Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 11:05:41 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Микропроцессорные и микроэлектронные системы перегонной автоматики

(наименование дисциплины(модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

Автоматика и телемеханика на железнодорожном транспорте

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен в 9 семестре, курсовая работа в 9 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-5: Способен разрабатывать проекты, техническую и технологическую документацию на устройства и системы железнодорожной автоматики и телемеханики	ПК-5.1

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 9)
ПК-5.1: Формирует проектные, технические решения на устройства и системы железнодорожной автоматики и телемеханики в соответствии с нормативно-технической документацией на проектирование и типовыми техническими решениями	Обучающийся знает: основы технической документации микроэлектронной элементной базе, основы построения безопасных микроэлектронных устройств СИРДП.	Вопросы (№1 - №6) Тестовые задания (№1 - №5) Вопросы к курсовой работе (№1-№20)
	Обучающийся умеет: производить анализ нормативно-технической документации устройств автоблокировки, выполненных на базе микропроцессорной техники, читать и анализировать электрические принципиальные схемы обслуживаемого оборудования.	Задания (№1 - №3) Задание на курсовую работу
	Обучающийся владеет: навыками по проектированию устройств автоматики и телемеханики с применением современных методов и средств диагностики.	Задания (№1 - №3) Задание на курсовую работу
ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативно-технических документов,	Обучающийся знает: основы построения СИРДП на микроэлектронной элементной базе, основы построения безопасных микроэлектронных устройств СИРДП.	Вопросы (№1 - №5) Тестовые задания (№1- №9)
регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики	Обучающийся умеет: производить техническое обслуживание устройств автоблокировки, выполненных на базе микропроцессорной техники, читать и анализировать электрические принципиальные схемы обслуживаемого оборудования.	Вопросы (№1 - №5)
	Обучающийся владеет: навыками по техническому обслуживанию и ремонту устройств автоматики и телемеханики с применением современных методов и средств диагностики, по совершенствованию методов технического обслуживания и повышению надежности устройств автоматики и телемеханики	Вопросы (№1 - №5)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (курсовая работа) проводится в форме защиты курсовой работы на основе собеседования.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат		
достижения компетенции			
ПК-5.1: Формирует проектные,	Обучающийся знает:		
технические решения на	основы технической документации микроэлектронной элементной базе, основы		
устройства и системы	построения безопасных микроэлектронных устройств СИРДП.		
железнодорожной автоматики и			
телемеханики в соответствии с			
нормативно-технической			
документацией на			
проектирование и типовыми			
техническими решениями			
Типовые вопросы (тестовые задания)			

1. Укажите назначение путевых приемников:

- а) пропуск тягового тока;
- б) кодирование рельсовой цепи;
- в) прием сигнального тока определенной частоты;
- г) защита от кратковременной потери шунта.

2. Автоматическая локомотивная сигнализация применяется с целью:

- 1) обеспечения автоматического движения поездов по показаниям путевых светофоров;
- 2) повышения пропускной способности железнодорожных линий за счет уменьшения интервалов попутного следования между поездами;
- 3) расширения функциональных возможностей автоблокировки;
- 4) обеспечения безошибочного восприятия машинистами показаний путевых светофоров в любых условия следования поездов.

3. Среди существующих систем автоматической локомотивной сигнализации НЕТ:

- 1) АЛС точечного типа;
- 2) АЛС непрерывного типа;
- 3) АЛС однопутного типа;
- 4) многозначные АЛС.

4. Что принимают локомотивные устройства АЛСН?

- а) тяговый ток;
- б) сигнальный ток;
- в) кодовые последовательности.

5. С какой целью производится размещение аппаратуры АБТЦ на двух станциях?

- а) для экономии устройств защиты и согласования;
- б) для экономии аппаратуры ТРЦ;

_

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- в) для экономии расхода кабеля;
- г) для улучшения шунтового эффекта ТРЦ.

6. АЛС точечного типа применяется на:

- 1) участках, оборудованных автоблокировкой;
- 2) участках, оборудованных полуавтоблокировкой;
- 3) участках, где движение поездов осуществляется только по показаниям локомотивных светофоров;
- 4) участках, не оборудованных путевой блокировкой.

ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативно-технических документов, регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики

Обучающийся знает:

основы построения СИРДП на микроэлектронной элементной базе, основы построения безопасных микроэлектронных устройств СИРДП.

Типовые вопросы (тестовые задания)

1. В нормальном режиме путевое реле (при непрерывном питании) или его повторитель (при импульсом питании):

- а) работает в импульсном режиме;
- б) постоянно включено;
- в) постоянно выключено;
- г) может быть как включено, так и выключено в зависимости от сопротивления поездного шунта.
- 2. Коэффициент чувствительности должен быть:
- а) больше 1;
- б) меньше 1;
- в) равно 1;
- г) больше или равно 1.
- 3. Укажите тип реле, применяемого в рельсовой цепи постоянного тока:
- а) АНВШ;
- б) ПЛЗ;
- в) АНШ;
- г) ИВГ.
- 4. Какая несущая частота используется в ТРЦ-3 ?:
- a) 25 Гц;
- б) 325 Гц;
- в) 580 Гц;
- г) 5555 Гц.

5. Укажите назначение путевых генераторов ГПЗ-8,9,11 и ГПЗ-11, 14, 15?

- а) формирование амплитудно-моделированных сигналов питания рельсовый цепей;
- б) прием сигналов из рельсовых цепей;
- в) формирование частотно-моделированных сигналов питания рельсовых цепей.
- г) защищают путевые приемники от помех.
- 6. Укажите тип путевого реле тональной рельсовой цепи?
- а) АНВШ;
- б) ДСШ;
- в) ИВГ;
- г) НМВШ.

7. Какая ситуация является опасным отказом в рельсовой цепи?

- а) занятость рельсовой цепи при отсутствии поезда;
- б) контроль свободной рельсовой цепи при ее фактической занятости;
- в) занятость рельсовой цепи при освобождении поездом;
- г) занятость рельсовой цепи при нахождении на ней поезда.

8. Выберите контрольный режим работы рельсовой цепи (РЦ)?

- а) РЦ свободна, путевое реле включено, рельсовая линия исправна;
- б) РЦ занята, путевое реле выключено, рельсовая линия исправна;
- в) РЦ свободна, путевое реле включено, по рельсовым нитям передаются кодовые сигналы;
- г) РЦ свободна, путевое реле выключено, рельсовые нити неисправны.
- 9. Какие виды автоблокировки не применяются при электрической тяге поездов?
- а) числовая кодовая;
- б) импульсно-проводная;

- в) автоблокировка с тональными рельсовыми цепями;
- г) автоблокировка на базе системы счета осей.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат	
индикатора достижения		
компетенции		
ПК-5.1: Формирует проектные,	Обучающийся умеет:	
технические решения на	производить анализ нормативно-технической документации устройств	
устройства и системы	автоблокировки, выполненных на базе микропроцессорной техники, читать и	
железнодорожной автоматики	анализировать электрические принципиальные схемы обслуживаемого оборудования.	
и телемеханики в соответствии		
с нормативно-технической		
документацией на		
проектирование и типовыми		
техническими решениями		

- 1. Задачи управления движением поездов с целью обеспечения безопасности и требуемой пропускной способности
- 2. Задачи управления движением поездов с целью обеспечения повышения участковой скорости и соблюдения графика движения
- 3. Требования к информационным функциям при решении задачи обеспечения безопасности движения и необходимой пропускной способности участка
- 4. Требования к информационным функциям при решении задачи повышения участковой скорости и задачи снижения задержек поездов в период технологических «окон»
- 5. Требования к информационным функциям при решении задачи обеспечения заданной точности исполнения графика движения, а также требования к управляющим функциям
- ПК-5.1: Формирует проектные, технические решения на устройства и системы железнодорожной автоматики и телемеханики в соответствии с нормативно-технической документацией на проектирование и типовыми техническими решениями

Обучающийся владеет:

навыками по проектированию устройств автоматики и телемеханики с применением современных методов и средств диагностики.

- 1. Единый комплекс управления движением поездов. Интегрированная автоматизированная система управления движением посадов
- 2. Системы диспетчерскою контроля. Автоматические ограждающие системы на переездах
- 3. Классификация систем блокировок. Функциональные схемы систем полуавтоматической блокировки
- 4. Функциональные схемы децентрализованных систем автоблокировки с рельсовыми цепями
- 5. Функциональные схемы централизованных систем автоблокировок. Особенности построения двусторонних систем автоблокировки

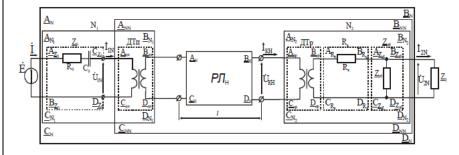
ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативнотехнических документов, регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики

Обучающийся умеет:

производить техническое обслуживание устройств автоблокировки, выполненных на базе микропроцессорной техники, читать и анализировать электрические принципиальные схемы обслуживаемого оборудования.

- 1. Определите мощность, потребляемую занятой рельсовой цепью при заданных параметрах.
- 2. Определите напряжение и ток в начале рельсовой линии при заданных значениях коэффициентов рельсового четырехполюсника, напряжения и тока в конце рельсовой линии.

3. Определите коэффициент режима автоматической локомотивной сигнализации при заданных значениях фактического минимального тока в рельсовой линии при наложении шунта на релейном конце рельсовой линии при самых неблагоприятных условиях и нормативного тока автоматической локомотивной сигнализации, при котором локомотивный приёмник работает устойчиво. После вычисления сделайте вывод о достаточности кодового сигнала для надежного действия локомотивного приемника.


ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативнотехнических документов, регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики

Обучающийся владеет:

навыками по техническому обслуживанию и ремонту устройств автоматики и телемеханики с применением современных методов и средств диагностики, по совершенствованию методов технического обслуживания и повышению надежности устройств автоматики и телемеханики.

- 1. Определить численные значения матрицы $[A]^0_N$ при длине рельсовой линии 2,6 км, $f_{\rm cr}=50$ Гц с использованием математических пакетов (программного обеспечения).
- 2. Определить численные значения матрицы $[A]^0_S$ при длине распределенного участка с шунтом $l_{\rm m}=1,5$ км, $f_{\rm cr}=25$ Γ ц с использованием математических пакетов (программного обеспечения).
- 3. Определить матрицу передаточного сопротивления рельсовой цепи в шунтовом режиме в соответствии со схемой с использованием математических пакетов (программного обеспечения):

$$Z_{no}^{S} = \frac{U_{2S}}{I_{1S}}.$$

Задание на выполнение курсовой работы

Выбор исходных данных производится после выдачи задания руководителем курсовой работы, которое определяет характеристику участка железной дороги, тип автоблокировки, длину и сопротивление изоляции РЛ.

Задание содержит:

- 1. Характеристику участка железной дороги:
 - количество путей на перегоне;
 - направление движения;
 - род тяги.
- 2. Тип автоблокировки.
- 3. Длину рельсовой цепи l_{pn} :
 - минимальную І_{ра тіп};
 - максимальную l_{рл мах};
 - шаг дискретизации Δl_{pa} .
- 4. Удельное сопротивление изоляции РЛ Z_н:
 - минимальное Z_{н тіп};
 - максимальное Z_{н тах};
 - шаг дискретизации $\Delta Z_{\rm H}$.

По исходным данным необходимо выбрать одну из широко применяемых на железных дорогах России РЦ, и после согласования с руководителем курсовой работы произвести анализ и синтез ее с целью определения оптимальных параметров РЛ и элементов РЦ (по заданию руководителя курсовой работы).

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1) Понятие и способы интервального регулирования движения поездов
- 2) Сигнализация и сигнальные устройства
- 3) Методы и средства определения положения поездов на участке железной дороги
- 4) Классификация и назначение систем ИРДП
- 5) Требования Правил технической эксплуатации железных дорог Российской Федерации к системам ИРДП и принципы их реализации
 - 6) Принципы построения и работы систем ИРДП, элементная база
- 7) Каналы передачи информации в системах ИРДП (физические воздушные и кабельные линии, рельсовые линии; оптические; радиоканалы; спутниковая навигация)
 - 8) Сигнализация в системах ИРДП
- 9) Проводная автоблокировка: принципы построения, путевой план перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 10) Числовая кодовая автоблокировка (АБ-ЧК): принципы построения, путевой план перегона, кабельная сеть перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 11) Автоблокировка с тональными рельсовыми цепями и централизованным размещением аппаратуры (АБТЦ): принципы построения, путевой план перегона, кабельная сеть перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 12) Системы автоблокировки с децентрализованным размещением аппаратуры (АБ-ЧКЕ, АБ-Е, КЭБ)
- 13) Системы автоблокировки с централизованным размещением аппаратуры (АБТЦ-М, АБТЦ-ЕМ))
- 14) Принципы построения схем смены направления движения на однопутных и двухпутных участках
 - 15) Четырехпроводная схема смены направления с защитой от опасных отказов
- 16) Понятие и способы авторегулировки. Принципы и методы контроля скорости движения поезда. Принципы и методы контроля бдительности машиниста
 - 17) Автоматическая локомотивная сигнализация непрерывного типа (АЛСН)
- 18) Автоматическая локомотивная сигнализация как самостоятельное средство сигнализации (АЛСО)
 - 19) Система автоматического управления торможением поезда (САУТ-ЦМ)
 - 20) Комплексные локомотивные устройства безопасности (КЛУБ)

Перечень вопросов для подготовки к защите курсовой работы

- 1) Назначение и функциональная схема СИРДП.
- 2) Развитие СИРДП.
- 3) Функции РЦ и их структурные схемы РЦ.
- 4) Классификация РЦ. Основные виды РЦ.
- 5) Элементы рельсовых линий как проводников сигналов РЦ.
- 6) Первичные и вторичные параметры РЦ.
- 7) Рабочие параметры РЦ.
- 8) Уравнения рельсовых линий.
- 9) Общая и основная схемы замещения РЦ.
- 10) Режимы работы РЦ. Требования к режимам работы РЦ.
- 11) Нормальный режим работы РЦ.
- 12) Шунтовой режим работы РЦ.
- 13) Контрольный режим работы РЦ.
- 14) Режима АЛС работы РЦ.
- 15) Особенности расчета режима короткого замыкания РЦ.
- 16) Особенности РЦ тональной частоты.

- 17) Функциональные схемы систем автоблокировки (АБ): числовая кодовая АБ, АБ-ЧКЕ, АБ-УЕ, АБТ, АБТс, АБТЦ, АБТЦМ.
 - 18) Особенности функционирования АБ на двухпутном участке.
 - 19) Особенности функционирования АБ на однопутном участке.
 - 20) Сигналы в каналах АЛС

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по курсовой работе

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

« Неудовлетворительно/не зачтено » — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.		