Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 15:07:18

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

# ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

#### Математическое моделирование систем и процессов

(наименование дисциплины(модуля)

Специальность

#### 23.05.04 Эксплуатация железных дорог

(код и наименование)

Специализация

#### Магистральный транспорт

(наименование)

#### Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

#### 1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

 $\Phi$ орма промежуточной аттестации: Зачет – 5 семестр, экзамен, расчетно-графическая работа – 6 семестр О $\Phi$ О. Зачет, экзамен, расчетно-графическая работа 4 курс З $\Phi$ О.

#### Перечень компетенций, формируемых в процессе освоения дисциплины

| Код и наименование компетенции                                                                                                                                                                                                                  | Код индикатора достижения компетенции                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОПК-1. Способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования.  ОПК-10: Способен формулировать и решать научнотехнические задачи в области своей профессиональной деятельности | ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности.  ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях. |

## Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

| Код и наименование компетенции                                              | Результаты обучения по дисциплине                                                                                                                                                                                                                                                                                                                | Оценочные материалы |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| ОПК-1.4: Применяет методы математического анализа и                         | Обучающийся знает: Принципы математического анализа и моделирования.                                                                                                                                                                                                                                                                             | Вопросы (1 – 7)     |
| моделирования для решения прикладных задач в профессиональной деятельности. | Обучающийся умеет: Использовать физикоматематический аппарат для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях. Использовать математические методы для описания и анализа технических систем и устройств, а также для решения инженерных задач в профессиональной деятельности. | Вопросы (1 – 11)    |
|                                                                             | Обучающийся владеет: Навыками проведения обзора, описания и анализа математических процессов в системах, методами и средствами обеспечения эксплуатационной работы железнодорожного транспорта.                                                                                                                                                  | Задания (1-2)       |
| ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных     | Обучающийся знает: Принципы математического анализа и моделирования.                                                                                                                                                                                                                                                                             | Вопросы (1 – 7)     |
| исследованиях.                                                              | Обучающийся умеет: Использовать физикоматематический аппарат для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях. Использовать математические методы для описания и анализа технических систем и устройств, а также для решения инженерных задач в профессиональной деятельности. | Задания (1 3)       |
|                                                                             | Обучающийся владеет: Навыками проведения обзора, описания и анализа математических процессов в системах, методами и средствами обеспечения эксплуатационной работы железнодорожного транспорта.                                                                                                                                                  | Задания (1-2)       |

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (зачет) проводится в одной из следующих форм: 1) собеседование;

- 2) выполнение заданий в ЭИОС университета.

## 2. Типовые<sup>1</sup> контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

### **2.1** Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

| Код и наименование            | Образовательный результат                                            |
|-------------------------------|----------------------------------------------------------------------|
| компетенции                   |                                                                      |
| ОПК-1.4: Применяет методы     | Обучающийся знает: Принципы математического анализа и моделирования. |
| математического анализа и     |                                                                      |
| моделирования для решения     |                                                                      |
| прикладных задач в            |                                                                      |
| профессиональной деятельности |                                                                      |
|                               |                                                                      |

Примеры вопросов/заданий

- Вопрос 1. Понятие о моделях и моделировании. Цели научных и инженерных исследований, место моделирования в них. Понятия оригинала и модели?
- Вопрос 2. Процесс моделирования и необходимая последовательность этапов этого процесса?
- Вопрос 3. Понятие о математических методах оптимизации. Общая формулировка задач оптимизации?
- Вопрос 4. Математическое программирование, его разновидности. Постановка задачи линейного программирования и исследование ее структуры?
- Вопрос 5. Какие вы знаете элементы системы массового обслуживания?
- Вопрос 6. Имитационное моделирование. Сущность и значение статистического имитационного моделирования.
- Вопрос 7. Что такое оптимальное распределение ресурсов?

#### 2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

| Код и наименование                                                                                                             | Образовательный результат                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| компетенции                                                                                                                    |                                                                           |
| ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности | простых математических моделей явлений, процессов и объектов при заданных |

Примеры заданий

*Задача* №1 Составить математическую модель задачи линейного программирования.

На полигоне АБ находится 6 зонных станций. Необходимо составить такой план формирования электричек, при котором себестоимость перевозок будет минимальна.

Ограничения:

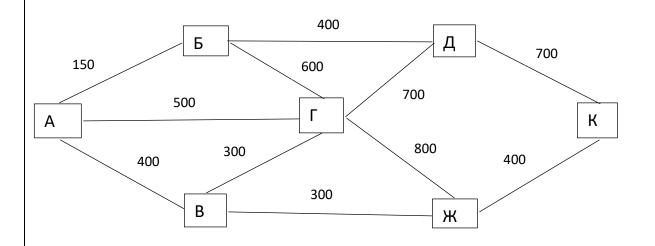
<sup>1</sup> Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- фактический пробег не должен быть больше максимально допустимого.
- число электричек, формируемое на і зонную станцию, не должно быть меньше минимально необходимого (все пассажиры должны быть перевезены).

#### Задача №2

Решить задачу линейного программирования графическим методом.

Целевая функция имеет вид


$$F = 15x_1 + 13x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} 2x_1 + 4x_2 \le 20 \\ 4x_1 + 2x_2 \le 18 \\ x_2 \le 7 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0.$$

#### Задача № 3

Найти кратчайшее расстояние от станции отправления вагона  $\mathbf A$  до станции назначения  $\mathbf K$  на полигоне железной дороги.



ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности

Обучающийся владеет: Навыками проведения обзора, описания и анализа математических процессов в системах, методами и средствами обеспечения эксплуатационной работы железнодорожного транспорта.

Примеры заданий

#### Задача №1

Определить экономическую эффективность увеличения числа маневровых локомотивов, работающих в хвосте сортировочного парка, при следующих исходных данных:

- число составов своего формирования  $N \varphi = 30$  составов;

- число вагонов в составе  $m_{\varphi} = 60$  вагонов;

- число маневровых локомотивов  $N_{M,T} = 1;$ 

- среднее время занятия маневрового локомотива формированием состава, его выставкой в парк отправления и возвращением, приходящимся на один сформированный

В расчетах принять, что капитальные затраты на приобретение локомотива равны нулю, т.е. на станции имеется резервный локомотив. Также принять, что ввод дополнительного локомотива уменьшает простой вагонов только в ожидании формирования состава (tож мл).

#### Задача №2

Проверить экономическую целесообразность ввода дополнительной группы вагонников в бригаду ПТО, осматривающей составы поездов своего формирования и транзитных поездов в парке отправления:

- число составов своего формирования  $N \phi = 20$  поездов;

- число транзитных поездов, прибывающих за сутки Nтp = 10 поездов;

- среднее число вагонов в составе своего формирования M = 71 вагон;

- число бригад ПТО в парке отправления N6p по = 2

бригады;

- число групп в бригаде Nбр по = 3

группы;

- время технического осмотра одного состава tocм по = 50 мин;

- коэффициент загрузки поездного локомотива  $\Psi$ пл = 0,7;

- коэффициент вариации интервалов входящего в

парк отправления потока составов Vвх по = 1;

- коэффициент вариации продолжительности

технического осмотра составов Vосм по=0,4;

- коэффициент вариации интервалов подачи

поездных локомотивов под состав  $V_{\Pi \Pi} = 0,5;$ 

- стоимость в-ч 10 руб.;

- среднемесячная заработная плата одной группы вагонников 45 000 руб.

| ОПК-10.1:    | Разрабатывает   | Обучающийся знает: Принципы математического анализа и моделирования. |
|--------------|-----------------|----------------------------------------------------------------------|
| модели для р | решения задач в |                                                                      |
| научных и    | инженерных      |                                                                      |
| исследования | Х.              |                                                                      |
| Примария сом | nocoo/nadawwii  |                                                                      |

Примеры вопросов/заданий

- Вопрос 1. Алгоритм решение задач линейного программирования графическим методом?
- Вопрос 2. Алгоритм симплексного метода. Симплексные таблицы.
- Вопрос 3. Экономическая и математическая формулировка транспортной задачи.
- Вопрос 4. Нахождение исходного опорного плана транспортной задачи.
- Вопрос 5. Метод потенциалов определения оптимального опорного плана.
- Вопрос 6. Теория массового обслуживания. Виды систем массового обслуживания (СМО).
- Вопрос 7. Что такое математическая модель работы железнодорожной станции?
- Вопрос 8. Какие показатели работы станции можно определить с помощью математической модели работы станции?

| ОПК-10.1: Разрабатывает  |
|--------------------------|
| модели для решения задач |
| в научных и инженерных   |
| исследованиях.           |

Обучающийся умеет: Использовать физико-математический аппарат для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях. Использовать математические методы для описания и анализа технических систем и устройств, а также для решения инженерных задач в профессиональной деятельности.

#### Задача №1

## Определить простой состава в ожидании технического осмотра в парке отправления сортировочной станции при следующих исходных данных:

- число транзитных поездов за сутки Ntp = 10 поездов;

- число составов своего формирования  $N\varphi=20$ 

составов;

- среднее время технического осмотра и ремонта одного вагона  $\tau = 2,5\,\,{\rm мин};$ 

- число вагонов в составе  $m = 65 \, \text{ваг};$ 

- число бригад вагонников Nбp = 2

бригады;

- число групп в бригаде  $N \Gamma p = 2$ 

группы.

Примечание: коэффициенты вариации взять из лекционного материала.

#### Кейс-задание 2

На аналитической модели парка приема сортировочной станции выбрать оптимальный по экономическому критерию вариант технического осмотра составов в парке приема сортировочной станции.

- число разборок, прибывающих за сутки  $Np\phi = 30$  поездов;

- число вагонов в составе  $Mp\phi = 71$  вагон;

число бригад ПТО в парке приема
 Nбр = 1 бригада;

| - число групп в бригаде                                   | Nгр = 3 группы;        |
|-----------------------------------------------------------|------------------------|
| - продолжительность технического осмотра состава          | tocm = 30 мин;         |
| - горочный технологический интервал                       | $t_{\Gamma}=25$ мин;   |
| - продолжительность занятия горки прочими операциями      | ΣTποcτ $Γ = 60$        |
| мин;                                                      |                        |
| - коэффициент вариации интервалов входящего               |                        |
| в парк приема потока поездов                              | $V_{BX} \Pi\Pi = 0.7;$ |
| - коэффициент вариации продолжительности осмотра          | $Voc_{M} = 0.3;$       |
| - коэффициент вариации продолжительности                  |                        |
| расформирования состава                                   | $V_{\Gamma}=0,5;$      |
| - стоимость вагоно-часа                                   | $E_{B-4} = 10;$        |
| - среднемесячная заработная плата одной группы вагонников | Ебр = $40\ 000$ руб.   |

1 По результатам расчетов построить графики изменения затрат, связанных с простоем вагонов в парке приема (Ен пп) от числа групп в бригаде, затрат, связанных с оплатой труда бригадам ПТО (Ебр пп), а также суммарных затрат ( $\Sigma$ E).

2 По графикам изменения затрат выбрать оптимальный вариант технологии технического осмотра составов в парке приема. Определить экономию затрат по оптимальному варианту.

#### Кейс-задание 3

#### На аналитической модели системы расформирования

Оценить экономическую целесообразность ввода дополнительного горочного локомотива на горку (ввод локомотива осуществляется без капитальных вложений).

| - число разборок, прибывающих за сутки                 | $Np\phi = 30$ поездов;        |
|--------------------------------------------------------|-------------------------------|
| - число составов своего формирования                   | $N\phi = 30$ составов;        |
| - число составов своего формирования,                  |                               |
| формируемых на горке                                   | $N\varphi \Gamma = 0;$        |
| - число составов своего формирования,                  |                               |
| подформирование которых выполняется с двух сторон      | $N\phi 2=0;$                  |
| - среднее число вагонов в разборке и составе св. форм. | $Mp\phi = 71$ вагон;          |
|                                                        | $М\phi = 71$ вагон;           |
| - суммарное за сутки время занятия горки и вытяжки     |                               |
| формированием составов                                 | $\Sigma$ Тф $\Gamma = 0$ мин; |
|                                                        | $\Sigma$ Тф вф = 420          |
| мин;                                                   |                               |
| - горочный технологический интервал                    | $t_{\Gamma}=24$ мин;          |
| - время перестановки состава в сортировочный парк      |                               |

| и время возвращения маневрового локомотива            | tвыст = 10 мин                |
|-------------------------------------------------------|-------------------------------|
|                                                       | tвозвр мл =3 мин;             |
| - технологические перерывы в работе горки             | $\Sigma$ Tποcτ $\Gamma$ = 120 |
| мин                                                   |                               |
| - занятие маневровых локомотивов, работающих          |                               |
| в хвосте сортировочного парка, прочими операциями     | Tпост мл = 60                 |
| мин                                                   |                               |
| - число маневровых локомотивов, работающих в хвосте   |                               |
| сортировочного парка                                  | $N_{MЛ} = 1$                  |
| локомотив;                                            |                               |
| - число локомотивов, работающих на горке              | Nгл $=2$                      |
| локомотива;                                           |                               |
| - коэффициент вариации интервалов входящего на        |                               |
| горку потока составов                                 | VBX $\Gamma = 0.8$ ;          |
| - коэффициент вариации интервалов накопления          |                               |
| составов в сортировочном парке                        | $V_{\rm Bых}\ c_{\Pi} = 0,5;$ |
| - коэффициент вариации расформирования составов       | $V_{\Gamma}=0,5;$             |
| - коэффициент вариации времени занятия маневрового    |                               |
| локомотива, работающего в хвосте сортировочного парка | Vзан мл = 0,4;                |
| - стоимость в-ч                                       | 10 руб.                       |
| - стоимость локомотиво-часа                           | 630 руб.                      |
|                                                       |                               |

Примечание: значения коэффициентов вариации взять из лекционного материала.

1 Обратить внимание, как изменились показатели после ввода мероприятия. Сделайте вывод об экономической эффективности ввода дополнительного локомотива на горку. Определить экономию затрат, если предлагаемое мероприятие является экономически целесообразным.

ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях.

Обучающийся владеет: Навыками проведения обзора, описания и анализа математических процессов в системах, методами и средствами обеспечения эксплуатационной работы железнодорожного транспорта.

#### Задача №1

## Определить числовые характеристики совокупности продолжительностей технического осмотра составов в парке приема.

Цель работы: в ходе выполнения работы студент должен:

- 1) выполнить обработку заданной совокупности случайных чисел вручную;
- 2) выполнить обработку заданной совокупности случайных чисел с применением ЭВМ.
  - 22 25 40 24
  - 49 29 38 52
  - 52 29 44 51

| 33 | 42 | 27 | 39 |  |
|----|----|----|----|--|
| 62 | 32 | 28 | 45 |  |
| 40 | 45 | 32 | 40 |  |
| 49 | 53 | 44 | 36 |  |
| 50 | 61 | 54 | 47 |  |
| 38 | 37 | 43 | 34 |  |
| 25 | 47 | 44 | 55 |  |
|    |    |    |    |  |

#### Задача №2

Построить математическую модель парка приема сортировочной станции и изучить влияние загрузки бригад вагонников, осматривающих составы разборочных поездов в парке приема, на простой состава в ожидании технического осмотра (т.е. построить график toж бр =  $f(\Psi \text{бр})$ ). Определить критическую загрузку бригад ПТО, начиная с которой простой составов в ожидании осмотра начинает резко возрастать. Сделать вывод о загрузке бригад вагонников, которую целесообразно иметь на станции.

Исходные данные:

- коэффициент вариации входящего на станцию потока разборочных поездов

 $V_{BX} = 0.8;$ 

- число поездов, прибывающих в разборку поездов

 $Np\phi = 20;$ 

- среднее время технического осмотра состава в парке приема

tocm пп = 30 мин.

- число бригад технических осмотрщиков

Nбр = 1 бригада.

Загрузку бригад изменять потоком так, чтобы максимальное ее значение не превышало 0.95–0.99. Шаг изменения потока принять равным 5 поездам.

#### Задача №3

Математически описать работу системы формирования и определить экономическую эффективность консервации одного вытяжного пути в хвосте сортировочного парка в связи с консервацией двух пучков путей в сортировочном парке при следующих исходных данных:

- число составов своего формирования

 $N\phi = 30$  составов;

- число вагонов в составе своего формирования

 $m_{\rm b} = 60$ 

вагонов;

- существующее число вытяжных путей

Nв $\phi$  = 2 вытяжки;

- среднее время занятия вытяжки при формировании

и перестановке состава в парк отправления, приходящееся

на один сформированный состав

tзан в $\phi = 20$  мин.

Принять, что при консервации вытяжного пути изменяется простой только в ожидании свободности вытяжного пути (toж вф).

- 1. Понятие о моделях и моделировании. Цели научных и инженерных исследований, место моделирования в них. Понятия оригинала и модели.
- 2. Процесс моделирования и необходимая последовательность этапов этого процесса. Понятие адекватности модели. Вычислительный эксперимент. Понятие о планировании вычислительного эксперимента.
- 3. Понятие о математических методах оптимизации. Общая формулировка задач оптимизации. Уравнения связей, фазовые координаты, управления, критерий оптимальности (целевая функция). Типы задач оптимизации.
- 4. Математическое программирование, его разновидности. Постановка задачи линейного программирования и исследование ее структуры.
- 5. Решение задач линейного программирования графическим методом.
  - 6. Алгоритм симплексного метода. Симплексные таблицы. Экономическая и геометрическая интерпретации элементов симплексной таблицы.
  - 7. Алгоритм построения опорных планов. Алгоритм нахождения оптимального плана.
  - 8. Причины, вызывающие необходимость проведения мероприятий по совершенствованию работы станции?
  - 9. Какие мероприятия по совершенствованию работы станции относятся к техническим и технологическим при росте и спаде поездопотока, поступающего на станцию?
  - 10. С какой целью проводятся мероприятия по совершенствованию работы станции при росте поездопотока и спаде?
  - 11. Понятие технико-экономических расчетов.
  - 12. По какому критерию оцениваются мероприятия, проводимые на станции, в современных условиях?
  - 13. Понятие приведенных затрат.
  - 14. Последовательность выполнения технико-экономических расчетов по оценке мероприятий, проводимых на станции.

### 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

#### Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

#### Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
  - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

#### Критерии формирования оценок по зачету с оценкой

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено»** — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

#### Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

«Зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов в соответствии с заданием, выданным для выполнения лабораторной работы.

«**Не зачтено**» - ставится за работу, если обучающийся правильно выполнил менее 2/3 всей работы, использовал при выполнении работы не свой вариант.