Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 14:28:57 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теоретическая механика (наименование дисциплины(модуля) Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог (код и наименование) Направленность (профиль)/специализация Локомотивы

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: очная форма обучения — экзамен, контрольная работа (3 семестр); заочная форма обучения — экзамен, контрольная работа (2 курс).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4 Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов	ОПК-4.2

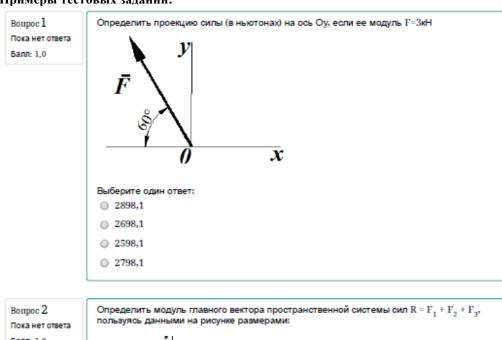
Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

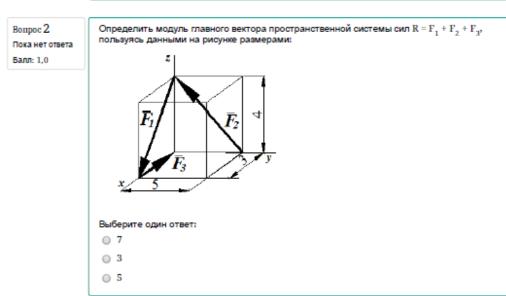
Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные
		материалы
ОПК-4.2 Определяет силы реакций, действующих на тело, скорости ускорения точек тела в различных видах движений, анализирует кинематические схемы механических систем	Обучающийся знает: основные законы статики, кинематики и динамики точки и механической системы, основные разновидности связей и их реакций, методы исследования и расчета их кинетических и динамических характеристик механических систем, понятия числа степеней свободы, обобщенных координат, вариационных принципов механики.	Примеры тестовых вопросов Вопросы к экзамену
	Обучающийся умеет: составлять условия равновесия твердого тела в геометрической и аналитической формах, определять скорости и ускорения точек твердого тела, совершающего простейшие движения, определять кинематические характеристики точки, совершающей сложное движение, составлять уравнения относительного движения точки, использовать законы сохранения, решать задачи малых колебаний систем с 2-мя степенями свободы, применять методы теоретической механики для расчета деталей и узлов механизмов.	Задания для экзамена
	Обучающийся владеет: навыками интегрирования и методики решения простейших дифференциальных уравнений движения точки, навыками применения методов формализации и описания механических процессов на основе полученных теоретических знаний и практических навыков, приемами составления условий равновесия в геометрической и аналитической формах, навыками применения типовых задач теоретической механики для выполнения практических инженерных расчётов, навыками самостоятельного составления расчётою схемы задачи, соответствующей реальной технической проблеме, выбора оптимального теоретического аппарата для решения поставленной задачи, навыками применения методов аналитической механики для описания движения системы с несколькими степенями свободы.	Примеры практических задач Задания для экзамена

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий
- 2) выполнение тестовых заданий в ЭИОС университета.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций


2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата


Проверяемый образовательный результат

Код и наименование	Образовательный результат	
компетенции		
ОПК-4.2 Определяет силы	Обучающийся знает: основные законы статики, кинематики и динамики точки и	
реакций, действующих на тело,	механической системы, основные разновидности связей и их реакций, методы	
скорости ускорения точек тела	исследования и расчета их кинетических и динамических характеристик	
в различных видах движений,	механических систем, понятия числа степеней свободы, обобщенных координат,	
анализирует кинематические	вариационных принципов механики.	
схемы механических систем		

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/).

Примеры тестовых заданий:

Вопросы для подготовки к зачёту

- 1. Сила. Система сил. Распределение сил.
- 2. Аксиомы статики.
- 3. Пара сил.

- 4. Проекция силы на ось и плоскость.
- 5. Момент сил относительно точки и относительно оси.
- 6. Момент пары сил.
- 7. Естественный способ задания движения точки. Скорость и ускорение точки при естественном способе задания движения.
- 8. Поступательное движение твердого тела. Скорость и ускорение точек твердого тела при поступательном движении.
- 9. вращательное движение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение.
- 10. Линейная скорость и линейное ускорение точек твердого тела при его вращении вокруг неподвижной оси.
- 11. Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.
- 12. Теорема о распределении скоростей точек твердого тела при плоскопараллельном движении.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

Код и наименование	Образовательный результат	
компетенции		
ОПК-4.2 Определяет силы	Обучающийся умеет: составлять условия равновесия твердого тела в геометрической и	
реакций, действующих на	аналитической формах, определять скорости и ускорения точек твердого тела,	
тело, скорости ускорения	совершающего простейшие движения, определять кинематические характеристики	
точек тела в различных видах	точки, совершающей сложное движение, составлять уравнения относительного	
движений, анализирует	движения точки, использовать законы сохранения, решать задачи малых колебаний	
кинематические схемы	систем с 2-мя степенями свободы, применять методы теоретической механики для	
механических систем	расчета деталей и узлов механизмов.	

Задания, выполняемые на экзамене

Закон движения точки в декартовой ортогональной системе координат задан уравнениями: $x = 8t^2$, $y = 6t^2$. Определить время, когда модуль ее скорости достигнет значения 100м/с.

Закон движения точки в декартовой ортогональной системе координат задан уравнением $x = \sin \pi t$. Определить модуль скорости в момент времени t , когда координата x = 0.5м .

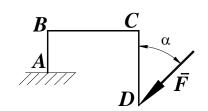
Грузовой барабан вращается согласно закону $\phi = 5 + 2t^3$. Определить модуль скорости точки М (м/с), находящейся на ободе барабана в момент времени t = 1c , если диаметр барабана d = 0.6 м.

Автомобиль движется по горизонтальной дороге с постоянной скоростью V=90км/ч. Определить радиус закругления дороги в момент времени, когда модуль нормального ускорения центра автомобиля $a_n=2.5$ м/с 2 .

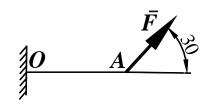
Электровоз движется по окружности радиуса R=300 M . Определить модуль скорости электровоза в км/ч, при которой модуль нормального ускорения равняется 1 m/c2.

Дано уравнение движения точки по траектории $S=0.6t^2$. Определить модуль нормального ускорения точки в момент времени, когда ее координата S=30м и радиус кривизны траектории $\rho=15$ м .

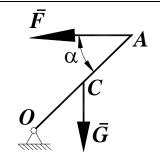
Закон движения точки в декартовой ортогональной системе координат задан уравнениями: $x=t^2$, $y=\sin\pi t$, $z=3\cos\pi t$. Определить модуль скорости точки в момент времени t=2c .

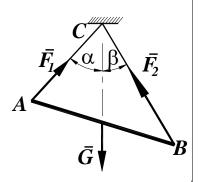

Тело вращается вокруг неподвижной оси согласно закону $\phi = t^2$. Определить модуль скорости точки тела (м/с) расположенной на расстоянии r = 0.5 м от оси вращения в момент времени, когда угол поворота $\phi = 25$ рад.

ОПК-4.2 Определяет силы реакций, действующих на тело, скорости ускорения точек тела в различных видах движений, анализирует кинематические схемы механических систем


Обучающийся владеет: навыками интегрирования и методики решения простейших дифференциальных уравнений движения точки, навыками применения методов формализации и описания механических процессов на основе полученных теоретических знаний и практических навыков, приемами составления условий равновесия в геометрической и аналитической формах, навыками применения типовых задач теоретической механики для выполнения практических инженерных расчётов, навыками самостоятельного составления расчётной схемы задачи, соответствующей реальной технической проблеме, выбора оптимального теоретического аппарата для решения поставленной задачи, навыками применения методов аналитической механики для описания движения системы с несколькими степенями свободы.

Задания выполняемые на практических занятиях


Определить момент силы F=100H относительно точки A, если AB=1м, BC=4м, CD=4м, угол α =15 0 .


Найти длину балки АО, если при действии на нее силы F=800H под углом $\alpha=30^0$ к горизонтали момент в заделке О равен 200Hм.

Стержень ОА, находится в вертикальной плоскости, шарнирно закреплен в точке О. Определить модуль горизонтальной силы \vec{F} (H), при которой стержень находится в равновесии, если угол $\alpha=45^{0}$, вес стержня G=5H приложен посредине стержня ОС=СА.

Определить вес балки АВ (H), если известны силы натяжения веревок $F_I=120H\,$ и $F_2=80H\,$. Заданы углы $\alpha=45^0\,$ и $\beta=30^0\,$ между вертикалью и веревками АС и ВС соответственно.

Задания, выполняемые на экзамене

Трактор, двигаясь с ускорением $a=2m/c^2$ по горизонтальному участку пути, перемещает нагруженные сани массой $600\kappa z$. Определить модуль силы тяги на крюке, если коэффициент трения скольжения саней f=0,05.

Движение материальной точки массой $m=8\kappa z$ происходит в горизонтальной плоскости Oxy согласно уравнениям $x=0.05t^3$ и $y=0.3t^3$. Определить модуль равнодействующей всех сил, приложенных к точке в момент t=4c.

Тело движется вниз по гладкой плоскости, которая наклонена под углом α = 60° к горизонту. Определить модуль ускорения тела.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Сила. Система сил. Распределение сил.
- 2. Аксиомы статики.
- 3. Пара сил.
- 4. Проекция силы на ось и плоскость.
- 5. Момент сил относительно точки и относительно оси.
- 6. Момент пары сил.
- 7. Лемма о параллельном переносе силы.
- 8. Основная теорема статики.
- 9. Теорема Вариньона.
- 10. Условия и уравнения равновесия произвольной пространственной системы сил.
- 11. Равновесие при наличии трения скольжения.
- 12. Равновесие при наличии трения качения.
- 13. Центр параллельных сил. Центр тяжести.
- 14. Векторный способ задания движения точки. Скорость и ускорение точки при векторном способе задания движения.
- 15. Координатный способ задания движения точки. Скорость и ускорение точки при координатном способе задания движения точки.
- 16. Естественный способ задания движения точки. Скорость и ускорение точки при естественном способе задания движения.
- 17. Поступательное движение твердого тела. Скорость и ускорение точек твердого тела при поступательном движении.
- 18. вращательное движение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение.
- 19. Линейная скорость и линейное ускорение точек твердого тела при его вращении вокруг неподвижной оси.
- 20. Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.
- 21. Теорема о распределении скоростей точек твердого тела при плоскопараллельном движении.
- 22. Мгновенный центр скоростей и способы его положения.
- 23. Теорема о проекциях скоростей двух точек плоской фигуры на прямую, соединяющую эти точки.
- 24. Теорема о распределении ускорений точек твердого тела при плоскопараллельном движении.
- 25. Сложное движение точки. Понятие относительного, переносного и абсолютного движений точки.
- 26. Теорема о сложении скоростей при сложном движении точки.
- 27. Теорема о сложении ускорений при сложном движении точки.
- 28. Кориолисово ускорение.
- 29. Законы Ньютона.
- 30. Основное уравнение динамики. Дифференциальные уравнения движения материальной точки.
- 31. Первая задача динамики.
- 32. Вторая задача динамики точки.
- 33. Аналитическое решение второй задачи динамики точки при прямолинейном движении.
- 34. Свободные колебания материальной точки. гармонические колебания.
- 35. Динамика относительного движения материальной точки. Силы инерции. Дифференциальные уравнения относительного движения материальной точки. Принцип относительности Галилея-Ньютона.
- 36. Механическая система. Масса системы. Центр масс и его координаты.

- 37. Моменты инерции относительно центра, оси. Теорема Гюйгенса-Штейнера.
- 38. Силы внешние и внутренние. Свойства внутренних сил.
- 39. Количество движения точки и системы.
- 40. Теорема об изменении количества движения. Закон сохранения количества движения.
- 41. Центр масс системы. Теорема о движении центра масс.
- 42. Момент количества движения точки и системы относительно центра и относительно оси.
- 43. Теорема об изменении кинетического момента. Закон сохранения кинетического момента.
- 44. Элементарная работа силы. Работа силы на конечном перемещении.
- 45. Потенциальное силовое поле. Работа и потенциальная энергия.
- 46. Кинетическая энергия механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения.
- 47. Теорема об изменении кинетической энергии.
- 48.Закон сохранения механической энергии.
- 49. Принцип Даламбера.
- 50. Возможные перемещения. Возможная работа. Идеальные связи.
- 51. Принцип возможных перемещений.
- 52.Общее уравнение динамики.
- 53. Обобщенные координаты и обобщенные силы.
- 54. Уравнения Лагранжа второго рода.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по выполнению тестовых заданий

- «Отлично» (5 баллов) высокий уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 100 90% от общего «веса» заданных тестовых вопросов.
- «**Хорошо**» (4 балла) продвинутый уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 89 70% от общего «веса» заданных тестовых вопросов.
- «Удовлетворительно» (3 балла) базовый уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 69 50% от общего «веса» заданных тестовых вопросов.
- «**Неудовлетворительно**» (0 баллов) компетенция не сформирована получают студенты с количеством баллов за правильные ответы на тестовые вопросы менее 49% от общего «веса» заданных тестовых вопросов.
- * «Вес» тестового вопроса зависит от уровня его сложности. Процент баллов правильных ответов считается как отношение суммарного «веса» вопросов, но которые дан правильный ответ к общему «весу» всех вопросов теста. Таким образом, если студент ответил на половину вопросов, но все они легкие (с низким «весом»), порог в 50% не будет преодолён и засчитывается неудовлетворительный уровень компетенции.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по результатам выполнения заданий

«Отлично» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.