Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:58:57 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Линии железнодорожной автоматики и телемеханики

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

«Автоматика и телемеханика на железнодорожном транспорте»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен 4 курс, курсовая работа 4 курс.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1. Способен выполнять работы по проектированию, монтажу, техническому обслуживанию и реконструкции оборудования, устройств и систем ЖАТ	ПК-1.3. Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ
ПК-2. Способен управлять процессом выполнения работ по техническому обслуживанию, ремонту и реконструкции оборудования, устройств и систем ЖАТ	ПК-2.2. Планирует, анализирует деятельность бригад, контролирует обеспечение безопасности движения поездов при производстве работ по техническому обслуживанию, ремонту оборудования, устройств и систем СЦБ

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 7)
ПК-1.3. Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ	Обучающийся знает: устройство, технические характеристики и конструктивные особенности линий автоматики и телемеханики Обучающийся умеет: использовать знание об устройстве, технических характеристиках и конструктивных особенностей линий автоматики и телемеханики, использовать знания инженерных теорий для организации и выполнения работ по монтажу, эксплуатации, техническому обслуживанию, ремонту и модернизации линий автоматики и телемеханики Обучающийся владеет: применением современных программных средств для разработки проектноконструкторской и технологической документации	Вопросы № 1-11 Тестовые задания № 1 № 2, № 3 Задания № 4, № 5, № 6 Вопросы для подготовки к защите курсовой работы, раздел 1 №1-10 Задания № 7 № 8, № 9 Вопросы для подготовки к защите курсовой работы, раздел 2
ПК-2.2. Планирует, анализирует деятельность бригад, контролирует обеспечение безопасности движения поездов при	Обучающийся знает: принципы организации нового строительства и реконструкции устройств СЦБ; правила по прокладке и монтажу кабелей устройств СЦБ	№1-10 Вопросы №12 - 22 Тестовые задания № 10 № 11 № 12

производстве работ по техническому обслуживанию, ремонту оборудования, устройств и систем СЦБ	Обучающийся умеет: решать инженерные задачи, связанные с эксплуатацией систем автоматики и телемеханики, компьютерных технологий в различных подразделениях железнодорожного транспорта с применением методов планирования работ.	Задания № 13 № 14, № 15 Вопросы для подготовки к защите курсовой работы, раздел 3 №1-10
	Обучающийся владеет: методами оценки эффективности проектов; приемами использования стандартов и других нормативных документов.	Задания №16 № 17, № 18 Вопросы для подготовки к защите курсовой работы, раздел 4 №1-10

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС Университета.

Промежуточная аттестация (курсовая работа) проводится в одной из следующих форм: 1) защита курсовой работы на основе собеседования; 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения Образовательный результат компетенции Обучающийся знает: ПК-1.3. Применяет знания устройств, принципов И действия, технических характеристик и схемных устройство, технические характеристики решений при проектировании и обслуживании конструктивные особенности линий автоматики устройств и систем ЖАТ телемеханики

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Тестовые задания

- 1. Направляющая система электросвязи это:
 - а) совокупность оконечных устройств и систем передачи;
- б) граница раздела двух материальных сред, обладающих различными физическими свойствами, вдоль которой может распространяться электромагнитная волна;
 - в) совокупность систем передачи и среды распространения.
- 2. Перечислите вторичные параметры передачи двухпроводной цепи.
- а) коэффициент затухания, коэффициент фазы, волновое сопротивление, скорость распространения энергии;
 - б) коэффициент затухания, коэффициент фазы, волновое сопротивление, защищенность;
 - в) коэффициент затухания, коэффициент фазы, переходное затухание, защищенность.
- 3. Из какого материала изготавливаются токопроводящие жилы кабелей СЦБ?
 - а) медь, алюминий, сталь, олово, бронза;
 - б) медь, алюминий, сталь, цинк;
 - в) медь
- 4. Как классифицируются электрические кабели по конструкции?
 - а) подземные, воздушные;
 - б) симметричные, коаксиальные, подводные;
 - в) симметричные, коаксиальные;
- г) симметричные, коаксиальные, обмоточные, волноводные.
- 5. Каково назначение защитных оболочек у кабелей?

а) защищают сердечник кабеля от внешних электромагнитных влияний;

- б) защищают сердечник кабеля от температурных воздействий;
- в) защищает сердечник кабеля от влаги.
- 6. Какие типы изоляции токопроводящих жил получили наиболее широкое применение в кабелях?
 - а) кабельная бумага, полиэтилен, поливинилхлорид, стирофлекс, фторопласт, резина, бумажная масса;
 - б) трубчатая, бумажно-пористая, кордельная, сплошная, пористая, резиновая;
 - в) трубчатая, бумажно-пористая, кордельная, сплошная, пористая, баллонная, пленкопористая.
- 7. Как защищается от влаги сердечник электрических кабелей?
 - а) за счет использования металлических оболочек;
 - б) введением в сердечник гидрофобного заполнителя или водоблокирующих сухих элементов;
 - в) содержанием кабелей под пониженным давлением воздуха.
- 8. Каковы основные конструктивные элементы электрических кабелей?
 - а) токопроводящие жилы, изоляция токопроводящих жил, защитные оболочки и покровы, лакокрасочное покрытие;
 - б) токопроводящие жилы, изоляция токопроводящих жил, оптические модули, защитные оболочки и покровы;
 - в) токопроводящие жилы, изоляция токопроводящих жил, защитные оболочки и покровы.
- 9. Как можно снизить величину опасных магнитных влияний высоковольтных линий на направляющие системы электросвязи?
 - а) за счет увеличения коэффициента защитного действия кабеля;
 - б) за счет изоляции металлических оболочек кабелей связи от земли;
 - в) за счет уменьшения коэффициента защитного действия кабеля.
- 10. Токопроводящая жила (проводник) по ГОСТу это:
 - а) кабельное изделие предназначенное для передачи по нему электрической энергии;
 - б) элемент кабельного изделия, предназначенный для прохождения электрического тока;
 - в) электрическое соединение, состоящее из кабеля определённой длины.
- 11. Какие меры применяются для защиты кабелей от опасного магнитного влияния ВВЛ?
 - а) экранирующие тросы, изоляция металлопокровов кабеля от земли;
 - б) каскадная защита, молниеотводы;
 - в) редукционные трансформаторы, разрядники, экранирующие тросы.

ПК-2.2. Планирует, анализирует деятельность бригад, контролирует обеспечение безопасности движения поездов при производстве работ по техническому обслуживанию, ремонту

оборудования, устройств и систем СЦБ

Тестовые задания

- 12. Определить нарушение требований при проектировании кабельной сети:
- a) число переходов кабеля под путями и количество разветвительных муфт должно быть минимальным
- б) обеспечение наименьшей длины кабеля;
- в) проходит под стрелочными переводами, глухими пересечениями и ближе 1,5 м от изолирующих стыков.
- 13. Виды разветвительных муфт:
- а) на четыре, семь и восемь направлений;
- б) на четыре, семь и десять направлений;
- в) на четыре семь, восемь и десять направлений.

Для чего в пазы крышек муфты (например, УКМ-12) укладывают резиновые прокладки? а) для теплоизоляции;

- б) для предохранения попадания внутрь пыли и влаги;
- в) для уменьшения воздействия вибрации.

Расшифровка марки кабеля СБВБэВ:

- а) CБ сигнально-блокировочный, B наружная оболочка из поливинилхлоридной (ΠBX) композиции, Б броня из двух стальных оцинкованных лент; \mathfrak{I} экран из алюминиевой или алюмополимерной ленты, B изоляция из поливинилхлоридного (ΠBX) материала.
- б) C сигнальный, B броня из двух стальных оцинкованных лент, BB водоблокирующие материалы, B экран из алюминиевой или алюмополимерной ленты, B изоляция из поливинилхлоридного (ΠBX) материала.
- в) СБ сигнально-блокировочный, ВБ водоблокирующие материалы, э экран из алюминиевой или алюмополимерной ленты, В изоляция из поливинилхлоридного (ПВХ) материала.

Муфты II и III сборок (УКМ - 12- II и УПМ - 24 - II и УКМ - 12- III, УПМ - 24 - III) используются

- а) при монтаже стрелочных электроприводов;
- б) при монтаже кабеля управления лампами светофоров;
- в) при монтаже рельсовых цепей.

Допускается ли последовательная обвязка релейной аппаратуры?

- а) допускается, если релейная аппаратура одной РЦ находится в одном путевом ящике (ПЯ) с релейной аппаратурой другой РЦ; б) не допускается;
- в) допускается.

На один трансформатор ПОБС-5А для электрообогрева подключается не более: а) 5 стрелочных электроприводов

- б) 6 стрелочных электроприводов
- в) 7 стрелочных электроприводов

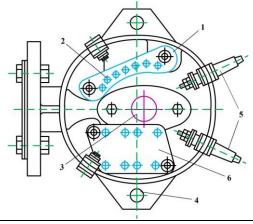
Как классифицируются электрические кабели связи по условиям прокладки и эксплуатации?

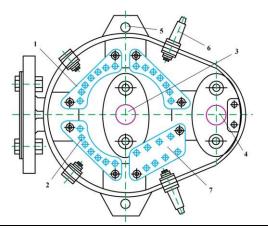
- а) подземные, для канализации, подводные, подвесные, железнодорожные, военные;
- б) подземные, для канализации, подводные, подвесные, тоннельные, шахтные;
- в) подземные, подводные, воздушные (кабели для воздушной подвески).

Хранить кабели на барабанах, обшитых сплошным рядом досок:

- а) не более 2 лет на открытых площадках;
- б) не более 5 лет на открытых площадках;
- в) не более 10 лет на открытых площадках.

Утилизация кабелей, по окончанию срока службы


- а) сдаются на утилизацию, металлолом;
- б) сдаются на утилизацию в специализированную структуру;
- в) не утилизируются.


Нумерация разветвительной муфты в чётной или нечётной горловине проставляется: а) начиная от входного светофора;

- б) начиная от поста ЭЦ;
- в) не имеет значения.

Код и наименование индикатора достижения	Образовательный результат
компетенции	
ПК-1.3. Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ	Обучающийся умеет: использовать знание об устройстве, технических характеристиках и конструктивных особенностей линий автоматики и телемеханики, использовать знания инженерных теорий для организации и выполнения работ по монтажу, эксплуатации,
	техническому обслуживанию, ремонту и
	модернизации линий автоматики и телемеханики

- 1. Определить количество рабочих жил кабелей 10 12(3), 50-24(5); 40-36(4), поясните маркоразмер кабелей.
- 2. Определить по маркировке кабеля назначение и конструктивные особенности кабелей СБПЭБбШп, СБПЗАШп, СБВБПуШп
- 3. Определить тип и назначение муфт, пояснить пр ввила разделки кабеля для соединения аппаратурой с РЦ

ПК-1.3. Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ

Обучающийся владеет: применением современных программных средств для разработки проектноконструкторской и технологической документации

1. Проектирование кабельной сети рельсовых цепей

По схематическому плану составить схему нагрузок согласующих трансформаторов передающих концов РЦ. На схеме показать места подключения каждого грансформатора, величины потребляемых ими токов и суммарные токи, протекающие по отдельным участк ам магистрали. По группировке РЦ по лучам питания, составить кабельную сеть согласующих трансформат ров передающих концов РЦ.

2. Обоснование выбора схемы управления и контр иля стрелочного электропривода

Схема кабельной сети стрелочных электропривод в для типовой горловины станции состоит из цепей управления стрелками и контроля их положен ия, электрообогрева контактов автопереключателей электроприводов и автоматической очистки стрелок ог снега. Рассчитать требуемое число дублируемых жил в проводе по допустимому падению напряжения н переходном сопротивлении контактов стрелочного пускового реле и в жилах соединительных проводов.

3. Проектирование схемы канализации обратног) тягового тока.

На основании двухниточного плана провести техническую экспертизу канализации обратного тягового тока, провести расчеты допустимых токов для обоснования выбора медупутных, междроссельных перемычек, рельсовых соединителей.

ПК-2.2. Планирует, анализирует деятельность бригад, контролирует обеспечение безопасности движения поездов при производстве работ по техническому обслуживанию, ремонту оборудования, устройств и систем СЦБ

Обучающийся умеет: решать инженерные задачи, связанные с эксплуатацией систем автоматики и телемеханики, компьютерных технологий в различных подразделениях железнодорожного транспорта с применением методов планирования работ

1. Рассчитать длину магистрального кабеля с учетом расстановки разветвительных муфт.

Длина кабеля от поста ЭЦ до разветвительной муфты подсчитывается по формуле

$$L_{\rm M} = 1.03 \cdot (L + 6 \cdot n + L_{\rm B} + L_{\rm P} + L_{\rm 3}),$$

где L — расстояние от поста ЭЦ до групповой муфты, определяемое по ординатам станции, м;

n — количество пересекаемых кабелем путей;

 $L_{\rm B}$ — длина кабеля при вводе в пост ЭЦ с расходами на ввод в помещение, принимается равным 25-50 м;

 $L_{\rm P}$ — длина кабеля при подъеме его со дна траншеи до муфты, РШ или другого объекта, принимается равным 1,5 м;

 L_3 — расход кабеля на разделку и запас, принимается равным 1 м;

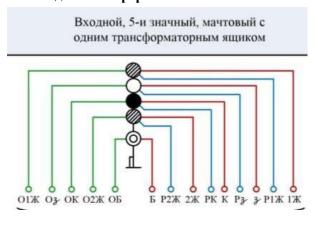
1,03 — коэффициент, учитывающий увеличение на 3% длины кабеля на изгибы в траншее и просадки грунта.

2. Рассчитать длину индивидуальных кабельных линий с учетом расстановки объектов связи и СЦБ.

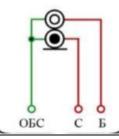
Длина кабеля от разветвительной муфты до объекта или между объектами подсчитывается по формуле

$$L_{\text{H}} = 1.03 \cdot [L + 6 \cdot n + 2 \cdot (L_{\text{P}} + L_{3})],$$

где L — расстояние от групповой муфты до объекта централизации или между объектами, м;


n — количество пересекаемых кабелем путей;

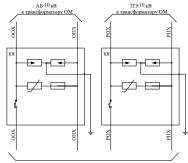
 $L_{\rm P}$ — длина кабеля при подъеме его со дна траншеи до муфты, РШ или другого объекта, принимается равным 1,5 м;


 L_3 — расход кабеля на разделку и запас, принимается равным 1 м;

1,03 — коэффициент, учитывающий увеличение на 3% длины кабеля на изгибы в траншее и просадки грунта.

3. Определить количество рабочих жил для выходного, пятизначного, мачтового и маневрового 2-х значного светофоров, поясните выбор маркоразмера кабеля для светофоров.

Маневровый, 2-х значный, карликовый


ПК-2.2. Планирует, анализирует деятельность бригад, контролирует обеспечение безопасности движения поездов при производстве работ по техническому обслуживанию, ремонту оборудования, устройств и систем СЦБ

Обучающийся владеет методами оценки эффективности проектов; приемами использования стандартов и других нормативных документов.

1. Расчеты опасных влияний тяговой сети на цепи связи и СЦБ

Определить опасные напряжения для аварийного и вынужденного режима тяговой сети режима. При расчете следует исходить из предположения, что кабель находится от контактной сети (ширина сближения) на расстоянии a=10 м, а расчетная длина сближения l равна расстоянию между постом ЭЦ и релейным шкафом входного светофора заданной горловины станции.

2. Выбор элементной базы устройств защиты линий автоматики и телемеханики

По схеме защиты аппаратуры релейного вышений установки от перенапряжений определить тип элементов защиты, максимальное рабочее напряжение переменного тока, максимальное рабочее напряжение постоянного тока, остающееся напряжение при импульсном токе Ти = 8/20мксек, максимально выдерживаемые импульсный ток при однократном импульсе 8/20 мксек, ток утечки.

3. Навыки проектирования и трассировки линий автоматики и телемеханики

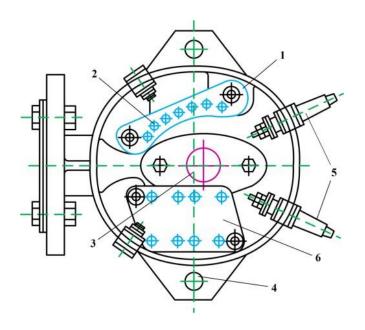
По схематическому (однониточному) плану станции произвести группировка однотипных объектов и определить места установки разветвительных муфт. Определить вид муфты (количество направлений).

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Разновидности и конструкции кабелей;
- 2. Маркировку кабелей;
- 3. Арматуру кабельных линий;
- 4. Причины коррозии металлических оболочек кабелей;
- 5. Виды коррозии. Как уменьшить блуждающие токи тяговой сети;
- 6. Особенности измерения потенциала на оболочке кабеля;
- 7. Активные и пассивные методы защиты кабеля от коррозии;
- 8. Сущность симметрирования кабелей. Какие методы симметрирования известны;
- 9. Методы соединения строительных длин кабелей в кабельных линиях;
- 10. Текущее обслуживание кабельных линий;
- 11. Виды работ при текущем и капитальном ремонте;
- 12. Техника безопасности при обслуживании и ремонте кабельных линий;
- 13. Выбор типов кабельных линий при строительстве магистрали и требуемые типы кабелей;
- 14. Принципы расчета длин кабельных линий с учетом расстановки объектов связи и СЦБ;
- 15. Принципы расчета жильности кабелей в кабельных сетях СЦБ;
- 16. Методы расчеты влияний тяговой сети на цепи связи и СЦБ;
- 17. Методы планирования работ бригад по техническому обслуживанию, ремонту оборудования, устройств и систем СЦБ;
- 18. Прокладка и монтаж кабелей и кабельных соединителей в служебно-технических зданиях;
- 19. Вязка жгута на криволинейных участках;

- 20. Расшивка жил кабелей и проводов на стативах, стойках или в шкафах;
- 21. Расшивка многопроволочных проводов и жил кабелей;
- 22. Зачистка проводов и жил кабелей от изоляции;
- 23. пайка многопроволочных жил;
- 24. Нормальные и минимально допускаемые зазоры между сооружениями и устройствами, вновь строящимися и переустраиваемыми;
- 25. Монтаж универсальных кабельных муфт и кабельных муфт проходных и концевых (кабельные стойки); 26. Соединение зажимов клеммных панелей и выводов аппаратуры, установленной в корпусе маневровой колонки;
- 27. Содержанием проекта производства работ;
- 28. Особенности монтажа напольного оборудования с концентрацией аппаратуры по районам станции;
- 29. Монтаж рельсовых цепей: стыковые рельсовые, стрелочные и междупутные соединители; 30. Меры защиты от опасных и мешающих влияний применяемых на сооружениях ЖАТ; 31. Устройства защиты на сооружениях ЖАТ от грозовых разрядов.

Вопросы для подготовки к защите курсовой работы


Раздел 1. Конструкции и свойства линий СЦБ

- 1. Из какого материала изготавливаются токопроводящие жилы кабелей СЦБ?
 - а) медь, алюминий, сталь, олово, бронза;
 - б) медь, алюминий, сталь, цинк;
 - в) медь
- 2. Как классифицируются электрические кабели по конструкции?
 - а) подземные, воздушные;
 - б) симметричные, коаксиальные, подводные;
 - в) симметричные, коаксиальные;
 - г) симметричные, коаксиальные, обмоточные, волноводные.
- 3. Каково назначение защитных оболочек у кабелей?
 - а) защищают сердечник кабеля от внешних электромагнитных влияний;
 - б) защищают сердечник кабеля от температурных воздействий;
 - в) защищает сердечник кабеля от влаги.
- 4. Какое определение электрического кабеля (кабельного изделия) является наиболее точным?
 - а) это совокупность изолированных жил или коаксиальных пар, скрученных в определенном порядке и покрытых металлической защитной оболочкой;
 - б) это совокупность изолированных жил или коаксиальных пар, размещенных вместе и покрытых защитной оболочкой;
 - в) электрическое изделие, предназначенное для передачи по нему электрической энергии, электрических сигналов информации или служащее для изготовления обмоток электрических устройств, отличающееся гибкостью, содержит одну или более изолированных жил (проводников), заключенных в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в который может входить броня, и пригодное, в частности, для прокладки в земле и под водой.

- 5. Для каких целей скручиваются жилы и коаксиальные пары?
 - а) для обеспечения гибкости конструкции кабеля;
 - б) для удобства разделки кабеля;
 - в) для уменьшения расхода цветных металлов;
 - г) для обеспечения гибкости конструкции кабеля и уменьшения взаимных электромагнитных влияний в кабеле.
- 6. Как защищается от влаги сердечник электрических кабелей?
 - а) за счет использования металлических оболочек;
 - б) введением в сердечник гидрофобного заполнителя или водоблокирующих сухих элементов;
 - в) содержанием кабелей под пониженным давлением воздуха.
- 7. Каковы основные конструктивные элементы электрических кабелей?
 - а) токопроводящие жилы, изоляция токопроводящих жил, защитные оболочки и покровы, лакокрасочное покрытие;
 - б) токопроводящие жилы, изоляция токопроводящих жил, оптические модули, защитные оболочки и покровы;
 - в) токопроводящие жилы, изоляция токопроводящих жил, защитные оболочки и покровы.
- 8. Какие существуют способы скрутки жил в группы?
 - а) парная, звездная (четвёрочная), двойная парная, двойная звездная, восьмерочная;
 - б) парная, тройная, звездная (четвёрочная);
 - в) парная, звездная (четвёрочная), двойная парная, двойная звездная, тройная парная, тройная звездная.
- 9. Какое количество пар могут содержать симметричные кабели?
 - а) от 1х2 до 2х5600;
 - б) от 1х2 до 2х2400;
 - в) от 1х2 до 2х100.
- **10.** Какие типы изоляции токопроводящих жил получили наиболее широкое применение в кабелях?
 - а) кабельная бумага, полиэтилен, поливинилхлорид, стирофлекс, фторопласт, резина, бумажная масса;
 - б) трубчатая, бумажно-пористая, кордельная, сплошная, пористая, резиновая;
 - в) трубчатая, бумажно-пористая, кордельная, сплошная, пористая, баллонная, пленко-пористая.
 - Раздел 2. Электромагнитная совместимость в линиях СЦБ
- **1.** Как изменяется переходное затухание на дальнем конце симметричной двухпроводной цепи с увеличением частоты сигнала? a) монотонно уменьшается;
 - б) монотонно увеличивается;
 - в) сначала уменьшается, потом стабилизируется.
- **2.** Как изменяется переходное затухание на ближнем конце симметричной двухпроводной цепи с увеличением частоты сигнала? a) монотонно уменьшается;

- б) сначала уменьшается, потом стабилизируется;
- в) монотонно увеличивается.
- **3.** Каким образом можно снизить величину опасных влияний молнии на направляющие системы электросвязи?
 - а) за счет увеличения коэффициента защитного действия кабеля связи;
 - б) за счет заземления металлических оболочек кабелей связи;
 - в) за счет изоляции металлических оболочек кабелей связи от земли.
- **4.** Как классифицируются взаимные электромагнитные влияния между цепями? a) активные, реактивные;
 - б) регулярные, нерегулярные, систематические, несистематические;
 - в) непосредственные, косвенные.
- 5. Какие существуют виды внешних электромагнитных влияний?
 - а) электрические, магнитные;
 - б) высоковольтные, низковольтные;
 - в) воздушные, подземные.
- 6. Почему с ростом частоты увеличиваются взаимные влияния в симметричных цепях?
 - а) вследствие несовершенства изоляции жил;
 - б) вследствие возрастания действия вихревых токов;
 - в) вследствие возрастания электромагнитных связей между цепями.
- 7. Какие источники внешних электромагнитных влияний являются опасными?
 - а) создающие в линии связи напряжения свыше 36 В;
 - б) создающие в линии связи напряжения свыше 220 В;
 - в) создающие в линии связи напряжения свыше 12 В.
- 8. Какие источники внешних электромагнитных влияний являются мешающими?
 - а) создающие в линии связи напряжения 1-2 В;
 - б) создающие в линии связи напряжения 10-12 В;
 - в) создающие в линии связи напряжения 1-2 мВ.
- **9.** Как изменяется переходное затухание на ближнем конце симметричной цепи с изменением длины линии?
 - а) сначала уменьшается, затем, начиная с некоторой длины линии, начинает возрастать; б) монотонно увеличивается;
 - в) сначала уменьшается, потом стабилизируется.
- 10. Как классифицируют источники внешних электромагнитных влияний?
 - а) подземные, воздушные;
 - б) гальванические, электрические;
 - в) опасные, мешающие.
 - Раздел 3. Проектирование кабельных сетей ЭЦ
- 1. Электрические сети принято классифицировать по следующим основным признакам:

- а) назначение (область применения), масштабные признаки, по роду тока;
- б) по роду тока, по напряжению, по месту прокладки;
- в) назначение (область применения), с учётом расхода энергии, по длине.
- 2. Определить нарушение требований при проектировании кабельной сети:
 - а) число переходов кабеля под путями и количество разветвительных муфт должно быть минимальным
 - б) обеспечение наименьшей длины кабеля;
 - в) проходит под стрелочными переводами, глухими пересечениями и ближе 1,5 м от изолирующих стыков.
- 3. Нумерация разветвительной муфты в чётной или нечётной горловине проставляется: а) начиная от входного светофора;
 - б) начиная от поста ЭЦ;
 - в) не имеет значения.
- 4. Виды разветвительных муфт:
 - а) на четыре, семь и восемь направлений;
 - б) на четыре, семь и десять направлений;
 - в) на четыре семь, восемь и десять направлений.
- 5. Для чего в пазы крышек муфты (например, УКМ-12) укладывают резиновые прокладки? а) для теплоизоляции;
 - б) для предохранения попадания внутрь пыли и влаги;
 - в) для уменьшения воздействия вибрации.
- 6. Расшифровка марки кабеля СБВБэВ:
 - а) CБ сигнально-блокировочный, B наружная оболочка из поливинилхлоридной (ΠBX) композиции, Б броня из двух стальных оцинкованных лент; э экран из алюминиевой или алюмополимерной ленты, B изоляция из поливинилхлоридного (ΠBX) материала.
 - б) C сигнальный, B броня из двух стальных оцинкованных лент, BB водоблокирующие материалы, B экран из алюминиевой или алюмополимерной ленты, B изоляция из поливинилхлоридного (BX) материала.
 - в) СБ сигнально-блокировочный, ВБ водоблокирующие материалы, э экран из алюминиевой или алюмополимерной ленты, В изоляция из поливинилхлоридного (ПВХ) материала.
- 7. Муфты II и III сборок (УКМ 12- II и УПМ 24 II и УКМ 12- III, УПМ 24 III) используются
 - а) при монтаже стрелочных электроприводов;
 - б) при монтаже кабеля управления лампами светофоров;
 - в) при монтаже рельсовых цепей.
- 8. Определить количество рабочих жил кабеля 10 12(3): а) 10 жил;
 - б) 12 жил;
 - в) 9 жил.
- 9. На муфте УКМ-12-III под цифрой 5 изображено:

- а) заглушки;
- б) перемычки для соединения аппаратуры с РЦ;
- в) отверстие для ввода индивидуального кабеля.
- 10. Допускается ли последовательная обвязка релейной аппаратуры?
 - а) допускается, если релейная аппаратура одной РЦ находится в одном путевом ящике (ПЯ) с релейной аппаратурой другой РЦ; б) не допускается;
 - в) допускается.

Раздел 4. Защита и эксплуатация кабельных сетей

- 1. Какие меры применяются для защиты кабелей от опасного магнитного влияния ВВЛ?
 - а) экранирующие тросы, изоляция металлопокровов кабеля от земли;
 - б) каскадная защита, молниеотводы;
 - в) редукционные трансформаторы, разрядники, экранирующие тросы.
- 2. Укажите основные виды коррозии?
 - а) гальваническая, электрохимическая, коррозия блуждающими токами;
 - б) гальваническая, электрохимическая, почвенная;
 - в) межкристаллитная (механическую), электрохимическая (почвенная), коррозия блуждающими

токами (электрокорозия).

- **3.** Укажите основные методы защиты направляющих систем электросвязи от межкристаллитной коррозии?
 - а) дренажная защита, применение изолирующих муфт;
 - б) катодные станции, протекторная защита;
 - в) рессорная подвеска кабеля, подсыпка песка в траншею с кабелем.
- 4. Основные причины вызывающие почвенную коррозию?
 - а) сопротивление грунта, количество жил кабеля, содержание в почве влаги;
- б) содержание в почве влаги, органических веществ, солей кислот, щелочей, неоднородность оболочки кабеля, неоднородность хим. состава грунта;
 - в) количество жил кабеля, содержание в почве влаги, органических веществ, солей кислот,

шелочей.

- 5. Из-за чего возникает межкристальная (механическая) коррозия?
 - а) из-за воздействия с кислородом;
 - б) из-за влияний блуждающих токов
 - в) вследствие вибрации при транспортировке, прокладке кабеля вблизи ж.д. с большим грузовым движением, на мостах и опорах воздушных линий; г) вследствие вибрации и блуждающих токов.
- 6. Укажите источники внешних электромагнитных влияний:
 - а) гроза, электрифицированные железные дороги, линии электропередачи, радиостанции;
 - б) гроза, электрифицированные железные дороги, линии электропередачи, водные преграды;
 - в) гроза, электрифицированные железные дороги, линии электропередачи, волоконнооптические кабели.
- 7. Источники блуждающих токов?
 - а) рельсовые пути, молнии, ЛЭП;
 - б) рельсовые пути электрифицированных ж. д., метрополитена, трамвая;
 - в) рельсовые пути электрифицированных ж.д, заземлённые сооружения зданий, молнии.
- 8. Как классифицируются электрические кабели связи по условиям прокладки и эксплуатации?
 - а) подземные, для канализации, подводные, подвесные, железнодорожные, военные;
 - б) подземные, для канализации, подводные, подвесные, тоннельные, шахтные;
 - в) подземные, подводные, воздушные (кабели для воздушной подвески).
- 9. Хранить кабели на барабанах, обшитых сплошным рядом досок:
 - а) не более 2 лет на открытых площадках;
 - б) не более 5 лет на открытых площадках;
 - в) не более 10 лет на открытых площадках.
- 10. Утилизация кабелей, по окончанию срока службы
 - а) сдаются на утилизацию, металлолом;
 - б) сдаются на утилизацию в специализированную структуру;
 - в) не утилизируются.
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы. Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения. недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке

выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету с оценкой

«**Отлично**» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

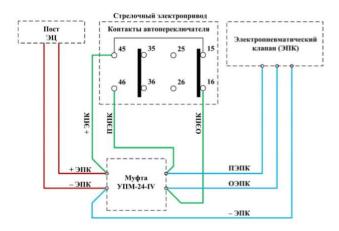
«**Неудовлетворительно**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Процедура и критерии оценки «Защита курсовой работы»

Тема курсовой работы «Проектирование кабельных сетей электрической централизации» Описание процедуры оценивания

Оценивание проводится руководителем курсовой работы. По результатам проверки курсовой работы обучающийся допускается к ее защите при условии соблюдения перечисленных условий: — выполнены все задания;

- сделаны выводы;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.


В том случае, если работа не отвечает предъявляемым требованиям, то она возвращается автору на доработку. Обучающийся должен переделать работу с учетом замечаний и предоставить для проверки вариант с результатами работы над ошибками. Если сомнения вызывают отдельные аспекты курсовой работы, то в этом случае они рассматриваются во время устной защиты работы.

Защита курсовой работы представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя. Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте «Критерии формирования оценок по результатам выполнения заданий»

Типовое задание к курсовой работе

Рассчитать количество жил для автоматической очистки стрелок от снега

Автоматическая очистка стрелок на станциях предусматривается для предотвращения перерывов в движении поездов и маневровой работе во время снегопадов. При этом сводятся к минимуму тяжелые ручные работы, связанные с очисткой стрелочных переводов, за счет чего сокращается штат работников и повышается степень безопасности работ по снегоборьбе.

