Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДСЕРУАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: Распрадыное государственное бюджетное образовательное учреждение высшего образования
Дата подписания: 71.10.2025 15:09:13.
Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Электрический привод

рабочая программа дисциплины (модуля)

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 5 ЗЕТ

Виды контроля в семестрах:

экзамены 5 курсовые работы 5

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	5 (3.1)		Итого	
Недель	16 2/6			
Вид занятий	УП	РП	УП	РП
Лекции	16	16	16	16
Лабораторные	16	16	16	16
Практические	16	16	16	16
Конт. ч. на аттест.	1	1	1	1
Конт. ч. на аттест. в период ЭС	2,3	2,3	2,3	2,3
В том числе в форме практ.подготовки	66	66	66	66
Итого ауд.	48	48	48	48
Контактная работа	51,3	51,3	51,3	51,3
Сам. работа	104	104	104	104
Часы на контроль	24,7	24,7	24,7	24,7
Итого	180	180	180	180

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 2

Программу составил(и):

к.п.н., доцент, Шищенко Елена Вячеславовна

Рабочая программа дисциплины

Электрический привод

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

составлена на основании учебного плана: 13.03.02-25-2-ЭЭб.plm.plx

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Рабочая программа одобрена на заседании кафедры

Тяговый подвижной состав

Зав. кафедрой Муратов А.В.

УП: 13.03.02-25-2-ЭЭб.plm.plx стр.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 формирование профессиональной компетенции обеспечивающей способность к расчёту, оценке параметров и режимов функционирования подвижного состава электрического транспорта, подстанций, кабельных и воздушных линий электропередач на основе базы знаний об электрическом приводе, системах управления электрическими двигателями, входящих в состав электропривода и практических навыков работы с математическим аппаратом, описывающим работу силовой части и систем управления электроприводом, их качество

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Цикл (раздел) ОП: Б1.В.04

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- ПК-1 Способен рассчитывать и оценивать параметры и режимы функционирования подвижного состава электрического транспорта, подстанций, кабельных и воздушных линий электропередачи
- ПК-1.1 Характеризует электроприводы различных типов, рассчитывает параметры систем электропривода, объясняет структуру электропривода и возможности управления в различных режимах работы
- ПК-1.2 Оценивает энергоэффективность систем электропривода на подвижном составе городского электрического транспорта

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	классификацию электроприводов; показатели работы электропривода (от чего они зависят и чем характеризуются); моменты возникающие при работе электропривода; методы проверки на нагрев выбранных двигателей постоянного и переменного тока; энергетические режимы работы электрического привода постоянного и переменного тока; особенности режима динамического торможения; понятие жесткости механической характеристики электроприводов с двигателями постоянного тока и переменного тока
3.2	Уметь:
3.2.1	рассчитывать эквивалентную мощность на валу электродвигателя; среднюю мощность на валу двигателя; определять частоту вращения идеального холостого хода и строить электромеханическую характеристику; определять по механическим характеристикам энергетические режимы электроприводов постоянного и переменного тока, рассчитывать и строить механические характеристики электроприводов с двигателями постоянного и переменного тока
3.3	Владеть:
3.3.1	навыками решения задач по определению электромеханических свойств электропривода; навыками построения электромеханических и механических характеристик; навыками расчета и построения механических характеристик электроприводов с двигателями постоянного тока и двигателями переменного тока, характеризующих энергетический режим электропривода и его энергоэффективность

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Семестр Код Наименование разделов и тем /вид занятия/ Часов Примечание занятия / Kypc Раздел 1. Основы электропривода 1.1 Общие сведения об электрическом приводе. Назначение и классификация 5 электрического привода. Основные показатели работы ЭП.Основы механики электропривода. Основные понятия механики электропривода. Расчетные схемы механической части ЭП. Одномассовая механическая система электропривода. Многомассовые механические системы /Лек/ 1.2 5 Общие принципы построения автоматизированного электропривода. 1 Основные понятия о регулировании координат электропривода. Общие принципы построения систем управления /Лек/ 1.3 5 2 Изучение силовых модулей лабораторной установки электропривода /Лаб/ Практическая подготовка Раздел 2. Электропривод с двигателями постоянного тока 2.1 5 2 Физические процессы в электроприводе постоянного тока. Машина постоянного тока, ее модель и параметры. Структурная схема двигателя постоянного тока /Лек/ 2.2 Исследование механических характеристик электрического двигателя 5 2 Практическая постоянного тока независимого возбуждения /Лаб/ подготовка 2.3 5 Расчет параметров схем включения и характеристик двигателя постоянного 1 Практическая тока независимого возбуждения /Пр/ подготовка

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 4

2.4	Расчет основных параметров схемы ТП- Д /Пр/	5	2	Практическая
2.5	Электропривод с двигателями постоянного тока независимого возбуждения. Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения. Энергетические характеристики двигателя Электропривод с двигателями постоянного тока последовательного возбуждения. Схема включения и статические характеристики двигателя постоянного тока последовательного возбуждения. Энергетические режимы работы двигателя постоянного тока последовательного возбуждения /Лек/	5	2	подготовка
2.6	Расчет параметров схем включения и характеристик двигателя постоянного тока последовательного возбуждения /Пр/	5	2	Практическая подготовка
2.7	Исследование механических характеристик двигателя постоянного тока последовательного возбуждения /Пр/	5	1	Практическая подготовка
2.8	Исследование механических характеристик двигателя постоянного тока параллельного возбуждения /Лаб/	5	2	Практическая подготовка
2.9	Оптимизация динамических режимов электропривода постоянного тока по принципу подчиненного регулирования координат. Общие сведения об оптимизации динамических режимов электропривода постоянного тока. Система регулирования скорости и схема управления электропривода постоянного тока по принципу последовательной коррекции. Техническая реализация систем подчиненного регулирования координат в электроприводе постоянного тока /Лек/	5	2	
2.10	Регулирование координат двигателя постоянного тока последовательного возбуждения с помощью резисторов в цепи якоря. Регулирование координат двигателя постоянного тока последовательного возбуждения изменением магнитного потока. Регулирование координат двигателя постоянного тока последовательного возбуждения изменением подводимого к якорю напряжения. Регулирование скорости двигателя постоянного тока последовательного возбуждения в схемах с шунтированием якоря. Торможение двигателя постоянного тока последовательного возбуждения. /Ср/	5	2	
	Раздел 3. Электрический привод с двигателями переменного тока			
3.1	Физические процессы в электроприводе с асинхронными машинами. Простейшие модели асинхронной машины (общие сведения об электрическом приводе с асинхронными машинами; электромагнитные процессы в асинхронной машине). Основные характеристики электропривода с асинхронными машинами (процессы, происходящие в электроприводе с асинхронной машиной при работе под нагрузкой; электромеханические и механические характеристики асинхронной машины). Параметры и режимы работы асинхронного привода (номинальные данные асинхронной машины; построение естественных характеристик асинхронной машины; энергетические режимы работы асинхронной машины). /Лек/	5	2	
3.2	Расчет параметров схем включения и характеристик асинхронных двигателей /Пр/	5	2	Практическая подготовка
3.3	Регулирование координат электропривода с асинхронным двигателем. Регулирование координат электропривода с с асинхронным двигателем с помощью резисторов в цепях статора и ротора. Регулирование скорости асинхронного двигателя изменением числа пар полюсов. Регулирование координат электрического привода с асинхронной машины в системе ПЧ-Д (схема включения и характеристики асинхронной машины в системе ПЧ-Д; электромашинный преобразователь частоты с синхронным генератором; схема преобразователя частоты с непосредственной связью; схема преобразователя частоты со звеном постоянного тока). Импульсный способ регулирования координат асинхронного двигателя /Лек/	5	2	
3.4	Исследование пуска, реверса и торможения асинхронного двигателя с к.з. ротором /Лаб/	5	2	Практическая подготовка
3.5	Исследование пуска, реверса и торможения асинхронного двигателя с фазным ротором /Лаб/	5	2	Практическая подготовка
3.6	Изучение работы электропривода с асинхронным двигателем в каскадных схемах включения /Лаб/	5	2	Практическая подготовка

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 5

3.7	Электрический привод с синхронным двигателем. Схема включения и	5	2	
	статические характеристики синхронного двигателя. Энергетические			
	режимы работы синхронной машины. Общие принципы управления			
	синхронным двигателем. Схема управления синхронного двигателя с			
3.8	тиристорным возбуждением /Лек/ Исследование преобразователя частоты "Delta" /Лаб/	5	2	Практическа
3.0	исследование преобразователя частоты Бена /Лаб/)		подготовка
3.9	Исследование пуска и синхронизации синхронных двигателей /Лаб/	5	2	Практическа подготовка
3.10	Регулирование координат электропривода в системе ПН-Д(схема	5	3	
	включения и характеристики асинхронной машины в системе ПН-Д; работа			
	асинхронной машины в системе ТП-Д). /Ср/			
	Раздел 4. Энергетика привода и выбор мощности двигателя			
4.1	Расчет мощности, выбор электродвигателей и проверка их по нагреву.	5	2	
	Факторы, определяющие выбор электродвигателя. Нагрев и охлаждение			
	электродвигателей. Классификация режимов работы электродвигателей.			
	Проверка двигателей, работающих в продолжительном режиме. Проверка			
	двигателей, работающих в кратковременном режиме. Проверка двигателей,			
	работающих в повторно- кратковременном режиме. Определение			
	допустимой частоты включений асинхронных двигателей с к. з. ротором.			
4.0	Выбор двигателя для регулируемого электропривода /Лек/		1	ļ —
4.2	Выбор типа и мощности (габарита) электродвигателя /Пр/	5	4	Практическ подготовка
4.3	Построение механических характеристик электропривода /Пр/	5	4	Практическ подготовка
	Раздел 5. Самостоятельная работа			
5.1	Выполнение курсовой работы /Ср/	5	35	Практическ подготовка
5.2	Элементная база информационного канала с жесткой логикой. Общие	5	8	
	сведения об информационном канале с жесткой логикой. Аналоговые			
	регуляторы. Цифровые интегральные микросхемы малой степени			
	интеграции. Цифровые интегральные микросхемы средней степени			
	интеграции. Средства сопряжения цифровых и аналоговых систем			
	(интерфейс цифровой системы с механическими ключами; преобразование аналоговых сигналов в дискретные с помощью операционных усилителей и			
	компараторов; интерфейс цифровой системы с электромагнитным реле и			
	компараторов, интерфене цифровон системы с электромагнитным реле и контакторами; цифроаналоговые преобразователи; аналого-цифровые			
	преобразователи). /Ср/			
5.3	Элементная база информационного канала с гибкой логикой. Основные	5	8	
	понятия и определения в микропроцессорной технике. Принцип действия			
	микропроцессорной системы. Организация памяти в микропроцессорных			
	системах. Интерфейс периферийных устройств. Построение			
5.4	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие	5	8	
5.4	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели	5	8	
5.4	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в	5	8	
5.4	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые	5	8	
	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/			
5.5	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/ Подготовка к лекциям /Ср/	5	8	
5.5	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/ Подготовка к лекциям /Ср/	5	8 16	
5.5	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/ Подготовка к лекциям /Ср/	5	8	
5.5	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/ Подготовка к лекциям /Ср/	5	8 16	
5.5	системах. Интерфейс периферийных устройств. Построение микропроцессорных систем на базе микропроцессорных комплектов БИС /Ср/ Примеры синтеза структур и параметров информационного канала. Общие вопросы синтеза дискретных автоматов (постановка задач синтеза; модели дискретных управляющих автоматов). Синтез параметров регуляторов в электроприводах с подчиненным регулированием координат. Цифровые микропроцессорные регуляторы /Ср/ Подготовка к лекциям /Ср/ Подготовка к практическим работам /Ср/	5	8 16	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания,

УП: 13.03.02-25-2-ЭЭб.plm.plx стр. 6

распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

	6. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ Д	исциплин	Ы (МОДУЛЯ)
		6.1. Рекомендуемая литература		
		6.1.1. Основная литература		_
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес
Л1.1	Шичков Л. П.	Электрический привод: Учебник и практикум для вузов	Москва: Юрайт, 2021	tps://urait.ru/bcode/4719
		6.1.2. Дополнительная литература		
	Авторы, составители	Заглавие	Издательс	Эл. адрес
	•		тво, год	•
Л2.1	Острецов В. Н., Палицын А. В.	Электропривод и электрооборудование: Учебник и практикум для вузов	Москва: Юрайт, 2020	tps://urait.ru/bcode/4526
6.2	Информационные тех	нологии, используемые при осуществлении образовател (модулю)	ъного процесс	са по дисциплине
	6.2.1 Перечені	модулю) ь лицензионного и свободно распространяемого програм	имного обеспе	чения
6211	Microsoft Office	puenpos puniono n ezocogno puenpos puniono no eporpun		
0.2.1		ь профессиональных баз данных и информационных с	справочных си	істем
6.2.2.1		еская литература» http://booktech.ru/journals/vestnik-mashing		
		гроэнергетиков https://pomegerim.ru/		
6.2.2.3		вочная система Техэксперт https://tech.company-dis.ru/		
		вочная система КонсультантПлюс http://www.consultant.ru/		
		АЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛ		/ПЯ)
7.1	и техническими средс	ия проведения занятий лекционного типа, укомплектованны твами обучения: мультимедийное оборудование для предобили звукоусиливающее оборудование (стационарное или п	ставления учеб	
7.2	текущего контроля и п	ия проведения занятий семинарского типа, групповых и инд промежуточной аттестации, укомплектованные специализи ами обучения: мультимедийное оборудование и/или звукор реносное)	рованной мебе.	лью и
7.3		тоятельной работы, оснащенные компьютерной техникой оспечением доступа в электронную информационно-образо		
7.4	1 Помещения для хране	ния и профилактического обслуживания учебного оборудо	вания	
7.5	Лаборатории, оснащен	ные специальным лабораторным оборудованием: лаборато	орный стенд	
7.6		вого проектирования / выполнения курсовых работ, укомплим средствами обучения (стационарными или переносным		ециализированной

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электрический привод

(наименование дисциплины (модуля)

Направление подготовки / специальность

13.03.02 Электроэнергетика и электротехника

(код и наименование)

Направленность (профиль)/специализация

Электрический транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Форма контроля – экзамен 5 семестр, Курсовая работа 5 семестр

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1 Способен рассчитывать и оценивать параметры и режимы функционирования подвижного состава электрического транспорта, подстанций, кабельных и	ПК-1.1 Характеризует электроприводы различных типов, рассчитывает параметры систем электропривода, объясняет структуру электропривода и возможности управления в различных режимах работы
воздушных линий электропередачи	ПК-1.2 Оценивает энергоэффективность систем электропривода на подвижном составе городского электрического транспорта

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
	Обучающийся знает: классификацию	Вопросы (1 – 10)
	электроприводов; показатели работы электропривода	
	(от чего они зависят и чем характеризуются);	
	моменты возникающие при работе электропривода;	
	методы проверки на нагрев выбранных двигателей	
ПК-1.1 Характеризует электроприводы	постоянного и переменного тока	
различных типов, рассчитывает	Обучающийся умеет: рассчитывать эквивалентную	Задания (1 –3)
параметры систем электропривода,	мощность на валу электродвигателя; среднюю	, , ,
объясняет структуру электропривода и	мощность на валу двигателя; определять частоту	
возможности управления в различных	вращения идеального холостого хода и строить	
режимах работы	электромеханическую характеристику	
	Обучающийся владеет: навыками решения задач по	Задания (4-6)
	определению электромеханических свойств	
	электропривода; навыками построения	
	электромеханических и механических характеристик	
ПК-1.2 Оценивает энергоэффективность	Обучающийся знает: энергетические режимы работы	Вопросы (11 – 20)
систем электропривода на подвижном	электрического привода постоянного и переменного	
составе городского электрического	тока; особенности режима динамического	
транспорта	торможения; понятие жесткости механической	
-	характеристики электроприводов с двигателями	
	постоянного тока и переменного тока	
	05	7(7-10)
	Обучающийся умеет: определять по механическим	Задания (7 – 10)
	характеристикам энергетические режимы	
	электроприводов постоянного и переменного тока,	

рассчитывать и строить механические характеристики электроприводов с двигателями постоянного и переменного тока Обучающийся владеет: навыками расчета и	Задания (11 – 14),
построения механических характеристик электроприводов с двигателями постоянного тока и двигателями переменного тока, характеризующих энергетический режим электропривода и его энергоэффективность	Задание 14 — типовое задание на курсовую работу

- Промежуточная аттестация (экзамен) проводится в одной из следующих форм:
 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

ПК-1.1 Характеризует электроприводы различных типов, рассчитывает параметры систем электропривода, объясняет структуру электропривода и возможности управления в различных режимах работы Обучающийся знает: классификацию электроприводов; показатели работы электропривода (от чего они зависят и чем характеризуются); моменты возникающие при работе электропривода; методы проверки на нагрев выбранных двигателей постоянного и переменного тока	Код и наименование индикатора достижения компетенции	Образовательный результат
	электроприводы различных типов, рассчитывает параметры систем электропривода, объясняет структуру электропривода и возможности управления в различных	электропривода (от чего они зависят и чем характеризуются); моменты возникающие при работе электропривода; методы проверки на нагрев выбранных двигателей

Примеры вопросов/заданий

1. По способу разделения энергии электроприводы разделяют на:

- а) индивидуальный, групповой, взаимосвязанный, многодвигательный;
- б) индивидуальный, вспомогательный, взаимосвязанный, групповой;
- в) однонаправленный, реверсивный

2. Многодвигательный электропривод – это:

- а) электропривод, который состоит из нескольких одиночных электроприводов, каждый из которых предназначен для приведения в действие отдельных элементов производственного агрегата;
- б) электропривод, который с помощью одного электродвигателя приводит в движение отдельную машину;
- в) трансмиссионный электропривод;
- г) электропривод, который служат для регулирования скорости

3. По функциональному назначению различают электроприводы:

- а) главный и вспомогательный;
- б) вращательного и поступательного движения

4. Экономичность регулируемого привода характеризуется:

- 1) затратами на его изготовление и эксплуатацию;
- 2) затратами на его транспортировку;
- 3) затратами на дополнительные приборы;
- 4) не имеет никаких затрат

5. Диапазон регулирования зависит от:

- 1) от нагрузки;
- 2) от внешних сил;
- 3) от внутренних сил;
- 4) от скорости момента

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 6. Активные моменты могут быть как движущими, так и:
 - 1) тормозными;
 - 2) вращающими;
 - 3) ускорительными;
 - 4) неподвижными
- 7. Реактивные моменты всегда направлены:
 - 1) против движения;
 - 2) перпендикулярно;
 - 3) не имеют направления;
 - 4) могут иметь любое направление
- 8. В электроприводах используют двигатели:
 - 1) постоянного и переменного тока;
 - 2) только постоянного тока;
 - 3) только переменного тока;
 - 4) внутреннего сгорания
- 9. Для проверки по нагреву предварительно выбранного двигателя постоянного тока независимого возбуждения, работающего с переменной нагрузкой и регулируемого изменением сопротивления якорной цепи, следует пользоваться методом:
 - а) эквивалентного момента;
 - б) эквивалентной мощности;
 - в) оба метода равноценны
- 10. Для проверки по нагреву предварительно выбранного асинхронного короткозамкнутого двигателя, работающего с переменной нагрузкой и регулируемого изменением частоты с с выполнением закона U/f = const, следует пользоваться методом:
 - а) эквивалентной мощности;
 - б) эквивалентного тока;
 - в) эквивалентного момента

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-1.1 Характеризует	Обучающийся умеет: рассчитывать эквивалентную мощность на валу
электроприводы различных	электродвигателя; среднюю мощность на валу двигателя; определять частоту
типов, рассчитывает параметры	вращения идеального холостого хода и строить электромеханическую
систем электропривода,	характеристику
объясняет структуру	
электропривода и возможности	
управления в различных режимах	
работы	

Примеры вопросов/заданий

Залание 1

Согласно графику, представленному на рис. ниже, рассчитайте эквивалентную мощность на валу электродвигателя.

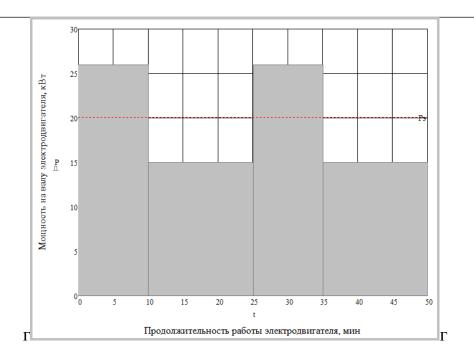


Рис. 1

Задание 2

Согласно выше представленному графику на рис. 1 рассчитать среднюю мощность на валу электродвигателя.

Задание 3 Типовое задание на курсовой проект

Используя номинальные и каталожные значения (U=110B; $\omega_{\text{ном}}$ = 100 рад/с; $I_{\text{я}}$ =20A, $r_{\text{я}}$ =0,5 Ом), определите частоту вращения идеального холостого хода электродвигателя постоянного тока и постройте его электромеханическую характеристику. Рассчитать потери энергии при номинальном напряжении при пуске системы с нагрузкой и без нагрузки.

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-1.1 Характеризует	Обучающийся владеет: навыками решения задач по определению
электроприводы различных	электромеханических свойств электропривода; навыками построения
типов, рассчитывает параметры	электромеханических и механических характеристик
систем электропривода,	
объясняет структуру	
электропривода и возможности	
управления в различных режимах	
работы	

Примеры вопросов/заданий

Задание 4

Определите электромеханическую постоянную времени электрического привода с двигателем постоянного тока, если известно, что суммарный момент инерции, приведенный к валу двигателя составляет $0.375 \text{ кг} \cdot \text{м}^2$, $R_{\text{яц}} = 1.24 \text{ Ом}$, $C_{\text{л}}F = 0.23$.

Задание 5

Используя номинальные и каталожные данные (U=110B; $\omega_{\text{ном}}$ = 120 рад/с; $I_{\text{я}}$ =25A, $r_{\text{я}}$ =0,4 Ом) рассчитать ток $I_{\text{к.з.}}$ и момент $M_{\text{к.з.}}$ короткого замыкания. Постройте графики электромеханической и механической характеристик.

Задание 6

Используя номинальные и каталожные данные (U=110B; $\omega_{\text{ном}}$ = 130 рад/с; I_{s} =30A, I_{s} =0,3 Ом)

определите момент короткого замыкания M_{κ_3} при номинальном потоке, а также при ослаблении поля в 2 раза и в 4 раза. Постройте графики электромеханических и механических характеристик.

ПК-1.2 Оценивает
энергоэффективность систем
электропривода на подвижном
составе городского
электрического транспорта

Обучающийся знает: энергетические режимы работы электрического привода постоянного и переменного тока; особенности режима динамического торможения; понятие жесткости механической характеристики электроприводов с двигателями постоянного тока и переменного тока

Примеры вопросов/заданий

11. В общем случае все энергетические режимы работы электропривода с двигателями постоянного и переменного тока делят на:

- а) генераторный, двигательный, режим холостого хода, режим короткого замыкания;
- б) установившийся режим, переходный режим;
- в) кратковременный, повторно-кратковременный, длительный

12. Энергетические режимы электродвигателей определяют по:

- а) механическим характеристикам;
- б) электромеханическим характеристикам;
- в) динамическим характеристикам;
- в) статическим характеристикам

13. Основными энергетическими режимами электропривода являются:

- а) двигательный и генераторный;
- б) режим холостого хода и режим короткого замыкания;
- в) двигательный режим и режим короткого замыкания;
- в) генераторный режим и режим холостого хода

14. Граничными энергетическими режимами электропривода являются:

- а) режим холостого хода и режим короткого замыкания;
- б) двигательный и генераторный;
- в) двигательный режим и режим короткого замыкания;
- в) генераторный режим и режим холостого хода

15. Жесткостью механической характеристики называют:

- а) отношение разности моментов, развиваемых электродвигателем, к соответствующей разности угловых скоростей;
- б) отношение скорости вращения двигателя к развиваемому моменту;
- в) отношение изменения скорости вращения двигателя к изменению момента двигателя

16. Режим динамического торможения относится к:

- 1) генераторному режиму;
- 2) двигательному режиму;
- 3) граничному режиму

17. Жесткость механической характеристики двигателя постоянного тока последовательного возбуждения при увеличении сопротивления якорной цепи:

- 4) останется неизменной;
- 5) уменьшится;
- 6) возрастет

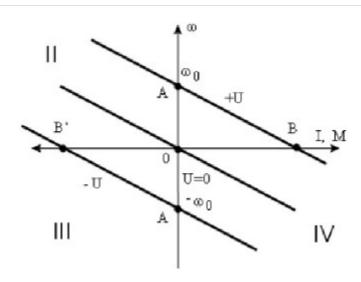
18. В режиме динамического торможения асинхронной машины магнитный поток максимален при:

- 1) s=1;
- 2) $S=S_{\kappa}$;
- 3) s=0

19. Механическая характеристика асинхронного двигателя строится по:

- 1) пяти точкам;
- 2) шести точкам;
- 3) двум точкам;
- 4) трём точкам

20. Для перевода асинхронного двигателя в режим противовключения необходимо изменить порядок подключения фаз обмоток статора путем переключения:


- 1) двух любых фаз между собой;
- 2) всех трёх фаз между собой;
- 3) только фазы В и фазы С между собой;
- 4) только фазы А и фазы В между собой

Код и наименование индикатора достижения компетенции	Образовательный результат
	Обучающийся умеет: определять по механическим характеристикам энергетические режимы электроприводов постоянного и переменного тока, рассчитывать и строить механические характеристики электроприводов с двигателями постоянного и переменного тока
ПК-1.2 Оценивает энергоэффективность систем электропривода на подвижном составе городского электрического транспорта	

Примеры вопросов/заданий

Задание 7

На рис. представленном ниже, укажите двигательный режим и генераторный режим работы независимо от сети двигателя постоянного тока независимого возбуждения.

Задание 8

На рис. представленном выше укажите участки характеристик, соответствующие режимам короткого замыкания и генераторному режиму параллельно с сетью машины постоянного тока независимого возбуждения.

Задание 9

Рассчитать и построить механическую характеристику для асинхронного двигателя 4A90L4У3, имеющего следующие паспортные данные: $n_1 = 1500$ об/мин; $P_H = 2.2$ кВт; $n_H = 1425$ об/мин; $\eta = 80$ %; $\cos \varphi = 0.83$; $M_{max}/M_H = \lambda = 2.2$.

Задание 10

Рассчитать и построить искусственную механическую характеристику ω =f(M) электродвигателя постоянного тока, имеющего следующие данные $P_{\text{\tiny H}}$ = 3,6 кВт; U= 110B; $n_{\text{\tiny H}}$ = 3150 об/мин; η = 78,5 %; R_a =0,084 Ом; $R_{\text{\tiny д}}$ =0,089 Ом; $R_{\text{\tiny B}}$ =33,6 Ом. При этом в цепь якоря вводится добавочное сопротивление $R_{\text{\tiny д}}$ =9(R_a + $R_{\text{\tiny д}}$ п). Считать, что электромагнитный момент на валу электродвигателя остался неизменным и равным номинальному

Код и наименование индикатора достижения компетенции	Образовательный результат	
ПК-1.2 Оценивает энергоэффективность систем электропривода на подвижном составе городского электрического транспорта	Обучающийся владеет: навыками расчета и построения механических характеристик электроприводов с двигателями постоянного тока и двигателями переменного тока, характеризующих энергетический режим электропривода и его энергоэффективноть	

Примеры вопросов/заданий

Залание 11

Рассчитать и построить семейство механических характеристик при реостатном пуске электродвигателя постоянного тока независимого возбуждения в диапазоне изменения момента $M = (1,2 \div 2,0)$ M_{H} . Определить скорости переключения, число ступеней пускового реостата и сопротивления его секций. Двигатель имеет следующие данные: $P_{\text{H}} = 5,6$ кВт; U = 110B; $n_{\text{H}} = 3350$ об/мин; $\eta = 79,5$ %; $R_{\text{a}} = 0,46$ Ом; $R_{\text{дп}} = 0,051$ Ом; $R_{\text{в}} = 25,3$ Ом.

Задание 12

Считая характеристику холостого хода электродвигателя линейной, рассчитать и построить искусственную механическую характеристику $\omega = f(M)$ при введении в цепь обмотки возбуждения добавочного сопротивления вд в $R_{BA} = 0.3R_B$. Двигатель имеет следующие данные: $P_H = 5.6$ кВт; U = 110B; $n_H = 3350$ об/мин; $\eta = 79.5$ %; $R_a = 0.46$ Ом; $R_{AB} = 0.051$ Ом; $R_B = 25.3$ Ом.

Задание 13

Трехфазный асинхронный двигатель с к.з. ротором питается от сети напряжением U=380B при частоте f=50 Гц. Параметры двигателя: $P_H=14$ кВт; $n_H=960$ об/мин; $\cos \phi_H=0.85$; $\eta_H=0.88$; кратность максимального момента $k_M=1.8$. Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя.

Задание 14 (типовое задание на курсовую работу)

По характеристикам рабочей машины, указанных в табл. ниже, построить нагрузочную диаграмму электропривода, рассчитать эквивалентную нагрузку и нанести ее на нагрузочную диаграмму, определить необходимую мощность асинхронного двигателя, выполнить проверку правильности выбора мощности двигателя по нагреву методом средних потерь, выполнить расчет и построить механическую характеристику электродвигателя, сделать расчет и построить механическую характеристику рабочей машины, определить продолжительность пуска электродвигателя с нагрузкой, рассчитать потери энергии в асинхронном двигателе при номинальном напряжении питания и пуске двигателя.

	P ₁ =26
Mayayaara ya na wa a yawana yayaraa ya i ii yanaya ya na faray Dayara	P ₂ =15
Мощность на валу электродвигателя в і-й период работы Р _і , кВт	P ₃ =26
	P ₄ =15
	$t_1=10$
Продолжитов ность і го пориона работи і мин	t ₂ =15
Продолжительность і-го периода работы t _i , мин	t ₃ =10
	t ₄ =15
Номинальный КПД электродвигателя $\eta_{\scriptscriptstyle H}$, %	96
Номинальная угловая скорость рабочей машины $n_{\text{мн}}$, об/мин	800
Момент статического сопротивления рабочей машины при ее номинальной скорости вращения $M_{\mbox{\tiny MH}},$ Нм	180
Момент инерции рабочей машины GD_{pm}^{2} , $\kappa r \cdot m^{2}$	0,03
Показатель степени, характеризующий изменение момента статического сопротивления рабочей машины X	0,5

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (экзамену)

- 1. Назначение и классификация электрического привода.
- 2. Основные показатели работы электрического привода.
- 3. Силовые модули установок электрического привода.
- 4. Основные понятия механики электропривода.
- 5. Расчетные схемы механической части электрического привода.
- 6. Одномассовая механическая система электропривода.
- 7. Многомассовые механические системы электропривода.
- 8. Механические характеристики электрического привода.
- 9. Электромеханические характеристик электропривода.
- 10. Общие принципы построения автоматизированного электропривода.
- 11. Регулирование координат электрического привода.
- 12. Режимы работы электрического привода.
- 13. Системы управления электрическим приводом.
- 14. Принципы работы систем управления электрическим приводом.
- 15. Физические процессы в электроприводе постоянного тока.
- 16. Машина постоянного тока, ее модель и параметры.
- 17. Структурная схема динамической модели машины постоянного тока.
- 18. Статические характеристики и режимы работы двигателя постоянного тока независимого возбуждения.
- 19. Режим холостого хода машины постоянного тока независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 20. Двигательный режим машины постоянного тока независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 21. Генераторный режим работы машины постоянного тока параллельно с сетью независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 22. Генераторный режим работы машины постоянного тока последовательно с сетью независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 23. Режим короткого замыкания машины постоянного тока независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 24. Режим динамического торможения машины постоянного тока независимого возбуждения (динамическая модель, электромеханическая и механическая характеристики).
- 25. Нагрев и номинальные режимы работы электрических двигателей.
- 26. Длительный режим работы электропривода.
- 27. Повторно-кратковременный режим работы электродвигателя.
- 28. Кратковременный режим работы электродвигателя.
- 29. Построение нагрузочной диаграммы электродвигателя привода.
- 30. Расчет переходных характеристик электропривода по возмущающему воздействию.
- 31. Расчет переходных характеристик электропривода по управляющему воздействию.
- 32. Способы управления координатами в электроприводе постоянного тока.
- 33. Реостатное регулирование координат при питании якоря от источника ЭДС.
- 34. Регулирование координат в системе преобразователь (источник ЭДС) двигатель.
- 35. Регулирование координат изменением возбуждения при питании якоря от источника ЭДС.
- 36. Физические процессы в электроприводе с асинхронными машинами.
- 37. Простейшие модели асинхронной машины.
- 38. Основные характеристики асинхронной машины.
- 39. Основные параметры работы асинхронного привода.

- 40. Режимы работы асинхронного привода.
- 41. Управление координатами в асинхронном приводе.
- 42. Управление координатами в асинхронном электроприводе при короткозамкнутом асинхронном двигателе и ω_0 = const.
- 43. Управление координатами в асинхронном электроприводе при короткозамкнутом асинхронном двигателе и ω_0 = var.
- 44. Управление координатами в асинхронном электроприводе при асинхронном двигателе с фазным ротором.
- 45. Расчет параметров схем включения асинхронных двигателей.
- 46. Расчет характеристик асинхронных двигателей.
- 47. Замкнутая система преобразователь частоты асинхронный двигатель.
- 48. Электропривод с синхронным двигателем общие сведения.
 - 49. Режимы работы синхронного двигателя.
- 50. Схема включения и статические характеристики синхронного двигателя.
- 51. Синхронный двигатель, работающий как компенсатор реактивной мощности.
- 52. Общие принципы управления синхронным двигателем.
- 53. Схемы управления синхронным двигателем.
- 54. Переходные процессы в синхронном электроприводе.
- 55. Общие сведения об электрической части силового канала электропривода.
- 56. Управляемые выпрямители принцип действия и особенности применения.
- 57. Преобразователи частоты.
- 58. Импульсные преобразователи.
- 59. Общие сведения по выбору электродвигателей.
- 60. Нагрев и охлаждение двигателей.
- 61. Проверка двигателей, работающих в продолжительном режиме.
- 62. Проверка двигателей, работающих в кратковременном режиме.
- 63. Проверка двигателей, работающих в повторно-кратковременном режиме.
- 64. Определение допустимой частоты включений асинхронных двигателей с короткозамкнутым ротором.
- 65. Выбор двигателя для регулируемого электропривода.
- 66. Элементная база информационного канала (жесткая логика) общие сведения.
- 67. Аналоговые регуляторы.
- 68. Цифровые интегральные микросхемы малой степени интеграции.
- 69. Цифровые интегральные микросхемы средней степени интеграции.
- 70. Средства сопряжения цифровых и аналоговых систем.
- 71. Элементная база информационного канала с гибкой логикой основные понятия и определения.
- 72. Принцип действия микропроцессорной системы.
- 73. Организация памяти в микропроцессорных системах.
- 74. Интерфейс периферийных устройств.
- 75. Основные положения проектирования электропривода.
- 76. Алгоритмы функционирования электропривода.
- 77. Оценка энергетической эффективности электропривода.
- 79. Оценка надежности электропривода; экономические аспекты проектирования.

4. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по выполнению курсовой работы

- «Отлично/зачтено» ставится за работу, выполненную полностью без ошибок и недочетов.
- «**Хорошо**/зачтено» ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.
- «Удовлетворительно/зачтено» ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.
- «**Неудовлетворительно/не зачтено»** ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену (пятибалльная шкала оценивания)

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«Неудовлетворительно» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.