Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДЕРИАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: Едубральное государственное бюджетное образовательное учреждение высшего образования
Дата подписания: 19.06.2025 17:54:20.
Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Теоретическая механика

рабочая программа дисциплины (модуля)

Специальность 23.05.01 Наземные транспортно-технологические средства Специализация Подъемно-транспортные, строительные, дорожные средства и оборудование

Квалификация инженер

Форма обучения очная

Общая трудоемкость 8 ЗЕТ

Виды контроля в семестрах:

экзамены 3 зачеты 2

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	2 (1.2) 16 3/6		3 (2.1)		Итого	
Недель	16	3/6	16	4/6		
Вид занятий	УП	РΠ	УП	РП	УП	РП
Лекции	32	32	32	32	64	64
Практические	32	32	32	32	64	64
Конт. ч. на аттест.	0,4	0,4			0,4	0,4
Конт. ч. на аттест. в период ЭС	0,15	0,15	2,3	2,3	2,45	2,45
Итого ауд.	64	64	64	64	128	128
Контактная работа	64,55	64,55	66,3	66,3	130,85	130,85
Сам. работа	70,6	70,6	53	53	123,6	123,6
Часы на контроль	8,85	8,85	24,7	24,7	33,55	33,55
Итого	144	144	144	144	288	288

УП: 23.05.01-25-1-HTTCп.pli.plx cтр. 2

Программу составил(и):

к.т.н., Доц., Мустафаев Юрий Кямалович

Рабочая программа дисциплины

Теоретическая механика

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - специалитет по специальности 23.05.01 Наземные транспортно-технологические средства (приказ Минобрнауки России от 11.08.2020 г. № 935)

составлена на основании учебного плана: 23.05.01-25-1-HTTCn.pli.plx

Специальность 23.05.01 Наземные транспортно-технологические средства Направленность (профиль) Подъемно-транспортные, строительные, дорожные средства и оборудование

Рабочая программа одобрена на заседании кафедры

Механика и инженерная графика

Зав. кафедрой Свечников Андрей Александрович

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)				
1.1	Целью преподавания дисциплины является формирование у студентов общетехнических знаний и навыков инженерной деятельности в части применения механических расчетов при проектировании и эксплуатации различных устройств и технологического оборудования на транспорте и их безопасной эксплуатации, обслуживания и ремонта подвижного состава.				
1.2	Изучение теоретической механики, которая составляет одну из базовых дисциплин, отвечающих за подготовку в области знаний естественных наук, также преследует цель подготовить обучающихся к изучению последующих специальных дисциплин.				
1.3	Успешное освоение дисциплины «Теоретическая механика» совместно с другими специальными дисциплинами должно обеспечить обучающемуся фундаментальную базу профессиональной подготовки по основным видам деятельности, позволяющим применять законы и методы теоретической механики для описания и расчета подвижного состава.				

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Цикл (раздел) ОП: Б1.О.15

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-5 Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов

ОПК-5.3 Применяет методы теоретической механики при проведении расчетов и проектировании технических систем

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	- основные законы статики, кинематики и динамики точки и механической системы;
3.1.2	- основные разновидности связей и их реакций;
3.1.3	- методы исследования и расчета их кинетических и динамических характеристик механических систем;
3.1.4	- понятия числа степеней свободы, обобщенных координат, вариационных принципов механики.
3.2	Уметь:
3.2.1	- составлять уравнения равновесия твердого тела в геометрической и аналитической формах,
3.2.2	- применять законы Ньютона для исследования движения материальных точек и механических систем,
3.2.3	- составлять уравнения малых колебаний механических систем,
3.2.4	- применять методы теоретической механики для расчета деталей и узлов механизмов.
3.3	Владеть:
3.3.1	- навыками расчета динамических реакций, и составления дифференциальных уравнений движения твердого тела,
3.3.2	- навыками использования методов теоретической механики, при решении практических инженерных задач транспорта,
3.3.3	- методами теоретического и экспериментального исследования в механике.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и тем /вид занятия/	Семестр	Часов	Примечание
занятия		/ Kypc		
	Раздел 1. Статика			
1.1	Введение в статику. Предмет статики. Основные понятия статики: абсолютно твёрдое тело, сила, эквивалентные и уравновешенные системы сил, равнодействующая. Аксиомы статики, связи и их реакции. /Лек/	2	2	
1.2	Основные виды связей и их реакции. Момент силы относительного центра (точки). Момент силы относительно оси. /Лек/	2	2	
1.3	Пара сил. Лемма о параллельном переносе силы. Главный вектор и главный момент системы сил. Теорема Пуансо. Условия равновесия произвольной системы сил. /Лек/	2	4	
1.4	Распределенные силы. Частные случаи равновесия системы сил. Теорема Вариньона. Частные случаи приведения системы сил к заданному центру. /Лек/	2	4	
1.5	Решение задач статики. Равновесие системы сходящихся сил. /Пр/	2	2	
1.6	Равновесие произвольной плоской и пространственной системы сил, определение реакции опор балки. /Пр/	2	8	

	Раздел 2. Кинематика			
2.1	Векторный, координатный и естественный способы задания движения точки. Траектория точки, скорость и ускорение точки при разных способах задания ее движения. /Лек/	2	4	
2.2	Поступательное движение твёрдого тела. Вращательное движение твёрдого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Скорость и ускорение точки твёрдого тела при вращательном движении. /Лек/	2	4	
2.3	Плоское движение твёрдого тела. Теорема о распределении скоростей точек тела при плоском движении. Теорема о проекциях скоростей двух точек тела. Мгновенный центр скоростей. /Лек/	2	4	
2.4	Теорема о распределении ускорений точек плоской фигуры. Мгновенный центр ускорений. /Лек/	2	4	
2.5	Абсолютное и относительное движение точки; переносное движение. Теорема о сложении скоростей. Теорема Кориолиса о сложении ускорений. Модуль и направление кориолисова ускорения. /Лек/	2	4	
2.6	Решение задач на тему: "Кинематика точки" /Пр/	2	8	
2.7	Решение задач на тему: "Кинематика простейших движений твердого тела" /Пр/	2	8	
2.8	Решение задач на тему: "Сложное движение точки" /Пр/	2	6	
	Раздел 3. Динамика			
3.1	Предмет динамики. Законы механики Галилея-Ньютона. Две основные задачи динамики. Дифференциальные уравнения движения материальной точки. Интегрирование дифференциальных уравнений движения материальной точки в простейших случаях. /Лек/	3	2	
3.2	Динамика относительного движения материальной точки. Переносная и кориолисова силы инерции. Случай относительного покоя. /Лек/	3	4	
3.3	Дифференциальные уравнения движения механической системы. Основные динамические величины точки и системы: количество движения, кинетический момент, кинетическая энергия, мощность, работа. /Лек/	3	2	
3.4	Общие теоремы динамики. Теорема об изменении количества движения. Закон сохранения количества движения. /Лек/	3	4	
3.5	Теорема об изменении кинетического момента. Закон сохранения кинетического момента. Моменты инерции механической системы. Моменты инерции твердого тела. Оси инерции. Эллипсоид инерции. Способы определения момента инерции и частные случаи. /Лек/	3	4	
3.6	Теорема об изменении кинетической энергии. Закон сохранения кинетической энергии. /Лек/	3	4	
3.7	Основы аналитической механики. Принцип Д'Аламбера. Принцип виртуальных перемещений. /Лек/	3	4	
3.8	Вариационные принципы механики. Обобщенные координаты. ОУД. Уравнение Лагранжа второго рода. /Лек/	3	4	
3.9	Упругий и неупругий удар. Теорема Карно. Устойчивость равновесия. Критерий Сильвестра /Лек/	3	4	
3.10	Решение задач на тему: "Динамика материальной точки" /Пр/	3	4	
3.11	Решение задач на тему: "Динамика относительного движения материальной точки" /Пр/	3	8	
3.12	Решение задач на темы раздела «Динамика системы материальных точек» /Пр/	3	8	
3.13	Решение задач из раздела аналитической механики. /Пр/	3	8	
3.14	Решение задач на соударение твердых тел /Пр/	3	2	
3.15	Решение задач на определение устойчивости состояний равновесия /Пр/	3	2	
3.16	Решение задач "Статики" /Ср/	2	14	
3.17	Решение задач "Динамика" /Ср/	3	5	
	Раздел 4. Самостоятельная работа			

4.1	Подготовка к лекциям (оформление конспектов лекций, чтение теоретической литературы) /Ср/	2	16	
4.2	Подготовка к лекциям (оформление конспектов лекций, чтение теоретической литературы) /Ср/	3	16	
4.3	Подготовка к практическим занятиям (выполнение домашних заданий) /Ср/	2	32	
4.4	Подготовка к практическим занятиям (выполнение домашних заданий) /Ср/	3	32	
4.5	Выполнение контрольной работы /Ср/	2	8,6	
	Раздел 5. Контроль			
5.1	Защита контрольной работы /КА/	2	0,4	
5.2	Зачет /КЭ/	2	0,15	
5.3	Экзамен /КЭ/	3	2,3	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

	6 VUECHO METOIM	ческое и информационное обеспечение д	писнин пин	ы (молупа)
	о. учевно-методи	6.1. Рекомендуемая литература	цисциплип	ы (модзял)
		6.1.1. Основная литература		
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес
Л1.1	Мещерский И.В.	Задачи по теоретической механике: учебное пособие	Санкт- Петербур г: Лань, 2019	https://e.lanbook.com/bo
	<u> </u>	6.1.2. Дополнительная литература		
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес
Л2.1	Мустафаев Ю. К., Кудюров Л. В., Червинский В. П.	Теоретическая механика: конспект лекций	Самара: СамГУП С, 2019	https://e.lanbook.com/bo
6.2	Информационные тех	нологии, используемые при осуществлении образовато (модулю)	ельного процес	са по дисциплине
	6.2.1 Перечені	ь лицензионного и свободно распространяемого програ	имного обеспе	ечения
6.2.1.1	MS Office			
6.2.1.2	2 Mathcad 11			
6.2.1.3	3 Компас 3D V10			
	6.2.2 Перечен	нь профессиональных баз данных и информационных	справочных си	істем
6.2.2.1	База данных «Техниче	еская литература» http://booktech.ru/journals/vestnik-mashin	ostroeniya	

6.2.2.2	База данных Государственных стандартов http://gostexpert.ru/
6.2.2.3	База данных Роспатента - https://new.fips.ru
6.2.2.4	База данных Росстандарта https://www.gost.ru/portal/gost/
6.2.2.5	Общероссийский математический портал Math-Net.Ru Математического института им. В.А. Стеклова РАН http://www.mathnet.ru/
	Федеральный портал «Российское образование» (Единое окно доступа к образовательным ресурсам. На данном портале предоставляется доступ к учебникам по всем отраслям) - http://www.edu.ru/
6.2.2.7	База данных АСПИЖТ https://www.samgups.ru/lib/elektronnye-resursy/res/baza-dannykh-aspizht/
	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
	Учебные аудитории для проведения занятий лекционного типа, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование для предоставления учебной информации большой аудитории и/или звукоусиливающее оборудование (стационарное или переносное).
7.2	Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное).
7.3	Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета.
7.4	Помещения для хранения и профилактического обслуживания учебного оборудования.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

(наименование дисциплины(модуля)

Направление подготовки / специальность

23.05.01 Наземные транспортно-технологические средства

(код и наименование)

Направленность (профиль)

Подъемно-транспортные, строительные, дорожные средства и оборудование

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачёт (2 семестр), экзамен (3 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции

ОПК-5: Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов;

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные
		материалы
ОПК-5: Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов;	Обучающийся знает: Основные законы статики, кинематики и динамики точки и механической системы, основные разновидности связей и их реакций, методы исследования и расчета их кинетических и динамических характеристик механических систем, понятия числа степеней свободы, обобщенных координат, вариационных принципов механики.	Примеры тестовых вопросов Вопросы к экзамену
memorical residual reportations	Обучающийся умеет: Составлять уравнения равновесия твердого тела в геометрической и аналитической формах, применять законы Ньютона для исследования движения материальных точек и механических систем, составлять уравнения малых колебаний механических систем, применять методы теоретической механики для расчета деталей и узлов механизмов.	Вопросы к зачёту Задания для экзамена
	Обучающийся владеет: Навыками расчета динамических реакций, и составления дифференциальных уравнений движения твердого тела, навыками использования методов теоретической механики, при решении практических инженерных задач транспорта, методами теоретического и экспериментального исследования в механике.	Примеры практических задач Задания для экзамена

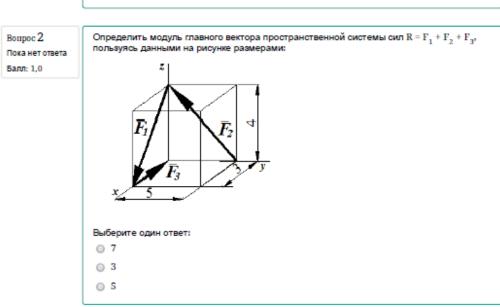
Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение тестовых заданий в ЭИОС университета.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий
- 2) выполнение тестовых заданий в ЭИОС университета.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата


Проверяемый образовательный результат

Код и наименование	Образовательный результат		
компетенции			
ОПК-5: Способен применять	Обучающийся знает: Основные законы статики, кинематики и динамики точки и		
инструментарий формализации	механической системы, основные разновидности связей и их реакций, методы исследования и расчета их кинетических и динамических характеристик		
инженерных, научно- технических задач,	механических систем, понятия числа степеней свободы, обобщенных координат,		
использовать прикладное	вариационных принципов механики.		
программное обеспечение при			
расчете, моделировании и			
проектировании технических объектов и технологических			
процессов;			

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды «Moodle» (ЭИОС университета).

Примеры тестовых заданий:

Вопросы для подготовки к зачёту

- 1. Сила. Система сил. Распределение сил.
- 2. Аксиомы статики.
- 3. Пара сил.
- 4. Проекция силы на ось и плоскость.
- 5. Момент сил относительно точки и относительно оси.
- 6. Момент пары сил.

- 7. Естественный способ задания движения точки. Скорость и ускорение точки при естественном способе задания движения.
- 8. Поступательное движение твердого тела. Скорость и ускорение точек твердого тела при поступательном движении.
- 9. вращательное движение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение.
- 10. Линейная скорость и линейное ускорение точек твердого тела при его вращении вокруг неподвижной оси.
- 11. Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.
- 12. Теорема о распределении скоростей точек твердого тела при плоскопараллельном движении.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

Код и наименование	Образовательный результат				
компетенции					
ОПК-5: Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов;	Обучающийся умеет: Составлять уравнения равновесия твердого тела в геометрической и аналитической формах, применять законы Ньютона для исследования движения материальных точек и механических систем, составлять уравнения малых колебаний механических систем, применять методы теоретической механики для расчета деталей и узлов механизмов.				

Примеры вопросов для подготовки к зачёту

- 1. Предмет статики. Основные понятия статики: абсолютно твёрдое тело сила, система сил. Аксиомы статики.
- 2. Связи и реакции связей. Теорема о равновесии трёх непараллельных сил. Две основные задачи статики.
- 3. Система сходящихся сил. Приведение системы сходящихся сил к равнодействующей. Условия равновесия системы сходящихся сил.
- 4. Алгебраический и векторный момент силы относительно точки (центра). Момент силы относительно оси и его связь с векторным моментом.
- 5. Пара сил. Момент пары сил как вектор. Сложение системы пар. Условие равновесие равновесия системы пар.
- 6. Основная теорема статики о приведении произвольной системы сил к заданному центру (теорема Пуансо).
- 7. Условия, равновесия произвольной системы сил в векторной и аналитической формах.
- 8. Система сил, произвольно расположенных на плоскости (плоская система сил). Вычисление главного вектора и главного момента плоской системы сил. Условия равновесия в трёх формах.
- 9. Распределенные силы и их равнодействующая. Реакция жесткой заделки. Равновесие системы тел.
- 10. Теорема Вариньона о моменте равнодействующей.
- 11. Трение скольжение. Закон Кулона. Угол и конус трения.
- 12. Трение качения.

Задания, выполняемые на экзамене

Закон движения точки в декартовой ортогональной системе координат задан уравнениями: $x=8t^2$, $y=6t^2$ Определить время, когда модуль ее скорости достигнет значения 100 м/с.

Закон движения точки в декартовой ортогональной системе координат задан уравнением $x = \sin \pi t$. Определить модуль скорости в момент времени t , когда координата x = 0.5м .

Грузовой барабан вращается согласно закону $\phi = 5 + 2t^3$. Определить модуль скорости точки М (м/с), находящейся на ободе барабана в момент времени t = 1c , если диаметр барабана d = 0.6 м.

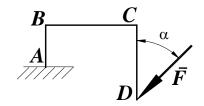
Автомобиль движется по горизонтальной дороге с постоянной скоростью $\,V=90$ км $/\,$ ч . Определить радиус

закругления дороги в момент времени, когда модуль нормального ускорения центра автомобиля $\,a_n=2.5$ м $/\,c^2$.

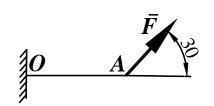
Электровоз движется по окружности радиуса $R=300 \, \mathrm{M}$. Определить модуль скорости электровоза в км/ч, при которой модуль нормального ускорения равняется $1 \, \mathrm{M/c2}$.

Дано уравнение движения точки по траектории $S=0.6t^2$. Определить модуль нормального ускорения точки в момент времени, когда ее координата S=30 M и радиус кривизны траектории $\rho=15 \text{M}$.

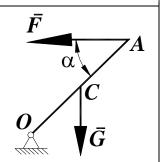
Закон движения точки в декартовой ортогональной системе координат задан уравнениями: $x=t^2$, $y=\sin\pi t$, $z=3\cos\pi t$. Определить модуль скорости точки в момент времени t=2c .


Тело вращается вокруг неподвижной оси согласно закону $\phi = t^2$. Определить модуль скорости точки тела (м/c) расположенной на расстоянии r = 0.5 м от оси вращения в момент времени, когда угол поворота $\phi = 25$ рад.

ОПК-5: Способен применять инструментарий формализации инженерных, научно-технических задач, использовать прикладное программное обеспечение при расчете, моделировании и проектировании технических объектов и технологических процессов;


Обучающийся владеет: Навыками расчета динамических реакций, и составления дифференциальных уравнений движения твердого тела, навыками использования методов теоретической механики, при решении практических инженерных задач транспорта, методами теоретического и экспериментального исследования в механике.

Задания выполняемые на практических занятиях


Определить момент силы F=100H относительно точки A, если AB=1m, BC=4m, CD=4m, угол $\alpha=15^0$.


Найти длину балки АО, если при действии на нее силы F=800H под углом $\alpha=30^0\,$ к горизонтали момент в заделке О равен 200Hм.

Стержень ОА, находится в вертикальной плоскости, шарнирно закреплен в точке О. Определить модуль горизонтальной силы \vec{F} (H), при которой стержень находится в равновесии, если угол $\alpha=45^{0}$, вес стержня G=5H приложен посредине стержня ОС=СА.

Определить вес балки АВ (H), если известны силы натяжения веревок $F_I=120H\,$ и $F_2=80H\,$. Заданы углы $\alpha=45^0\,$ и $\beta=30^0\,$ между вертикалью и веревками АС и ВС соответственно.

Задания, выполняемые на экзамене

Трактор, двигаясь с ускорением $a=2m/c^2$ по горизонтальному участку пути, перемещает нагруженные сани массой $600\kappa z$. Определить модуль силы тяги на крюке, если коэффициент трения скольжения саней f=0,05.

Движение материальной точки массой $m=8\kappa$ г происходит в горизонтальной плоскости Oxy согласно уравнениям $x=0.05t^3$ и $y=0.3t^3$. Определить модуль равнодействующей всех сил, приложенных к точке в момент t=4c.

Тело движется вниз по гладкой плоскости, которая наклонена под углом $\alpha = 60^{\circ}$ к горизонту. Определить модуль ускорения тела.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Предмет статики. Основные понятия статики: абсолютно твёрдое тело сила, система сил. Аксиомы статики.
- 2. Связи и реакции связей. Теорема о равновесии трёх непараллельных сил. Две основные задачи статики.
- 3. Система сходящихся сил. Приведение системы сходящихся сил к равнодействующей. Условия равновесия системы сходящихся сил.
- 4. Алгебраический и векторный момент силы относительно точки (центра). Момент силы относительно оси и его связь с векторным моментом.
- 5. Пара сил. Момент пары сил как вектор. Сложение системы пар. Условие равновесие равновесия системы пар.
- 6. Основная теорема статики о приведении произвольной системы сил к заданному центру (теорема Пуансо).
 - 7. Условия, равновесия произвольной системы сил в векторной и аналитической формах.
- 8. Система сил, произвольно расположенных на плоскости (плоская система сил). Вычисление главного вектора и главного момента плоской системы сил. Условия равновесия в трёх формах.
- 9. Распределенные силы и их равнодействующая. Реакция жесткой заделки. Равновесие системы тел.
 - 10. Теорема Вариньона о моменте равнодействующей.
 - 11. Трение скольжение. Закон Кулона. Угол и конус трения.
 - 12. Трение качения.
 - 13. Статические инварианты. Частные случаи приведения системы сил.
 - 14. Динамический винт. Уравнение центральной оси.
 - 15. Центр параллельных сил. Формулы для определения его координат.
 - 16. Центр тяжести твёрдого тела. Способы его определения.
- 17. Понятие о ферме. Определение усилий в стержнях способом вырезания узлов и способом сечений.
- 18. Векторный способ задания движения точки; определение скорости и ускорения точки при этом способе задания движения.
- 19. Координатный способ задания движения точки. Определение траектории, скорости и ускорения при этом способе задания движения.
 - 20. Естественный способ задания движения. Определение скорости точки.

- 21. Естественные оси координат. Определение ускорения точки через проекции на естественные оси; касательное и нормальное ускорение.
 - 22. Поступательное движение твёрдого тела. Траектории, скорости и ускорения его точек.
- 23. Вращение твёрдого тела вокруг неподвижной оси. Закон вращательного движения, угловая скорость и угловое ускорение; их представление как векторов. Законы равномерного и равнопеременного вращения.
 - 24. Скорость точки тела при вращательном движении, её выражение векторной формулой.
- 25. Ускорение точки при вращательном движении. Векторные формулы для определения ускорения.
- 26. Плоское движение твердого тела. Уравнения движения плоской фигуры. Определение скорости точки при плоском движении.
 - 27. Теорема о проекции скоростей двух точек тела при плоском движении.
- 28. Мгновенный центр скоростей. Определение скорости точки тела с помощью мгновенного центра скоростей.
 - 29. Определение ускорения точки тела при плоском движении.
 - 30. Сложное движение точки. Теорема о сложении скоростей.
 - 31. Сложное движение точки. Теорема о сложении ускорений.

Вопросы для подготовки к экзамену

- 1. Предмет динамики. Законы механики Галилея- Ньютона.
- 2. Дифференциальные уравнения движения материальной точки в проекциях на декартовы и естественные оси координат.
 - 3. Две задачи динамики точки. Решение первой (прямой) задачи динамики.
- 4. Две задачи динамики точки. Решение второй (обратной) задачи динамики точки в случае постоянной силы.
- 5. Две задачи динамики точки. Решение второй (обратной) задачи динамики точки в случае силы, являющейся функцией времени.
- 6. Решение второй (обратной) задачи динамики точки в случае силы, являющейся функцией координаты.
- 7. Свободные колебания материальной точки. Уравнения гармонических колебаний физического и математического маятника.
- 8. Динамика относительного движения точки. Дифференциальные уравнения относительного движения.
 - 9. Переносная и кориолисова силы инерции. Принцип относительности классической механики.
- 10. Механическая система. Силы внешние и внутренние. Свойства внутренних сил. Масса системы, центр масс.
- 11. Моменты инерции твёрдого тела. Радиус инерции. Момент инерции однородного стержня, кольца, диска, цилиндра.
 - 12. Теорема о моментах инерции относительно параллельных осей (теорема Штейнера).
 - 13. Теорема о движении центра масс механической системы. Законы сохранения.
 - 14. Теорема об изменении количества движения механической системы. Законы сохранения.
- 15. Кинетический момент точки и системы относительно центра и оси. Кинетический момент твёрдого тела при вращательном движении.
 - 16. Теорема об изменении кинетического момента механической системы. Законы сохранения.
 - 17. Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси.
- 18. Теорема об изменении кинетического момента в относительном движении. Выражение теоремы по отношению к центру масс.
 - 19. Элементарная работа силы. Работа силы на конечном перемещении. Мощность.
- 20. Кинетическая энергия материальной точки и механической системы. Вычисление кинетической энергии
 - 21. Теорема об изменении кинетической энергии механической системы.
- 22. Принцип Даламбера для материальной точки и механической системы. Главный вектор и главный момент сил инерции твёрдого тела при поступательном, вращательном и плоском движениях.
 - 23 Теорема об изменении кинетической энергии механической системы.

- 24. Понятие о силовом поле. Потенциальное силовое поле и потенциальная энергия. закон сохранения механической энергии.
 - 25. Дифференциальные уравнения поступательного, вращательного и плоского движения тела.
 - 26. Обобщенные координаты. Число степеней свободы.
 - 27. Принцип виртуальных перемещений. Решение задачи равновесия механической системы.
 - 28. Общее уравнение динамики. Применение ОУД к решению задач, порядок решения.
 - 29. Устойчивость положения равновесия. Теорема Дирихле.
- 30. Уравнения Лагранжа 2-го рода. Методика решения задач с применением уравнения Лагранжа 2-рода.
 - 31. Удар. Ударный импульс. Теорема Карно.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по зачету

К зачету допускаются студенты, выполнившие более 60% заданий по самостоятельной работе во 2 семестре.

«зачтено» - студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«незачтено» - выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по выполнению тестовых заданий

- «Отлично» (5 баллов) высокий уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 100 90% от общего «веса» заданных тестовых вопросов.
- «**Хорошо**» (4 балла) продвинутый уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 89 70% от общего «веса» заданных тестовых вопросов.
- «**Удовлетворительно**» (3 балла) базовый уровень формирования компетенции получают студенты с количеством баллов за правильные ответы на тестовые вопросы 69 50% от общего «веса» заданных тестовых вопросов.
- «**Неудовлетворительно**» (0 баллов) компетенция не сформирована получают студенты с количеством баллов за правильные ответы на тестовые вопросы менее 49% от общего «веса» заданных тестовых вопросов.
- * «Вес» тестового вопроса зависит от уровня его сложности. Процент баллов правильных ответов считается как отношение суммарного «веса» вопросов, но которые дан правильный ответ к общему «весу» всех вопросов теста. Таким образом, если студент ответил на половину вопросов, но все они легкие (с низким «весом»), порог в 50% не будет преодолён и засчитывается неудовлетворительный уровень компетенции.

Критерии формирования оценок по экзамену

«Отлично» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Описание процедуры оценивания «Тестирование».

Тестирование по дисциплине проводится с использованием ресурсов электронной образовательной среды «Moodle» (ЭИОС университета). Количество тестовых заданий и время задается системой. Во время проведения тестирования обучающиеся могут пользоваться калькулятором. Результат каждого обучающегося оценивается в соответствии с критериями оценивания.

Описание процедуры оценивания «Зачет».

Зачет может проводиться как в форме устного или письменного ответа на вопросы, так и в иных формах (тестирование в ЭИОС университета).

При проведении зачета в форме устного ответа на вопросы обучающемуся предоставляется 20 минут на подготовку. Опрос обучающегося не должен превышать 0,25 часа. Ответ обучающегося оценивается в соответствии с критериями, описанными в пункте 2.

При проведении экзамена в форме тестирования в системе «Moodle» (ЭИОС университета) количество тестовых заданий и время задается системой. Во время проведения экзамена обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором. Результат каждого обучающегося оценивается в соответствии с критериями оценивания.

Описание процедуры оценивания «Экзамен».

Экзамен принимается ведущим преподавателем по данной учебной дисциплине. Экзамен может проводиться как в форме ответа на вопросы билета, так и в форме тестирования. Форма определяется преподавателем.

При проведении устного экзамена обучающемуся предоставляется 30 минут на подготовку. Опрос обучающегося по билету на устном экзамене не должен превышать 0,35 часа. Ответ обучающегося оценивается в соответствии с критериями, описанными в пункте 2.

При проведении экзамена в форме тестирования в системе «Moodle» (ЭИОС университета) количество тестовых заданий и время задается системой. Во время проведения экзамена обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором. Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 2.