Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДЕРУАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: Радеруальное государственное бюджетное образовательное учреждение высшего образования
Дата подписания: 20.10.2025 09:42:40.
Уникальный программный ключ.

КИЙ ГОСУДА РСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

МОДУЛЬ "СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА"

Системы искусственного интеллекта

рабочая программа дисциплины (модуля)

Направление подготовки 38.03.01 Экономика

Направленность (профиль) Экономика и финансы предприятий (организаций)

Квалификация бакалавр

Форма обучения очно-заочная

Общая трудоемкость 3 ЗЕТ

Виды контроля в семестрах:

зачеты 4

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2)		Итого		
Недель	17 2/6				
Вид занятий	УП	РΠ	УП	РП	
Лекции	8	8	8	8	
Лабораторные	8	8	8	8	
Практические	8	8	8	8	
Конт. ч. на аттест. в период ЭС	0,15	0,15	0,15	0,15	
Итого ауд.	24	24	24	24	
Контактная работа	24,15	24,15	24,15	24,15	
Сам. работа	75	75	75	75	
Часы на контроль	8,85	8,85	8,85	8,85	
Итого	108	108	108	108	

Π_1	nor	рамму	z coci	гавил	(u)	١.
11	POI	paiville		abriji	L PI	٠.

к.п.н., доцент, Тюжина И.В.

Рабочая программа дисциплины

Системы искусственного интеллекта

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 38.03.01 Экономика (приказ Минобрнауки России от 12.08.2020 г. № 954)

составлена на основании учебного плана: 38.03.01-25-2-ЭФПб-оз.plz.plx

Направление подготовки 38.03.01 Экономика Направленность (профиль) Экономика и финансы предприятий (организаций)

Рабочая программа одобрена на заседании кафедры

Цифровые технологии

Зав. кафедрой Ефимова Т.Б.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 овладение студентами основными методами методов машинного обучения, получение навыков программирования алгоритмов в области искусственного интеллекта и анализа полученных результатов.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цикл (раздел) OП: Б1.O.21.02

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-5 Способен использовать современные информационные технологии и программные средства при решении профессиональных задач

ОПК-5.2 Использует методы искусственного интеллекта (машинного обучения) и анализа больших данных для решения прикладных задач

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:				
3.1.1	основные методы машинного обучения; классификацию задач машинного обучения; метрики качества модели; функции и методы библиотеки Pandas: query, tail, sample, head; методы фильтрации и агрегации данных; признаки переобученности модели; методы библиотек sklearn, seaborn, matplotlib и numpy.				
3.2	Уметь:				
3.2.1	агрегировать данные средствами Python; выполнять фильтрацию данных средствами Python; настраивать вес нейронна; выбирать тип классификатора в зависимости от поставленной задачи; визуализировать данные средствами библиотек pandas, seaborn, matplotlib;				
3.2.2	выполнять многоклассовую классификацию методами библиотеки sklearn;				
3.2.3	строить деревья решений и выполнять по ним предсказание.				
3.3	Владеть:				
3.3.1	построения дерева решений;				
3.3.2	реализации алгоритма случайного леса (Random forest);				
3.3.3	написания нейронных сетей;				
3.3.4	обучения модели.				

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Часов Код Наименование разделов и тем /вид занятия/ Семестр Примечание / Kypc занятия Раздел 1. Введение искусственный интеллект 4 2 1.1 Искусственный интеллект. Основные понятия ИИ. Машинное обучение. Глубокое обучение. Обучение с учителем и без учителя. /Лек/ 1.2 Данные, модель, обработка данных. Методологические принципы анализы 4 2 данных. Цели, этапы, методы и техники. Фильтрация группировка и агрегация данных. /Лек/ 1.3 Визуализация данных. Визуализация данных в Phyton. Визуализация в 4 2 Pandas. Библиотеки Seaborn и Matplotlib. /Ср/ 4 2 1.4 Алгоритмы и структуры данных. Библиотека Pandas: структуры данных: Series и DataFrame. Работа с csv. $/\Pi p/$ 1.5 Фильтрация данных. Библиотека Pandas. Вывод строк и колонок. Методы 4 2 query, tail, sample, head. Объединение методов. /Пр/ Фильтрация данных. Библиотека Pandas. Вывод строк и колонок. Методы 4 1.6 2 query, tail, sample, head. Объединение методов. /Лаб/ 1.7 Агрегация данных в Pandas: count, sum, max, min, mean, median. Методы 4 2 groupby и aggregate. Объединение методов. /Ср/ 1.8 Агрегация данных в Pandas: count, sum, max, min, mean, median. Методы 4 2 groupby и aggregate. Объединение методов. /Лаб/ Визуализация данных в Phyton. Методы визуализации в Pandas. Библиотеки 1.9 4 2 Seaborn и Matplotlib. Графики, тепловые карты, диаграммы рассеивания. Анализ и интерпретация результатов визуализации. /Ср/ Раздел 2. Методы машинного обучения 2.1 Решающие деревья: основные понятия. Классификация. Деревья решений. 4 2 Основные параметры дерева. Дерево решений в задачи регрессии. Метод ближайших соседей. /Лек/

2.2	Концепция случайного леса. Случайная выборка тренировочных образцов. Усреднение прогнозов. Проблема переобучения. Метрики качества модели. Тестирование ROC AUC. /Лек/	4	2	
2.3	Нейронные сети. Искусственные нейроны. Перцептрон. Обучение нейрона. /Ср/	4	2	
2.4	Градиентный спуск. Дробление шага при градиентном спуске. Стохастический градиентный спуск. Метод наискорейшего спуска. /Ср/	4	2	
2.5	Нейронная сеть. Однослойная модель. Сверточные нейронные сети. Свёрточный слой, слой подвыборки, полносвязный слой. Целевая функция. /Ср/	4	2	
2.6	Решающие деревья: обучение модели. Библиотеки sklearn, pandas, numpy. Выбор параметров модели. Кросс-валидация. Предварительная обработка данных. Тренировочный набор данных. Тестовый набор данных. /Пр/	4	2	
2.7	Библиотеки sklearn, pandas, numpy. Выбор параметров модели. Кроссвалидация. Предварительная обработка данных. Тренировочный набор данных. Тестовый набор данных. /Лаб/	4	2	
2.8	Концепция случайного леса. Случайная выборка тренировочных образцов. Усреднение прогнозов. Проблема переобучения. Типы ошибок: true negative, false positive. Метрики качества: Precision, Recall, F1 score. Тестирование ROC AUC. /Пр/	4	2	
2.9	Распознавание рукописных цифр. Алгоритмы случайного леса. Оптимальные параметры дерева и леса. /Лаб/	4	2	
2.10	Искусственный нейрон. Вход, функция активации (сигмоида, гиперболический тангенс, SoftMax). Подбор весов. /Ср/	4	2	
2.11	Определение тональности текста с помощью нейронных сетей. Библиотеки tensorflow, Keras, набор данных IMDb. /Cp/	4	2	
2.12	Библиотека Keras. Полносвязный и сглаживающий слои, слой Dropout. Решение проблем переобучения. /Ср/	4	2	
2.13	Классификация изображений по нескольким классам (более двух). Набор данных Fashion Mnist. /Ср/	4	2	
2.14	Внешние источники данных для анализа. Kuggle. Подготовка данных. Работа с изображениями разного формата. /Ср/	4	2	
2.15	Распознавание образов. Классификация изображений кошек и собак. Библиотека keras, ImageDataGenerator. Достижение заданной точности модели на валидационной выборке. /Ср/ Раздел 3. Самостоятельная работа	4	2	
3.1	Написание собственных классов для описания нейронной сети. Нейрон. Слой. Сеть. Обучение модели. Выполнение предсказания. /Ср/	4	4	
3.2	Предсказание пола по росту и весу с помощью нейронной сети. Выполнение предсказания. Минимизация значения функции потерь. Обучение: стохастический градиентный спуск. /Ср/	4	4	
3.3	Задачи распознавания образов. Классификация объектов. Поиск изображения по образцу. /Ср/	4	3	
3.4	Алгоритм обратного распространения ошибки. Функции активации. Оценка работы сети. /Ср/	4	4	
3.5	Компьютерное зрение. Библиотека OpenCV. Сегментация изображений. Детектирование объектов. /Ср/	4	4	
3.6	Компьютерное зрение. Библиотека OpenCV. Отслеживание движущихся объектов во времени. Распознавание лиц. /Ср/	4	4	
3.7	Обработка естественного языка. Основные понятия. Токенезация. Лемматизация. /Ср/	4	4	
3.8	Обработка естественного языка. Парсинг зависимостей. Распознавание именованных сущностей /Ср/	4	4	
3.9	Подготовка к лекциям /Ср/	4	4	
	Подготовка к лабораторным занятиям /Ср/	4	16	
3.10	тод отобы и писоритерным заимими гр			

4.1	Зачёт /КЭ/	4	0,15	

5. ОПЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться эмос

ЭИОС. 6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература 6.1.1. Основная литература Авторы, составители Заглавие Издательс Эл. адрес тво, год Л1.1 Никольский С. Н. //e.lanbook.com/book/16 Автоматизация информационного поведения и Москва: искусственный интеллект: Учебное пособие мирэа, 2020 6.1.2. Дополнительная литература Издательс Авторы, составители Заглавие Эл. адрес тво, год Л2.1 Железнов М. М. ook.com/book/145102?ca Методы и технологии обработки больших данных: Москва: учебно-методическое пособие Московск ий государст венный строитель ный универси тет, 2020 6.2 Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине (модулю) 6.2.1 Перечень лицензионного и свободно распространяемого программного обеспечения 6.2.1.1 Python 6.2.2 Перечень профессиональных баз данных и информационных справочных систем 6.2.2.1 Информационная справочная система Texэксперт https://tech.company-dis.ru 6.2.2.2 Информационная справочная система "Гарант" http://www.garant.ru 6.2.2.3 База данных Государственных стандартов http://gostexpert.ru/ 6.2.2.4 База данных «Железнодорожные перевозки» https://cargo-report.info/ 6.2.2.5 7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Учебные аудитории для проведения занятий лекционного типа, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование для предоставления учебной информации большой аудитории и/или звукоусиливающее оборудование (стационарное или переносное). Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное). 7.3 Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета. 7.4 Помещения для хранения и профилактического обслуживания учебного оборудования.

7.5 Лаборатории, оснащенные специальным лабораторным оборудованием: компьютерной техникой с установленным ПО: Python, а также с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета