Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 14:30:15

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теория механизмов и машин

(наименование дисциплины (модуля)

Специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Специализация

«Высокоскоростной наземный транспорт»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (4 семестр – студенты очной формы обучения). Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4: Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов	ОПК-4.7: Применяет методы теории механизмов и машин при проведении расчетов и проектировании технических систем

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
ОПК-4.7: Применяет методы теории механизмов и машин при проведении расчетов и проектировании	Обучающийся знает: основные виды механизмов, их кинематические схемы; функциональные возможности и области применения основных видов механизмов; методы расчета кинематических и	Примеры тестовых вопросов 1.1 1.6
технических систем	динамических параметров движения механизмов.	Вопросы для подготовки к зачету
	Обучающийся умеет: разрабатывать кинематические схемы механизмов машин и определять параметры их приводов; определять основные параметры передаточных механизмов; идентифицировать и классифицировать механизмы и устройства, используемые в конструкциях наземных транспортно-технологических средств, при наличии их чертежа или доступного для разборки образца и оценивать их основные качественные характеристики.	Задания к зачету 2.1 - 2.6
	Обучающийся владеет: навыками разработки кинематических, схем машин и механизмов; инженерной терминологией в области производства наземных транспортно-технологических средств и комплексов.	Задания к зачету 3.1 - 3.6

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение тестовых заданий в ЭИОС университета.

Промежуточная аттестация (защита расчетно-графической работы) проводится в форме собеседования обучающегося с преподавателем о результатах выполнения расчетно-графической работы.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-4.7: Применяет методы	Обучающийся знает: основные виды механизмов, их кинематические схемы;
теории механизмов и машин	функциональные возможности и области применения основных видов механизмов;
при проведении расчетов и	методы расчета кинематических и динамических параметров движения механизмов.
проектировании технических	
систем.	

Примеры вопросов/заданий

- 1.1 Какое из перечисленных соединений является кинематической парой?
- 1 две сваренные детали;
- 2 вал в подшипнике +;
- 3 две склепанные детали.
- 1.2 Система звеньев, связанных кинематическими парами, называется
- 1 механизмом;
- 2 кинематической цепью; +
- 3. машиной.
- 1.3 Кинематическая цепь, все звенья которой совершают вполне определенные движения при заданном движении одного или нескольких звеньев, называется:
- 1 группой Ассура;
- 2 механизмом; +
- 3 кинематической парой.
- 1.4 Какая из указанных сил является движущей силой:
- 1 вес груза, поднимаемого краном;
- 2 сила резания при обработке детали на станке;
- 3 давление газа на поршень двигателя внутреннего сгорания. +
- 1.5 На каком принципе или законе основан метод "жесткого рычага" Жуковского?:
- 1 Принцип Даламбера;
- 2 Закон сохранения механической энергии;
- 3 Принцип возможных перемещений. +
- 1.6 Какая сила определяется по методу "жесткого рычага" Жуковского?
- 1 Движущая сила;
- 2 Сила полезного сопротивления;
- 3 Уравновешивающая сила. +

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Расчетно-графическая работа

- 1. Синтез и анализ плоского четырёхзвенного шарнирно-рычажного механизма.
- 1.1. Кинематический синтез механизма.
- 1.2. Структурный анализ механизма.
- 1.3. Кинематический анализ механизма.
- 1.3.1. Построение плана механизма для заданного положения входного звена. Определение крайних положений выходного звена. Определение и обозначение углов поворота кривошипа за рабочий и холостой ход выходного звена. Построение траектории движения точек звеньев механизма.
- 1.3.2. Определение скоростей и ускорений движения точек и звеньев механизма. (Выполняется для заданного положения φ_0 входного звена методом планов скоростей и планов ускорений.)
- 1.4. Построение кинематических диаграмм перемещения, скорости и ускорения выходного звена от угла поворота кривошипа. Анализ полученных диаграмм. (Диаграмма перемещений выходного звена строится путём снятия замеров с плана механизма. Диаграммы скорости и ускорения выходного звена от угла поворота кривошипа строятся, используя методы графического дифференцирования.)
- 1.5. Кинетостатический анализ механизма.
- 1.5.1. Расчёт сил тяжести звеньев, а также сил инерции и моментов сил инерции масс звеньев.
- 1.5.2. Определение реакций в кинематических парах и уравновешивающего момента из условия равновесия сил.
- 1.5.3. Определение уравновешивающей силы (уравновешивающего момента) методом профессора Жуковского. (Пункты
- 1.4.1. 1.4.3. выполняются для заданного положения $\phi 0$ входного звена.)

Графическая часть:

Лист 1: «Синтез и анализ четырёхзвенного шарнирно-рычажного механизма».

План механизма для 8-12 положений входного звена (обязательно показать заданное положение $\phi 0$ входного звена). Кинематические диаграммы.

План скоростей для заданного положения $\phi 0$ входного звена.

План ускорения для заданного положения ф0 входного звена.

Планы нагружений, планы сил структурных групп, рычаг Жуковского для заданного положения ф0 входного звена.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-4.7: Применяет методы	Обучающийся умеет: разрабатывать кинематические схемы механизмов машин и
теории механизмов и машин	определять параметры их приводов; определять основные параметры передаточных
при проведении расчетов и	механизмов; идентифицировать и классифицировать механизмы и устройства,
проектировании технических	используемые в конструкциях наземных транспортно-технологических средств, при
систем.	наличии их чертежа или доступного для разборки образца и оценивать их основные
	качественные характеристики.

Примеры заданий

- 2.1. Для заданного положения входного звена механизма построить план скоростей.
- 2.2. Для заданного положения входного звена механизма построить план ускорений.
- 2.3. Воспользовавшись методом планов сил определить требуемую величину движущей силы.
- 2.4. Определение уравновешивающей силы методом Жуковского.
- 2.5. По заданным эксплуатационным и кинематическим характеристикам определить требуемые размеры звеньев механизма.
- 2.6. Определить реакцию в кинематической паре, используя методы кинетостатики.

ОПК-4.7: Применяет методы теории механизмов и машин при проведении расчетов и проектировании технических систем.

Обучающийся владеет: навыками разработки кинематических, схем машин и механизмов; инженерной терминологией в области производства наземных транспортно-технологических средств и комплексов.

Примеры заданий

- 3.1. Для заданного положения входного звена механизма определить скорости и ускорения характерных точек звеньев механизма.
- 3.2. Построить кинематические диаграммы, характеризующие перемещение, скорость или ускорение заданной точки (заданного звена) механизма.
- 3.3. Выполнить графическое дифференцирование (интегрирование) заданной кинематической диаграммы.
- 3.4. Выполнить структурный анализ рычажного механизма..
- 3.5. По заданной движущей силе определить максимальную величину силы полезного сопротивления.
- 3.6. Определить КПД механизма

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Роль отечественных и зарубежных ученых в развитии ТММ как науки.
- 2. Основные понятия ТММ: машина, механизм, звено, кинематическая пара, кинематическая цепь.
- 3. Классификация и свойства кинематических пар.
- 4. Структурные формулы пространственной и плоской кинематических цепей.
- 5. Структурные группы в плоских механизмах с низшими кинематическими парами.
- 6. Формула строения механизма. Классификация механизмов.
- 7. Структурный синтез механизмов.
- 8. Кинематический синтез механизмов.
- 9. Технологические и эксплуатационные параметры механизмов, используемые при кинематическом синтезе механизмов.
- 10. Задачи и методы кинематического анализа механизмов.
- 11. Определение траекторий движения точек и звеньев механизмов.
- 12. Определение скоростей движения точек и звеньев механизмов.
- 13. Определение ускорений движения точек и звеньев механизмов.
- 14. Силы, действующие на звенья механизма.
- 15. Кинетостатический анализ плоского шарнирно-рычажного механизма.
- 16. Уравнение движения машины в форме закона изменения кинетической энергии. Режимы движения.
- 17. Механический к.п.д. машины при последовательном и параллельном со-единении механизмов.
- 18. Понятие о звене приведения. Приведенная сила, приведенная масса, момент инерции звена приведения.
- 19. Определение уравновешивающей силы методом профессора Жуковского.
- 20. Дифференциальные уравнения движения машины (уравнения Лагранжа).
- 21. Регулирование скорости движения машины. Регуляторы.
- 22. Виды неуравновешенности роторов. Методы устранения неуравновешенности (статическая и динамическая балансировка).
- 23. Виды и назначение кулачковых механизмов.
- 24. Закон перемещения толкателя (коромысла) и его выбор.
- 25. Угол давления в кулачковых механизмах.
- 26. Определение размеров и формы профиля кулачка по заданному закону движения выходного звена и заданному допускаемому углу давления.
- 27. Основная теорема зубчатого зацепления.
- 28. Элементы зубчатого колеса.

- 29. Параметры эвольвентного зубчатого зацепления.
- 30. Многозвенные и рядовые зубчатые передачи.
- 31. Наименьшее число зубьев и условие подрезания.
- 32. Методы нарезания зубчатых колес и методы коррекции.
- 33. Планетарные зубчатые передачи.
- 34. Условия синтеза планетарных передач.
- 35. Коническая зубчатая передача.
- 36. Червячная передача.
- 37. Источники колебаний и вибраций в машинах.
- 38. Анализ действия вибраций и основные виды виброзащиты.
- 39. Демпфирование колебаний. Способы гашения колебаний.
- 40. Виды приводов машин. Выбор типа привода

Примерные темы расчетно-графической работы по «Теории механизмов и машин»

- 1. Проектирование кривошипно-ползунного механизма по ходу ползуна, коэффициенту возразтания скорости обратного хода и отношению дли кривошипа и шатуна
- 2. Проектирование центрального кривошипно-ползунного механизма по заданному ходу ползуна и коэффициенту пика скорости
- 3. Проектирование кривошипно-ползунного механизма по заданному ходу ползуна S_n , коэффициенту пика скорости ползуна \mathbf{v} , углу поворота кривошипа за рабочий ход ползуна.
- 4.Проектирования кривошипно коромыслового механизма
- 5. Проектирование кулачкового механизма с роликовым толкателем.
- 6. Проектирование кулачкового механизма с плоским толкателем.
- 7. проектирование кулачкового механизма с толкателем в виде ножа.
- 8. Проектирование кулачкового механизма с роликовым коромыслом

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.

К зачету допускаются студенты, выполнившие более 60% заданий по самостоятельной работе в 4 семестре.

«Зачтено» - студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Незачтено» - выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по защите расчетно-графической работы

«Зачтено» — получают студенты, оформившие работу в соответствии с предъявляемыми требованиями к письменным работам по инженерным дисциплинам в техническом вузе. В работе отражены все необходимые пункты задания. Работа выполнена в основном верно (без грубых ошибок). При ответе на вопросы преподавателя студент допустил не более двух-трёх грубых ошибок или четырех негрубых ошибок.

«**Незачтено**» – ставится за ответ, если число ошибок и недочетов превысило норму для получения оценки «**зачтено**».

Виды ошибок:

- грубые: неумение выполнять типовые исследования простейших механизмов; незнание методик расчёта типовых узлов деталей машин.
 - негрубые: неточности в выводах; неточности в формулировках и определениях различных параметров механизмов и машин.

Описание процедуры оценивания защиты расчетно-графической работы.

Оценивание итогов выполнения работы проводится преподавателем, за которым закреплено руководство выполнением расчетно-графической работы .

По результатам проверки представленной расчетно-графической работы обучающийся допускается к её защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В случае, если содержание работы не отвечает предъявляемым требованиям, то она возвращается автору на доработку. Обучающийся должен переделать расчетно-графическую работу с учетом замечаний. Если сомнения вызывают отдельные аспекты расчетно-графической работы, то они рассматриваются во время её защиты.

Защита расчетно-графической работы представляет собой собеседование обучающегося с преподавателем о результатах выполнения расчетно-графической работы.