Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 09:15:10

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электрические машины электроподвижного состава

(наименование дисциплины(модуля)

Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация Электрический транспорт железных дорог

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Форма промежуточной аттестации: дифференцированный зачет (7 семестр)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции			
ПК-6 Способен разбираться в конструкции, принципах действия и закономерностях работы электрического и электронного оборудования электроподвижного состава.	ПК-6.1 Приводит и перечисляет принципы функционирования, параметры и характеристики электрических машин электроподвижного состава ПК-6.2 Выполняет расчет и проектирование элементов электрических машин электроподвижного состава.			

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
	Обучающийся знает: принцип действия электрических	Вопросы (1 – 10)
	машин электроподвижного состава, режимы работы и	
ПК-6.1 Приводит и перечисляет	характеристики.	
принципы функционирования, параметры	Обучающийся умеет: соотносить параметры и	Задания (1 – 3)
и характеристики электрических машин	характеристики соответствующим типам электрических	
электроподвижного состава	машин электроподвижного состава.	
	Обучающийся владеет: навыками анализа параметров	Задания (4 – 6)
	и характеристик электрических машин различного типа.	
	Обучающийся знает: перечень параметров для расчета	Вопросы (11 – 20)
	и проектирования электрических машин	
	электроподвижного состава.	
ПК-6.2 Выполняет расчет и	Обучающийся умеет: вычислять параметры для	Задания (7 – 10)
проектирование элементов электрических	расчета и проектирования электрических машин	
машин электроподвижного состава.	электроподвижного состава.	
	Обучающийся владеет: методикой расчета и	Задания (10 – 12)
	проектирования электрических машин	
	электроподвижного состава.	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение и/или размещение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знание проверяемого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения	Образовательный результат				
компетенции					
ПК-6.1 Приводит и перечисляет принципы	Обучающийся знает: принцип действия электрических машин				
функционирования, параметры и характеристики	электроподвижного состава, режимы работы и характеристики.				
электрических машин электроподвижного состава					

Примеры вопросов/заданий

- 1) При постоянном напряжении питания двигателя постоянного тока параллельного возбуждения магнитный поток возбуждения уменьшился. Как изменилась частота вращения?
 - а) уменьшилась;
 - б) не изменилась;
 - в) увеличилась;
 - г) периодически изменяется.
 - 2) Каково назначение реостата в цепи обмотки возбуждения двигателя постоянного тока?
 - а) ограничить пусковой ток;
 - б) регулировать напряжение на зажимах;
 - в) увеличивать пусковой момент;
 - г) регулировать скорость вращения.
- 3) Компенсационную обмотку, улучшающую условия работы коллектора и щёток располагают
 - а) в щёткодержателях;
 - б) в добавочных полюсах;
 - в) в полюсных наконечниках главных полюсов;
 - г) на якоре машины постоянного тока;
 - д) на коллекторе машины постоянного тока.
- 4) Как называется искажающее воздействие токов якоря на главное магнитное поле машины постоянного тока?
 - а) коммутация;
 - б) реакция якоря;
 - в) последовательное возбуждение полюсов машин постоянного тока;
 - г) выпрямление ЭДС.
- 5) Номинальный ток двигателя постоянного тока с последовательным возбуждением I ном = 50 A. Чему равен ток обмотки возбуждения?
 - a) 100 A;

_

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- б) 50 A;
- в) 25 A;
- г) 250A

6) Что произойдет с ЭДС генератора параллельного возбуждения при обрыве цепи возбуждения?

- а) ЭДС увеличится;
- б) ЭДС не изменится;
- в) ЭДС снизится до Еост;
- г) ЭДС станет равной нулю.

7) Пусковой ток двигателя постоянного тока превышает номинальный ток из - за:

- а) отсутствия противоЭДС в момент пуска;
- б) малого сопротивления обмотки якоря;
- в) большого сопротивления обмотки возбуждения;
- г) малого сопротивления обмотки возбуждения.

8) Как нужно изменить ток возбуждения, чтобы напряжение на зажимах генератора постоянного тока с параллельным возбуждением было неизменным при возрастании нагрузки?

- а) ток возбуждения нужно увеличить;
- б) ток возбуждения оставить без изменения;
- в) ток возбуждения нужно уменьшить;
- г) ток возбуждения увеличить, затем уменьшить;
- д) ток возбуждения уменьшить, затем увеличить.

9) Что произойдет, если двигатель последовательного возбуждения подключить к сети при отсутствии механической нагрузки на валу?

- а) двигатель не запустится;
- б) обмотка якоря не запустится;
- в) двигатель «идет в разнос»;
- г) обороты двигателя минимальные
- д) обороты двигателя сначала минимальные, затем максимальные.

10) Почему сердечник якоря машины постоянного тока набирают из листов электротехнической стали, изолированных между собой?

- а) для уменьшения потерь мощности от перемагничивания и вихревых токов;
- б) из конструктивных соображений;
- в) для уменьшения магнитного сопротивления потоку возбуждения;
- г) для шумопонижения.

Код и наименование индикатора достижения	Образовательный результат				
компетенции					
ПК-6.1 Приводит и перечисляет принципы	Обучающийся умеет: соотносить параметры и характеристики				
функционирования, параметры и характеристики	соответствующим типам электрических машин электроподвижного				
электрических машин электроподвижного состава	состава.				

Примеры вопросов/заданий

Задание 1

Определить электромагнитную мощность двигателя постоянного тока (кВт), если ток якоря I_8 = 10 A, число проводников обмотки якоря N = 180 шт., магнитный поток Φ = 0,07 $B\delta$, частота вращения n = 1500 Muh^{-1} . Обмотка якоря простая петлевая, ширина щетки равна ширине коллекторной пластины.

Задание 2

Четырехполюсная машина постоянного тока независимого возбуждения имеет следующие параметры: диаметр якоря $D=0.2\,$ м, длина якоря $l=0.4\,$ м, число проводников обмотки якоря N=540, индукция в воздушном зазоре $B=0.4\,$ Tn, обмотка якоря простая петлевая, ширина щетки равна ширине коллекторной пластины. Частота вращения машины, работающей в режиме генератора, $n=1000\,$ мин $^{-1}$, напряжение на нагрузке $U_c=220\,$ В. Определить частоту вращения при работе этой же машины в режиме двигателя, если токи возбуждения и якоря остались неизменными, двигатель питается от сети $U_0=220\,$ В. В расчете индукцию в воздушном зазоре считать постоянной по всей длине зазора, падением напряжения на щетках пренебречь.

Задание 3

Двигатель постоянного тока подключен к сети напряжением $U = 440 \ B$. Требуется рассчитать его магнитный поток (B6), если его мощность на валу $P_2 = 10 \ \kappa Bm$, сопротивление обмотки якоря $r_8 = 0.07 \ Om$, число проводников обмотки якоря N = 240, частота вращения $n = 1000 \ muh^{-1}$. Реакцией якоря и падением напряжения на щетках пренебречь, обмотка якоря простая петлевая, одноходовая.

Код и наименование индикатора достижения	Образовательный результат					
компетенции						
ПК-6.1 Приводит и перечисляет принципы	Обучающийся	владеет:	навыками	анализа	параметров	И
функционирования, параметры и характеристики	характеристик з	электрически	х машин разл	ичного тиі	па.	
электрических машин электроподвижного состава						

Примеры вопросов/заданий

Задание 4

Генератор постоянного тока параллельного возбуждении имеет номинальную мощность $P_2 = 10$ кВm; номинальное напряжение U = 230 B; частоту вращения n = 1450 об/миn; сопротивление обмоток цепи обмотки возбуждения $R_6 = 150$ O_m ; сопротивление обмоток якоря $R_9 = 0.3$ O_m ; КПД в номинальном режиме $\eta = 86.5$ %. Падением напряжения в щеточном контакте пренебречь. Определить: ток генератора, ток в цепи возбуждения, ток в цепи якоря, ЭДС якоря, электромагнитный момент, электромагнитная мощность, мощность приводного двигателя. Генератор работает при номинальной нагрузке.

Задание 5

В электродвигателе постоянного тока с параллельным возбуждением, имеющим номинальные данные: мощность на валу $P_2 = 130 \ \kappa Bm$; напряжение $U = 220 \ B$; ток, потребляемый из сети $I = 640 \ A$; частоту вращения $n = 600 \ o f / mu H$; сопротивление цепи обмотки возбуждения $R = 43 \ O M$; сопротивление обмотки якоря $R_g = 0,007 \ O M$. Определить номинальные суммарные и электрические потери в обмотках.

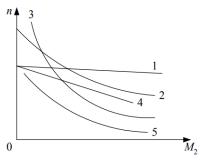
Задание 6

Электродвигатель постоянного тока с последовательным возбуждением с частотой вращения n=1500 об/мин потребляет ток I=14 A при напряжении U=220В. Сопротивление цепи якоря $R_{\rm g}=1,7$ Ом. Определить ЭДС якоря; момент электромагнитный; потребляемую мощность и электрические потери.

ПК-6.2 Выполняе	т расчет	И	проектирование	Обучающийся	знает	: перечень	параметр	ов для	расчета	И
элементов	электричес	ких	машин	проектирования	F	электрических	машин	электро	подвижно	ого
электроподвижного	состава.			состава.						

Примеры вопросов/заданий

11) Выберите правильную формулу баланса напряжения коллекторного двигателя постоянного тока параллельного возбуждения:

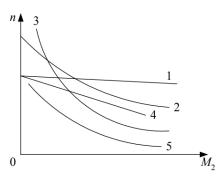

- 1) $U = E_a + I_a \cdot R_a$
- $2) \quad U = E_a I_a \cdot R_a$
- 3) $U = E_a + I_a \cdot R_a + (I_a + I_B) \cdot R_B$
- 4) $U = E_a + I_a \cdot R_a + I_a \cdot R_B$
- 5) $U = E_a I_a \cdot R_a (I_a I_B) \cdot R_B$

12) Выберите правильную форму баланса моментов установившегося режима

коллекторного генератора постоянного тока:

- 1) $M_{\text{пр.дв}} = M_0 + M_{\text{эм}} + M_{\text{с}}$
- 2) $M_{\text{пр.дв}} = M_0 + M_{\text{эм}}$
- 3) $M_{\text{пр.дв}} = M_0 + M_c$
- 4) $M_{\text{IID},IB} = M_0$
- 5) $M_{\text{пр.дв}} = M_{\text{эм}} + M_{\text{с}}$

13) Укажите искусственную механическую характеристику коллекторного двигателя постоянного тока с параллельным возбуждением:


- a) 1
- б) 2
- B) 3
- г) 4
- д) 5

14) Выберите правильную формулу электромагнитного момента коллекторной машины постоянного тока:

- 1) $M_{\scriptscriptstyle 2M} = C_M \cdot \Phi \cdot I_a$ 2) $M_{\scriptscriptstyle 2M} = \frac{C_M \cdot \Phi}{I_a}$ 3) $M_{\scriptscriptstyle 2M} = \frac{\Phi}{C_M \cdot I_a}$ 4) $M_{\scriptscriptstyle 2M} = \frac{C_M \cdot I_a}{\Phi}$ 5) $M_{\scriptscriptstyle 2M} = \frac{\Phi \cdot I_a}{C_M}$

- a) 1
- б) 2
- в) 3
- г) 4
- д) 5

15) Укажите естественную механическую характеристику коллекторного двигателя постоянного тока с параллельным возбуждением:

- a) 1
- б) 2
- B) 3

- г) 4
- д) 5

16) Какое определение якорной обмотки наиболее близко к реальному представлению:

- 1) Разомкнутая система проводников, уложенная по определенной схеме, и соединенная с коллекторными пластинами и щетками.
 - 2) Совокупность секций, коллекторных пластин и щеток.
- 3) Замкнутая на себя система проводников, уложенных по определенной схеме, соединенная с внешней сетью с помощью коллектора и щеток.
- 4) Совокупность проводников, припаянная к коллекторным пластинам, имеющая электрическое соелинение со шетками.

17) Выберите правильную формулу баланса напряжения коллекторного генератора постоянного тока независимого возбуждения:

1)
$$U = E_a + I_a \cdot R_a$$

2)
$$U = E_a - I_a \cdot R_a$$

3)
$$U = E_a + I_a \cdot R_a + (I_a + I_B) \cdot R_B$$
 4) $U = E_a - I_a \cdot R_a - I_a \cdot R_B$

4)
$$U = E_a - I_a \cdot R_a - I_a \cdot R_b$$

5)
$$U = E_a - I_a \cdot R_a - (I_a - I_B) \cdot R_B$$

18) За счет изменения величины и направления какой ЭДС в коммутирующей секции машины постоянного тока осуществляют уменьшение искрения щеток?

- 1) ЭДС самоиндукции.
- 2) ЭДС взаимоиндукции.
- 3) ЭДС вращения.
- 4) ЭДС самоиндукции и вращения.
- 5) ЭДС взаимоиндукции и вращения.

19) Как уменьшить искрение щеток в коллекторных машинах постоянного тока малой мощности?

- 1) Сдвигом щеток с геометрической нейтрали.
- 2) Постановкой дополнительных полюсов.
- 3) Постановкой компенсационной обмотки.
- 4) Сдвигом щеток и постановкой дополнительных полюсов.
- 5) Постановкой дополнительной и компенсационной обмоток.

20) Для чего служит коллекторно-щеточный узел в генераторе постоянного тока?

- 1) Для электрического соединения якорной обмотки с сетью.
- 2) Для механического выпрямления переменного тока в постоянный.
- 3) Для преобразования постоянного тока в переменный ток в проводниках обмотки якоря.
- 4) Для механического выпрямления переменного тока в постоянный и электрического соединения якорной обмотки с сетью.
- 5) Для преобразования постоянного тока в переменный ток в проводниках обмотки якоря и электрического соединения последней с сетью.

Код и наименование индикатора достижения	Образовательный результат				
компетенции					
ПК-6.2 Выполняет расчет и проектирование	Обучающийся умеет: вычислять параметры для расчета и				
элементов электрических машин	проектирования электрических машин электроподвижного состава.				
электроподвижного состава.					

Примеры вопросов/заданий

Задание 7

В статоре с числом пазов Z = 36 уложена трехфазная обмотка, создающая вращающееся

магнитное поле с частотой $n=1500~\text{мин}^{-1}$. Шаг обмотки укорочен на один паз. Частота тока в обмотке $f=50~\Gamma \mu$. Определить обмоточный коэффициент.

Задание 8

Трехфазный явнополюсный синхронный генератор работает параллельно на сеть большой мощности. ЭДС фазы генератора $E_{o\phi}=254~B$, напряжение сети $U_I=380~B$, индуктивные сопротивления: по продольной оси $x_d=0.19~Om$, по поперечной оси $x_q=0.121~Om$; угол сдвига между напряжением и ЭДС (нагрузочный угол) $\theta=30^{\circ}$, тормозной момент, создаваемый генератором $M=2155~{\rm H}\times{\rm m}$, частота вращения $n_I=3000~muh^{-I}$, потери в обмотках статора $DP_I=3.4~\kappa Bm$. Схема соединений обмоток статора — «звезда».

Задание 9

Определить индуктивное сопротивление обмотки статора трехфазного двухполюсного асинхронного двигателя (Ом) со следующими параметрами: активное сопротивления обмотки статора $r_1 = 15,85$ Ом, приведенное активное сопротивление обмотки ротора $r'_2 = 8,8$ Ом. Частота вращения ротора $n_2 = 2820$ мин⁻¹, полезная мощность двигателя $P_2 = 750$ Вт, линейное напряжение $U_1 = 380$ В. Обмотки статора соединены в «звезду», принять равными индуктивное сопротивление обмотки статора и приведенное ротора $x_1 = x'_2$.

Код и наименование индикатора достижения компетенции	Образовательный результат		
ПК-6.2 Выполняет расчет и проектирование	Обучающийся владеет: методикой расчета и проектирования		
элементов электрических машин электроподвижного	электрических машин электроподвижного состава.		
состава.			

Примеры вопросов/заданий

Задание 10

Трехфазный асинхронный двигатель с короткозамкнутым ротором серии 4Л имеет следующие данные: $P_{\text{ном}} = 4_{\text{ kBT}}, n_{\text{2 ном}} = 2880 \text{ об/мин}, \quad \eta_{\text{ном}} = 86,5 \%, \quad \cos \varphi_1 = 0,89 \,, \quad I_{_{R}}/I_{\text{ном}} = 7,5 \,,$ $M_{_{R}}/M_{_{\text{HOM}}} = 2 \,, \quad M_{_{\text{max}}}/M_{_{\text{HOM}}} = 2,5 \,, \quad U_{_{1}} = 220/380 \, \text{B} \,.$ Определить высоту оси вращения h, число полюсов 2p, скольжение при номинальной нагрузке $s_{_{\text{HOM}}}$, момент на валу $s_{_{\text{HOM}}}/M_{_{\text{HOM}}}$, начальный пусковой $s_{_{\text{N}}}/M_{_{\text{HOM}}}$ и максимальный $s_{_{\text{Max}}}/M_{_{\text{Max}}}$ моменты, потребляемую двигателем из сети активную мощность $s_{_{\text{1 ном}}}/M_{_{\text{HOM}}}$, суммарные потери при номинальной нагрузке $s_{_{\text{N}}}/M_{_{\text{N}}}/M_{_{\text{N}}}$ номинальный и пусковой токи $s_{_{\text{1 ном}}}/M_{_{\text{R}}}/M_{_{\text{R}}}$ в питающей сети при соединении обмоток статора «звездой» и «треугольником». Двигатель $s_{_{\text{N}}}/M_{_{\text{R}}}/M_{_{\text{N}}}$

Задание 11

Трехфазный асинхронный двигатель с короткозамкнутым ротором серии A2. работающий от сети частотой 50 Гц напряжением 380 В при соединении обмотки статора «звездой», имеет номинальные параметры: полезная мощность $P_{\text{ном}} = 22_2$ кВт, частота вращения $n_{\text{ном}} = 1455$ об/мин, КПД $\eta_{\text{ном}} = 90$ %, коэффициент мощности $\cos \varphi_{\text{1ном}} = 0.88$; кратность пускового $T_{\text{обк}}I_n/I_{\text{пом}} = 7$, кратности пускового $M_n/M_{\text{пом}} = 1.2_{\text{ и}}$ максимального $M_{\text{мах}}/M_{\text{ном}} = 2$ моментов; активное сопротивление фазной обмотки статора при температуре 20° $r_{1.20} = 0.17$. Требуется рассчитать параметры и построить механическую характеристику двигателя $n_2 = f(M)$. ых.

Залание 12

Трехфазный восьмиполюсный асинхронный двигатель в номинальном режиме имеет следующие данные: напряжение $U_{\rm H}$ = 380 B, ток $I_{\rm H}$ = 51 A, частота вращения $n_{\rm H}$ = 725 об/мин, перегрузочная способность $M_{\rm max}/M_{\rm H}$ = 3,3, кратность пускового момента $M_{\rm H}/M_{\rm H}$ = 1,1. Определить критическое и рабочее скольжение, перегрузочную способность и кратность пускового момента при неизменном моменте нагрузки и уменьшении напряжения до значения 350 B.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (зачету)

- 1. Этапы создания электрических машин.
- 2. Классификация тяговых электрических машин. Терминология. Определения. Назначение.
- 3. Бесколлекторный тяговый привод за рубежом и в России.
- 4. Принцип действия синхронного генератора.
- 5. Принцип действия асинхронного двигателя.
- 6. Устройство статора синхронной и асинхронной машины.
- 7. Понятие о круговом, эллиптическом и пульсирующем магнитном полях.
- 8. Назначение и область применения асинхронных машин.
- 9. Режимы работы асинхронной машины: двигательной, генераторной и тормозной.
- 10. Условия перехода асинхронной машины в режимы: двигательной, генераторной и тормозной.
 - 11. Устройства трехфазного асинхронного двигателя с короткозамкнутой обмоткой ротора.
 - 12. Особенности конструкции асинхронного двигателя с фазным ротором.
 - 13. Аналогия между асинхронной машиной и трансформатором.
 - 14. Частота ЭДС, наведенная в обмотке ротора.
 - 15. Уравнение МДС и токов асинхронного двигателя.
 - 16. Векторная диаграмма и схема замещения асинхронного двигателя.
 - 17. Потери и КПД асинхронного двигателя.
 - 18. Электромагнитный момент асинхронного двигателя, его зависимость от скольжения.
 - 19. Перегрузочная способность асинхронного двигателя.
- 20. Влияние напряжения сети и активного сопротивления обмотки ротора на форму механической характеристики асинхронного двигателя.
 - 21. Рабочие характеристики асинхронного двигателя.
- 22. Пусковые свойства трехфазных асинхронных двигателей с короткозамкнутой обмоткой ротора.
 - 23. Способы пуска асинхронных двигателей.
 - 24. Пуск асинхронных двигателей с фазным ротором.
 - 25. Понятие об асинхронных двигателях с улучшенными пусковыми свойствами.
 - 26. Способы регулирования частоты вращения трехфазных асинхронных двигателей.
 - 27. Назначение и область применения исполнительных асинхронных двигателей.
 - 28. Требования, предъявляемые к исполнительным асинхронным двигателям.
 - 29. Типы исполнительных асинхронных двигателей.
 - 30. Конструкция двигателей серии 4А.
 - 31. Особенности тягового двигателя НТА-1200.
- 32. Особенности конструкции, принцип действия и область применения вращающихся трансформаторов.
- 33. Примеры использования асинхронных машин специального назначения для автоматических устройств.
 - 34. Назначение и область применения синхронных машин.
 - 35. Типы синхронных машин и их устройство.
 - 36. Способы возбуждения синхронных машин.
 - 37. Принцип работы и конструкция синхронного двигателя.
- 38. Конструкция, принцип действия, рабочие характеристики, область применения, достоинства и недостатки реактивного и гистерезисного синхронного двигателя.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету (пятибалльная шкала оценивания)

«Отлично/зачтено» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» – обучающийся допустил существенные ошибки.

«**Неудовлетворительно/не зачтено»** — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.