергии магнитного поля W м/с на всех участках магнитной цепи, включая воздушный зазор. Объяснить разницу значений W м/с в воздушном зазоре и ферромагнитном участке. Дать развёрнутый ответ на вопрос — изменятся ли потоки на участках магнитной цепи в случае отсутствия воздушного зазора, вычислить собственные индуктивности обмоток и взаимную индуктивность между ними.

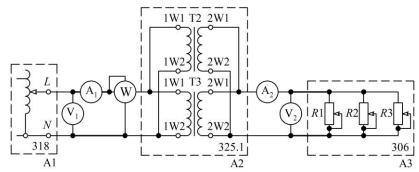

Геометрические размеры магнитопровода (в сантиметрах) для каждого варианта приведены в таблице 2.3 Номер варианта определяется по формулам: № = n при n < 11; № = n – 10 при 10<n<21; № = n – 20 при 20<n<31.

ОПК-1.2:	Применяет				
основные понятия и законы					
естественных	наук	для			
решения	предметно-				
профильных задач.					

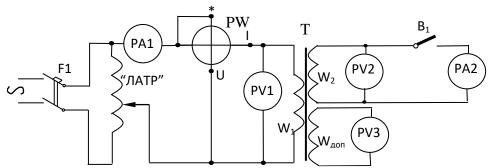
Обучающийся владеет: методами расчета электрических цепей; проведения измерений в электрических цепях; испытания электронных устройств.


Задание 7. Используя электрическую схему, необходимо:

- провести опыт холостого хода;
- определить ток холостого хода при напряжение питания 165 В.


Задание 8. Используя электрическую схему, необходимо:

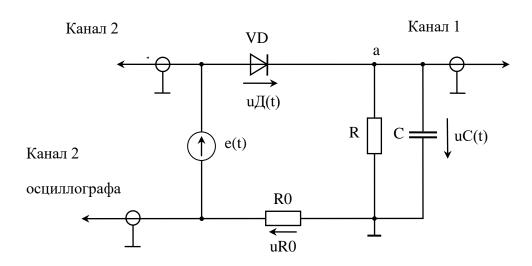
- провести опыт короткого замыкания;
- определить потери в меди при токе в первичной обмотке $0.5I_{\rm H}$.


Задание 9. Используя электрическую схему, необходимо:

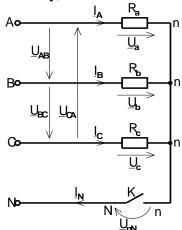
- провести исследование однофазного трансформатора под нагрузкой;
- определить ток во вторичной обмотке при загрузке трансформатора на 75 % от номинальной мощности.

Задание 10. Используя электрическую схему, необходимо:

- Вычертить эскиз магнитной цепи испытуемого трансформатора, замерить с помощью линейки и указать на эскизе основные размеры. Рассчитать по измеренным данным площадь поперечного сечения стержня $Q_c = a_c b_c$ (см²). Сосчитать количество витков дополнительной обмотки $W_{доп}$.
- Определить числа витков обмоток, коэффициент трансформации K и магнитную индукцию в стержне B_c .



Задание 11. Используя электрическую схему однополупериодного выпрямителя, необходимо:


- Снять эпюры гармонической ЭДС и напряжения на конденсаторе, измеряя их мгновенные значения в нескольких точках, удобных для измерения. По осциллограммам определите период и

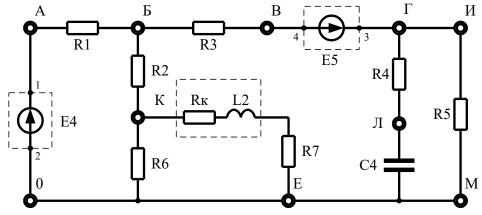
частоту пульсирующего напряжения u_C .

- Подключите параллельно конденсатору C ещё один конденсатор с ёмкостью $C_1 \approx 10~C$. Снимите эпюру напряжения на конденсаторе, фиксируя мгновенные значения напряжения в нескольких точках.
- Изменяя частоту f гармонической ЭДС в диапазоне ($f/2...2\cdot f$), выясните её влияние на «амплитуду» пульсаций напряжения нагрузки.
- Вернитесь к начальному значению частоты f. Введите в цепь резистор R_0 с номинальным сопротивлением 100 Ом и подключите второй канал осциллографа к этому резистору. Используя закон Ома и осциллограмму этого напряжения $u_{R0}(t)$, изучите характер изменения тока в цепи.
- Зарисуйте эпюру напряжения $u_{R0}(t)$ на резисторе R_0 , сопоставляя её с зависимостью напряжения на конденсаторе С. Интервалы времени, для которых $u_{R0}(t) > 0.6$ В, соответствуют открытому состоянию диода, а значит, интервалу времени, в течение которого происходит заряд конденсатора. Измерьте максимальное значение напряжения $u_{R0}(t)$.

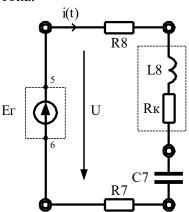
Задание 12. Используя электрическую схему, необходимо:

- Произведите измерения фазных токов I_A , I_B , I_C ; фазных напряжений приёмника U_a , U_b , U_c и системы линейных напряжений U_{AB} , U_{BC} , U_{CA} .
- Измерьте напряжение смещения нейтрали U_{nN} напряжение между нейтральными точками генератора N и приёмника n.
- Произведите расчёт активных мощностей фаз трехфазной системы по формулам:

$$P_A = U_a I_A;$$
 $P_B = U_b I_B;$ $P_C = U_c I_C;$


и суммарной мощности трёхфазной системы

$$P = P_A + P_B + P_C.$$


На основании измерений убедитесь, что при симметричной нагрузке и симметричной системе фазных напряжений генератора действующие значения фазных напряжений приёмника будут равны

между собой $U_a=U_b=U_c=U_{\varphi}$; линейные напряжения также равны между собой $U_{AB}=U_{BC}=U_{CA}=U_{\pi}$; действующее значение линейного напряжения больше действующего фазного в $\sqrt{3}$ раз, т. е. соответствует соотношению $U_{\pi}=\sqrt{3}\;U_{\varphi}$; напряжение смещения нейтрали – отсутствует ($U_{nN}\approx 0$); фазные токи образуют симметричную систему $I_A=I_B=I_C$.

Задание 13. Используя электрическую схему, необходимо: Экспериментально проверить первый и второй законы Кирхгофа для мгновенных значений токов и напряжений.

Задание 14. Используя электрическую схему, необходимо: Исследовать работу последовательной RLC-ветви в цепях синусоидального тока.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Электротехника. Основные свойства электрической энергии.
- 2. Электрические цепи постоянного тока, элементы электрических цепей.
- 3. Закон Ома для участка цепи. Определение контура, ветви, узла электрической цепи.
- 4. Первый закон Кирхгофа.
- 5. Второй закон Кирхгофа.
- 6. Электрическая мощность. Зависимости мощности источника, полезной мощности, мощности потерь, КПД от тока нагрузки. Условие максимума КПД.
- 7. Последовательное соединение сопротивлений в цепях постоянного тока. Вывод формулы эквивалентного сопротивления.
- 8. Параллельное соединение сопротивлений в цепях постоянного тока. Вывод формулы эквивалентного сопротивления.
- 9. Смешанное соединение сопротивлений в цепях постоянного тока. Определение тока в ветвях.
- 10. Расчет цепей с использованием уравнений Кирхгофа.
- 11. Расчет цепей методом контурных токов.
- 12. Расчет цепей с использованием принципа наложения.
- 13. Расчет цепей методом эквивалентного генератора.
- 14. Расчет цепей методом узловых потенциалов.
- 15. Характеристики элементов нелинейных электрических цепей. Статическое и дифференциальное сопротивления нелинейных элементов.
- 16. Графический и аналитический методы расчёта электрических цепей с нелинейными элементами.
- 17. Электромагнетизм и магнитные цепи. Магнитная индукция, напряжённость магнитного поля, магнитный поток. Закон полного тока.
- 18. Электрические однофазные цепи синусоидального тока. Максимальное, действующее и среднее значения синусоидальных величин ЭДС, напряжения и тока.
- 19. Изображение синусоидальных ЭДС, напряжений и токов в виде вращающихся векторов. Сложение векторов. Начальная фаза, фазовый сдвиг.
- 20. Комплексный метод расчета электрических цепей.
- 21. Законы Кирхгофа для цепей синусоидального тока.
- 22. Законы изменения тока, векторные диаграммы цепей, содержащих активное сопротивление, индуктивность, емкость.
- 23. Последовательное соединение элементов R, L, C. Векторная диаграмма. Резонанс напряжений.
- 24. Параллельное соединение элементов R, L, C. Векторная диаграмма. Резонанс токов.
- 25. Мощность цепи синусоидального тока. Полная мощность. Активная и реактивная мощности.
- 26. Электрические трехфазные цепи. Понятие о трехфазной системе токов. Принцип действия трехфазного генератора.
- 27. Соединение приемников электрической энергии звездой. Линейные и фазные токи и напряжения. Векторная диаграмма при несимметричной нагрузке.
- 28. Соединение обмоток генератора и фаз приемника треугольником. Линейные и фазные токи. Векторная диаграмма.
- 39. Мощность трехфазной системы при соединении потребителей электроэнергии звездой и треугольником.
- 30. Трансформаторы, назначение, устройство и принцип действия. Область применения.
- 31. Принцип действия и устройство электрической машины постоянного тока.
- 32. Генератор постоянного тока. Классификация по способу возбуждения.
- 33. Электрический двигатель постоянного тока. Классификация по способу возбуждения. Принцип обратимости электрических машин.
- 34. Асинхронный двигатель с короткозамкнутым ротором, конструкция, принцип действия.
- 35. Асинхронный двигатель с фазным ротором, конструкция, принцип действия.
- 36. Синхронная машина, конструкция, принцип действия.
- 37. Безопасность обслуживания электроустановок. Условия поражения человека электрическим током. Меры защиты от поражения электрическим током.
- 38. Электрические измерения. Погрешности измерения и класс точности.
- 39. Общие сведения о полупроводниках, принцип действия р-п перехода, полупроводниковые диоды.
- 40. Однофазные выпрямители. Устройство, принцип действия.
- 41. Трехфазные выпрямители. Устройство, принцип действия.
- 42. Нелинейные электрические цепи, вольт-амперные характеристики нелинейных элементов.
- 43. Природа электрического тока в полупроводниках. Примесные и беспримесные полупроводники.
- 44. Электрический ток в полупроводниках р и п типа. Лавинный пробой.
- 45. р-п переход в полупроводниках, потенциальный барьер.

- 46. Полупроводниковые диоды. Вольтамперная характеристика, обратные токи.
- 47. Принцип действия биполярного транзистора и его основные параметры.
- 48. Источники питания. Структурная схема. Общие сведения.
- 49. Однофазные выпрямители. Устройство, принцип действия.
- 50. Усилители. Общие сведения. Классификация усилителей.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Зачет по дисциплине проводится в устной форме. Билеты должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно быть определено с учетом количества студентов в экзаменуемых группах плюс пять билетов дополнительно. К зачету допускаются обучающиеся, выполнившие следующие требования: выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу по билету обучающемуся дается 45 минут.

Билет состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведение тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение, формулу, точку на механической характеристике или саму графическую зависимость. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный так и ошибочный ответ.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных ситуаций, где могут быть использованы электрические цепи или электрические машины со схемами управления. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) — получают студенты с правильным количеством ответов на тестовые вопросы — 100-90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 89 - 70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69-40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧИ

Оценку «зачтено» — получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «незачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических машин и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических машин, правильно выполнившие все необходимые измерения и дополнительные расчеты

при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «незачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических машин, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических машин, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЗАЧЕТУ

Оценку «отлично» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 95 % от общего объёма заданных вопросов.

Оценку «хорошо» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 75 % от общего объёма заданных вопросов.

Оценку «удовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 50 % от общего объёма заданных вопросов.

Оценку «неудовлетворительно» — получают обучающиеся с правильным количеством ответов на задаваемые вопросы — менее $50\,\%$ от общего объёма заданных вопросов.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».