Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:58:57 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Микропроцессорные и микроэлектронные системы станционной автоматики

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

Автоматика и телемеханика на железнодорожном транспорте

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: $3\kappa 3amen - 5 \kappa ypc$, $\kappa ypcosoŭ npoekm - 5 \kappa ypc$.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1: Способен выполнять работы по проектированию, монтажу, техническому обслуживанию, ремонту, реконструкции и модернизации оборудования, устройств и систем ЖАТ	ПК-1.3

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции ПК-1.3: Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ	Обучающийся знает: устройство, принципы действия, технические характеристики и схемные решения микропроцессорных и микроэлектронных станционных систем автоматики	материалы (курс 5) Вопросы (№1 - №20) Тестовые задания (№1 - №7) Вопросы к курсовому проекту (№1-№20)
	Обучающийся умеет: применять знания устройств, принципов действия и обслуживании микропроцессорных и микроэлектронных станционных систем автоматики. Обучающийся владеет: навыками анализа работы устройств и определения характера и места повреждения аппаратуры, использования технической документации	Задания (№1 - №3) Задания (№1 - №3)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС Университета.

Промежуточная аттестация (курсовой проект) проводится в форме защиты курсового проекта на основе собеседования.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Код и наименование индикатора	Образовательный результат
достижения компетенции	

ПК-1.3: Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ	Обучающийся знает: устройство, принципы действия, технические характеристики схемные решения микропроцессорных и микроэлектронных станционных систем автоматики
1 Иапапунцаевая структур	ра системы ЭЦ-МПК представлена:
а) 1 уровнем;	ра системы Эц-WIIIК представлена.
б) 2 уровнями;	
в) 3 уровнями;	
г) 4 уровнями.	
, · · ·	роятность отказа микропроцессорной системы электрической
централизации ниже по ср	авнению с существующими релейными системами
a) 10;	
б) 100;	
в) 1000;	
	емы менее надежны в эксплуатации.
	чи данных используется в системе МПЦ-МПК?
a) RS-232;	
б) RS-422;	
в) RS-485.	
4. К оборудованию МПЦ-М	
а) автоматизированные рабо	чие места персонала; тектротехническое оборудование, размещенное в специализированны
шкафах;	тектротехническое оборудование, размещенное в специализированны
± ·	пеское оборудование, размещенное на релейных стативах;
г) система контроля удаленн	
д) напольное оборудование (
	ов следования отцепов для одного распускаемого состава може
сформировать УВК ГАЦ сі	_ · ·
a) 16;	
б) 32;	
в) 64;	
г) 128.	
	при вытяжке маневровой группы вагонов из сортировочного парк
	рном ее роспуске ГАЦ МН обеспечивает:
, i i	ой линии горочных рельсовых цепей;
	при маневровых передвижениях между роспусками;
в) контроль целостности нит	гей выключенных ламп маневровых светофоров.

7. Сколько объектных контроллеров может быть подключено к одному концентратору в системе

8. Один комплект процессорного модуля централизации (ПМЦ) МПЦ Ebilock- 950 может

9. Максимальное количество петель связи на один ПМЦ системы Ebilock- 950:

Ebilock 950?

управлять:

а) 100 логическими объектами; б) 150 логическими объектами; в) 200 логическими объектами; г) 250 логическими объектами.

a) 4;б) 8;в) 16;г) 32.

a) 8;б) 10;

в) 12;			
Г) 14.			
40 35	_		

- 10. Максимальное количество объектных контроллеров в каждой петле связи ПМЦ системы Ebilock- 950:
- а) 8;б) 16;в) 32;
- в) 32, г) 48.
- 11. От какого минимального числа независимых источников питания осуществляется питание устройств МПЦ системы Ebilock- 950?
- a) 1;
- б) 2;
- в) 3;
- r) 4.

12. Источник питания типа PSU51 системы Ebilock- 950 предназначен для:

- а) питания стрелочных приводов;
- б) питания светофорных ламп и обмоток интерфейсных реле;
- в) питания логики объектных контролеров и охлаждающих вентиляторных полок.

13. Источник питания типа PSU61 системы Ebilock- 950 предназначен для:

- а) питания стрелочных приводов;
- б) питания светофорных ламп и обмоток интерфейсных реле;
- в) питания логики объектных контролеров и охлаждающих вентиляторных полок.

14. Источник питания типа PSU71 системы Ebilock- 950 предназначен для:

- а) питания стрелочных приводов;
- б) питания светофорных ламп и обмоток интерфейсных реле;
- в) питания логики объектных контролеров и охлаждающих вентиляторных полок.

15. Источник питания типа PSU71 системы Ebilock- 950 формирует напряжение:

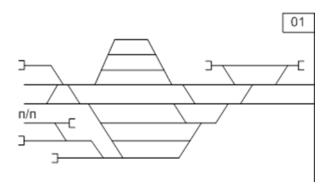
- а) 24 В постоянного тока;
- а) 24 В переменного тока;
- а) 220 В постоянного тока;
- а) 220 В переменного тока.

2.2 Типовые задания для оценки навыкового образовательного результата

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ПК-1.3: Применяет знания	Обучающийся умеет: применять знания устройств, принципов действия и
устройств, принципов	обслуживании микропроцессорных и микроэлектронных станционных систем
действия, технических	автоматики.
характеристик и схемных	
решений при проектировании и	
обслуживании устройств и	
систем ЖАТ	

- 1. Для автоматизированной сортировочной горки выполнить расчет задаваемого системой КГМ значения скорости выхода V3 отцепа из парковой тормозной позиции (ПТП), , используя исходные фактические данные согласно варианту.
- 2. Определить фактическую скорость соударения отцепов Vc на путях сортировочного парка или длину "окна" Lo в случае точной реализации системой КГМ заданного значения скорости выхода отцепа V3 из ПТП, используя исходные фактические данные согласно варианту.
- 3. Построить график, иллюстрирующий изменение скорости движения отцепа вдоль сортировочного пути, используя данные расчета, полученные при выполнении задания по п.

ПК-1.3: Прим	еняет	знан	ния
устройств,	П	ринциг	ЮВ
действия,	тех	ничесь	ίИΧ
характеристик	И	схемн	ЫΧ
решений при пр	оектир	овани	ии
обслуживании	устр	ойств	И
систем ЖАТ			


Обучающийся владеет: навыками анализа работы устройств и определения характера и места повреждения аппаратуры, использования технической документации

- 1. Произвести оценку фактической скорости выхода отцепа Vвых из ПТП при реализации расчетной программы торможения и построить график, иллюстрирующий изменение скорости отцепа при движении по замедлителю парковой тормозной позиции.
- 2. Выполнить расчет программы торможения отцепа для автоматической отработки заданного значения скорости выхода отцепа V3 из ПТП. Результаты расчета представить в графическом виде.
- 3. Определить число концентраторов необходимых для подключения 23 объектных контроллеров в системе Ebilock 950.

Задание на выполнение курсового проекта

Задание на курсовой проект выбираются в методическом указании по двум последним цифрам учебного шифра. Для варианта 01 они следующие:

- 1. Вид тяги T, тепловозная;
- 2. Длина приемо-отправочных путей 1250 м;
- 3. Расстояние между осями смежных путей 5,3 м;
- 4. Прием на путь -8.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Причины применения микропроцессорных централизаций на станциях.
- 2. Безопасность систем микропроцессорных централизаций.
- 3. Принципы построения программного обеспечения микропроцессорных централизаций.
- 4. Безопасные структуры МПЦ.
- 5. Передача ответственной информации в микропроцессорных централизациях.
- 6. Современные системы микропроцессорных централизаций.
- 7. Этапы развития системы МПЦ-МПК.
- 8. Эксплуатационно-технические характеристики МПЦ-МПК.
- 9. Функциональная структура системы МПЦ-МПК.
- 10. Техническая реализация МПЦ-МПК.
- 11. Устройства сопряжения с объектами МПЦ-МПК.
- 12. Этапы развития систем Ebilock- 950.
- 13. Эксплуатационно-технические характеристики системы Ebilock- 950.

- 14. Структура системы Ebilock- 950.
- 15. Процессорный модуль централизации системы Ebilock- 950.
- 16. Программное обеспечение системы Ebilock-950.
- 17. Электропитание системы МПЦ Ebilock-950.
- 18. Система МПЦ Ebilock-950 как объект технического обслуживания.
- 19. Микропроцессорная централизации стрелок и светофоров как объект технического обслуживания, ремонта и сопровождения.
 - 20. Система микропроцессорной горочной автоматической централизации (ГАЦ МН).

Перечень вопросов для подготовки к защите курсового проекта

- 1. Общие сведения об электрической централизации
- 2. Основы сигнализации на станциях
- 3. Маршрутизация и осигнализование станций
- 4. Двухниточный план станции
- 5. Станционные рельсовые цепи
- 6. Стрелочные электроприводы
- 7. Аппаратура бесконтактного автоматического контроля стрелки (АБАКС)
- 8. Аппараты управления и контроля
- 9. Режимы работы электрической централизации
- 10. Особенности построения безопасных схем релейной централизации
- 11. Схемы установки поездных и маневровых маршрутов
- 12. Схемы управления стрелочными электроприводами. Общие сведения
- 13. Кабельные сети электрической централизации. Общие сведения
- 14. Проектирование и расчеты кабельных сетей
- 15. Кабельная сеть стрелочных электроприводов
- 16. Кабельные сети рельсовых цепей
- 17. Особенности кабельных сетей в системах МПЦ
- 18. Возможные повреждения в кабельных сетях и монтаже устройств ЭЦ и способы их предупреждения
 - 19. Основные задачи технической диагностики
 - 20. Методы поиска неисправностей устройств СЦБ

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«Неудовлетворительно/не зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по курсовому проекту

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.