Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 14:30:16

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Сопротивление материалов

(наименование дисциплины (модуля)

Специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Специализация

Электрический транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен (4 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4: Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов	ОПК-4.6: Оценивает предельное напряженно- деформированное состояние элементов конструкции машин при проведении расчетов и проектировании технических систем

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные	
		материалы(семестр)	
ОПК-4.6: Оценивает предельное	Обучающийся знает: основы проектирования	Примеры тестовых	
напряженно-деформированное	технических объектов; основные виды механизмов,	вопросов 1.11.3	
состояние элементов конструкции	методы исследования и расчета их статических и	Вопросы к экзамену	
машин при проведении расчетов и	динамических характеристик; методы расчета на	2.1 2.9	
проектировании технических систем	прочность и жесткость типовых элементов		
	различных конструкций.		
	Обучающийся умеет: проводить расчеты деталей		
	машин по критериям работоспособности и	Задания к экзамену	
	надежности; анализа и синтеза исполнительных	3.1-3.2	
	механизмов; применять методы расчета и		
	конструирования деталей и узлов механизмов.		
	Обучающийся владеет: навыками использования		
	методов теоретической механики теории	Задания к экзамену	
	механизмов и машин, сопротивления материалов,	4.1-4.2	
	деталей машин и основ конструирования при		
	решении практических задач; методами		
	теоретического и экспериментального исследования		
	в механике.		

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий
- 2) выполнение тестовых заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат

Код и наиме	енование	Образовательный результат	
компете	нции		
ОПК-4.6:	Оценивает	Обучающийся знает: основы проектирования технических объектов; основные	
предельное	напряженно-	виды механизмов, методы исследования и расчета их статических и динамических	
деформированное	состояние	характеристик; методы расчета на прочность и жесткость типовых элементов	
элементов конст	рукции машин	различных конструкций.	
при проведении	расчетов и		
проектировании	технических		
систем			

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/).

Примеры тестовых вопросов (Зачет):

1.1 Активные силы - это силы, которые

Выберите один ответ:

- а. вызывают движение исследуемого объекта или его разрушение
- b. действуют на исследуемый объект со стороны других тел
- с. возникают в опорах и препятствуют движению исследуемого объекта
- 1.2 Балка это стержень,

Выберите один ответ:

- а. работающий на изгиб работающий на кручение
- b. работающий на сжатие
- 1.3 Вал это стержень,

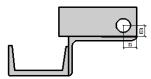
Выберите один ответ:

- а. имеющий круглое поперечное сечение
- b. передающий вращательное движение и работающий на кручение
- с. имеющий две опоры на концах и работающий на изгиб

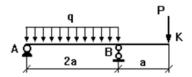
Вопросы для подготовки к экзамену

- 2.1 Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано.
- 2.2 Интеграл Мора. Вычисление интегралов Мора способом Верещагина
- 2.3 Раскрытие статической неопределимости. Метод сил.
- 2.4 Расчет статически неопределимых систем в связи с изменением температуры и наличием натягов при сборке.
- 2.5 Винклерова модель упругого основания. Дифференциальное уравнение изогнутой оси балки и его общее решение.
- 2.6 Косой изгиб. Уравнение нейтральной линии.
- 2.7 Внецентренное растяжение-сжатие
- 2.8 Расчет на прочность при совместном изгибе и кручении.
- 2.9 Расчёт цилиндрической оболочки, находящейся под действием постоянного давления.

2.2 Типовые задания для оценки навыкового образовательного результата


Проверяемый образовательный результат

Код и наименование	Образовательный результат
компетенции	
ОПК-4.6: Оценивает предельное напряженно- деформированное состояние элементов конструкции машин при проведении расчетов и проектировании технических систем	Обучающийся умеет: проводить расчеты деталей машин по критериям работоспособности и надежности; анализа и синтеза исполнительных механизмов; применять методы расчета и конструирования деталей и узлов механизмов.


Задания выполняемые на экзамене

3.1 Для заданного плоского сечения требуется:

- 1. Сделать чертеж сечения в масштабе, на котором указать все оси и необходимые размеры.
- 2. Определить положение центра тяжести сечения и сделать проверку правильности вычислений.
- 3. Вычислить осевые и центробежный моменты инерции сечения относительно двух взаимно перпендикулярных центральных осей: горизонтальной и вертикальной и сделать проверку правильности вычислений.
- 4. Вычислить величины главных центральных моментов инерции и сделать проверку правильности вычислений.
- 5. Найти положение главных центральных осей.
- 6. Определить моменты сопротивления относительно главных центральных осей.
- 7. Вычислить главные радиусы инерции и построить эллипс инерции.

- 3.2 Для балки, нагруженной погонной нагрузкой, требуется:
 - 1) определить реакции опор и сделать проверку;
 - 2) построить эпюры внутренних силовых факторов;
- 3) из расчета на прочность по максимальным нормальным напряжениям подобрать номер двутаврового профиля, из которого следует изготовить балку, приняв допускаемое напряжение $[\sigma] = 200~M\Pi a$ (или расчетное сопротивление $R = 200~M\Pi a$);
- 4) с помощью интегралов Мора найти вертикальное перемещение сечения K_1 и угол поворота сечения K_2 , приняв модуль упругости $E=200 \Gamma\Pi a$;
- 5) из расчета на прочность подобрать для балки круговое, кольцевое, квадратное и прямоугольное сечения и сравнить массы всех рассчитанных балок, включая двутавровую; принять соотношение размеров прямоугольника $h/b=1.5\,$ и кольца $D/d=1.5\,$.

ОПК-4.6: Оценивает предельное напряженнодеформированное состояние элементов конструкции машин при проведении расчетов и проектировании технических систем

Обучающийся владеет: навыками использования методов теоретической механики теории механизмов и машин, сопротивления материалов, деталей машин и основ конструирования при решении практических задач; методами теоретического и экспериментального исследования в механике.

Задания выполняемые на экзамене

- 4.1 Для рамы, нагруженной погонной нагрузкой, требуется:
 - 1) определить реакции опор и сделать проверку;
 - 2) построить эпюры внутренних силовых факторов;
- 3) из расчета на прочность по максимальным нормальным напряжениям подобрать номер двутаврового профиля, из которого следует изготовить раму, приняв допускаемое напряжение $[\sigma] = 160~M\Pi a$ (или расчетное сопротивление $R = 160~M\Pi a$);
- 4) с помощью интегралов Мора найти вертикальное и горизонтальное перемещение сечения A и угол поворота сечения B, приняв модуль упругости $E=200 \Gamma\Pi a$.

4.2 Колонна составлена из двух ветвей (прокатных профилей), соединённых между собой планками.

Опорные сечения колонны в плоскостях XOZ и YOZ имеют разные закрепления. Требуется определить:

1. Размеры сечения (номер швеллера или двутавра) из условия устойчивости.

2. Расстояние между планками(свободную длину l_0).

3. Расстояние между ветвями колонны (2a)4. Величину критической силы $F_{\kappa p}$ и коэффициент запаса устойчивости n_y .

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Чем занимается наука о сопротивлении материалов?
- 2. Что такое прочность, жёсткость и устойчивость элементов конструкций?
- 3. Для чего используется в сопротивлении материалов метод сечений? В чём он заключается?
- 5. Что такое напряжение? Какова его размерность?
- 4. Какие простые деформации испытывает брус при его нагружении внешними силами?
- 5. Когда брус испытывает деформацию центрального растяжения, сжатия?
- 6. Какие напряжения возникают при простых сопротивлениях.? Как они определяются?
- 7. Что такое абсолютная и относительная деформации бруса?
- 8. Закон Гука в деформациях, закон Гука в напряжениях, закон Пуассона?
- 9. Что такое предел текучести (физический, условный)?
- 10. Что такое предел прочности?
- 11. Условие прочности при простых сопротивлениях?
- 12. Что называется допускаемым напряжением и как оно определяется?
- 13. Как определяется жёсткость при простых сопротивлениях?
- 14. Что относится к геометрическим характеристикам поперечного сечения бруса?
- 15. Как определяются статические моменты площади поперечного сечения бруса?
- 16. Как определяются осевые моменты инерции поперечного сечения бруса?
- 17. Формулы осевых моментов инерции прямоугольника, круга, кольца.
- 14. Определение главных напряжений и положения главных площадок.
- 15. Определение главных напряжений и положения главных площадок.
- 16. Напряжения на произвольной площадке при объёмном напряжённом состоянии.
- 17. Закон Гука при объёмном напряжённом состоянии для главных площадок.
- 18. Закон Гука при объёмном напряжённом состоянии для произвольных площадок
- 19. Потенциальная энергия деформации. Энергия изменения формы и объёма.
- 20. Теории прочности и пластичности. Основные понятия о предельном состоянии материала.
- 21. Критерии прочности наибольших нормальных напряжений и наибольших линейных деформаций.
- 22. Критерий пластичности наибольших касательных напряжений.
- 23. Критерий пластичности удельной потенциальной энергии изменения формы.
- 24. Теория прочности Мора..
- 25. Потеря устойчивости сжатым стержнем. Формула Эйлера для критической силы.
- 26. Влияние на критическую силу способа закрепления стержня.
- 27. Пределы применимости формулы Эйлера. Полный график критических напряжений.

- 28. Расчёт сжатых стержней на устойчивость по коэффициентам снижения допускаемого напряжения.
- 29. Выбор материала и рациональной формы поперечного сечения сжатых стержней.
- 30. Продольно поперечный изгиб. Приближенное решение дифференциального уравнения упругой линии балки.
- 31. Расчёт на прочность при продольно-поперечном изгибе.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Экспертный лист

оценочных материалов для проведения промежуточной аттестации по дисциплине «Сопротивление материалов»

по специальности

23.05.03 Подвижной состав железных дорог

шифр и наименование направления подготовки/специальности

Электрический транспорт

профиль / специализация

инженер _ квалификация выпускника

1. Форма	льное оценивани	ie	
Показатели		Присутствуют	Отсутствуют
Наличие обязательных структурных элементов:			
титульный лист		$\sqrt{}$	
пояснительная записка	$\sqrt{}$		
– типовые оценочные материаль	$\sqrt{}$		
методические материалы, определяющие		$\sqrt{}$	
процедуру и критерии оценивани			
Содержат	ельное оцениван	ие	
Показатели	Соответствует	Соответствует частично	Не соответствует
Соответствие требованиям ФГОС ВО к результатам освоения программы	√		
Соответствие требованиям ОПОП ВО к результатам освоения программы	√		
Ориентация на требования к трудовым функциям ПС (при наличии утвержденного ПС)	V		
Соответствует формируемым компетенциям, индикаторам достижения компетенций	V		

Заключение: ФОС рекомендуется/ не рекомендуется к внедрению; обеспечивает/ не обеспечивает объективность и достоверность результатов при проведении оценивания результатов обучения; критерии и показатели оценивания компетенций, шкалы оценивания обеспечивают/ не обеспечивают проведение всесторонней оценки результатов обучения.

Эксперт, должность, ученая степень, ученое звание		_ /
	(подпись)	(ФИО)

МΠ