Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 22.10.2025 18:00:49

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Методы и средства измерений и контроля

(наименование дисциплины (модуля)

Направление подготовки / специальность

27.03.01 Стандартизация и метрология

(код и наименование)

Направленность (профиль)/специализация

«Метрология и метрологическое обеспечение»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (5 семестр), курсовая работа (6 семестр), экзамен (6 семестр)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-4: Способен участвовать в разработке планов, программ и методик выполнения измерений, испытаний и контроля,	ПК-4.1: Применяет аттестованные средства измерения и методики выполнения измерений
инструкций по эксплуатации оборудования и других тестовых инструментов, входящих в состав конструкторской и технологической документации	ПК-4.2: Использует методы прогнозирования, оптимизации, унификации при разработке нормативной документации, правила разработки и оформления методик выполнения измерений

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 5)	Оценочные материалы (семестр б)	
ПК-4.1: Применяет аттестованные средства измерения и методики выполнения измерений	Обучающийся знает: номенклатуру измеряемых и контролируемых параметров продукции и технологических процессов	Tect (№ 1 - № 5)	Вопросы (№1-10)	
	Обучающийся умеет: определять номенклатуру измеряемых и контролируемых параметров продукции и технологических процессов	Задания (№ 1 - 2)	Задания (№ 3)	
	Обучающийся владеет: навыками по определению номенклатуры измеряемых и контролируемых параметров продукции и технологических процессов.	Задачи (№ 7 - № 8)	Задачи (№ 9)	
ПК-4.2: Использует методы прогнозирования, оптимизации, унификации при разработке нормативной документации, правила разработки и оформления методик выполнения измерений	Обучающийся знает: методы расчета деталей и узлов разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.	Тест (№6-№10)	Вопросы (№10-20)	
	Обучающийся умеет: рассчитывать детали и узлы разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.	Задания (№4-5)	Задания (№6)	
	Обучающийся владеет: способностью принимать участие в работах по расчету деталей и узлов разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими	Задачи (№10-№11)	Задачи (№12)	

		заданиями и использованием стандартных средств автоматизации проектирования.		
--	--	--	--	--

- Промежуточная аттестация (зачет) проводится в одной из следующих форм:
 1) Ответ на билет, состоящий из тестовых вопросов, задач и практических заданий;
 2) Выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и н	аименование	Образовательный результат			
индикатора	достижения				
компетенции					
ПК-4.1:	Применяет	Обучающийся знает: номенклатуру измеряемых и контролируемых			
аттестованные средства		параметров продукции и технологических процессов			
измерения и	методики				
выполнения измерений					
	•				

Примеры вопросов:

1. К основным критериям качества измерений относят:

- а) точность, достоверность, сходимость;
- б) воспроизводимость, размер погрешности измерений, правильность;
- в) справедливы оба пункта а и б.
- 2. Относительная погрешность выражается формулой:

- 3. Определите термин «точность»:
- а) критерий качества измерений, характеризующий степень доверия к результатам измерений;
- б) критерий качества измерений, отражающий близость к нулю систематической погрешности;
- в) критерий качества измерений, отражающий близость их результатов к истинному действительному значению.
- 4. Процесс сравнения реальной физической величины с мерой и установление истинного значения физической величины это:
- а) испытание; б) измерение; в) контроль.
- 5. По метрологическому признаку средства измерения (СИ) подразделяются на:
- а) меры, измерительные приборы, измерительные преобразователи;
- б) эталоны, образцовые средства измерений, рабочие средства измерений;
- в) акустические, физико-химические, оптические.

Код и наименование	Образовательный результат			
индикатора достижения				
компетенции				
ПК-4.2: Использует методы	Обучающийся знает: методы расчета деталей и узлов			
прогнозирования,	разрабатываемых средств измерений, испытаний и контроля в			
оптимизации, унификации	соответствии с техническими заданиями и использованием			
при разработке	стандартных средств автоматизации проектирования.			

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

нормативной,	документац	ции,
правила ра	зработки	И
оформления	мето	дик
выполнения и	змерений	

Примеры вопросов:

6. Что такое минимальное изменение измеряемой величины, которое может быть отмечено данным средством измерений:

- а) порог чувствительности; б) чувствительность прибора;
- в) класс точности?

7. Что такое «поверка средств измерений»:

- а) совокупность операций, выполняемых только органами Государственной метрологической службы;
- б) совокупность операций, выполняемых только аккредитованными службами юридических лиц;
- в) справедливы оба пункта а и б?

8. Основными видами поверки являются:

- а) первичная, вторичная, последующая;
- б) первичная, периодическая, внеочередная;
- в) первичная, аттестационная, окончательная.

9. Сферами Государственного метрологического контроля и надзора являются:

- а) здравоохранение; б) ветеринария;
- в) учебно-образовательная деятельность.

10. ГОСТ Р – это:

- а) руководящий документ; б) методические указания;
- в) национальный стандарт.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

ПК-4.1: Применяет аттестованные	Обучающийся умеет: определять номенклатуру измеряемых и
средства измерения и методики выполнения измерений	контролируемых параметров продукции и технологических процессов

Примеры задач:

- 1. Сравнить реальные характеристик объекта с контрольными нормативами с учетом внешних воздействующих факторов.
- 2. Охарактеризовать особенности испытаний на надежность.
- 3. Классифицировать особенности испытаний на безопасность.

ПК-4.2: Использует методы прогнозирования, оптимизации, унификации при разработке нормативной документации, правила разработки и оформления методик выполнения измерений

Обучающийся умеет: рассчитывать детали и узлы разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.

Примеры задач:

- 4. Определить и классифицировать средств измерений электрических величин.
- 5. Классифицировать измерительные преобразователи.
- 6. Подробно описать средства измерения вибрации и шума

ПК-4.1: Применяет аттестованные средства измерения и методики выполнения измерений

Обучающийся владеет: навыками по определению номенклатуры измеряемых и контролируемых параметров продукции и технологических процессов.

Примеры заданий:

- 7. Измерить частотно-временные параметры электрических сигналов.
- 8. Рассчитать предельную погрешность измерения данного параметра $\sigma_{\text{изм}} = (0,2 \dots 0,3)T$

Величину коэффициента выбирают в зависимости от важности объекта, в который входит данная деталь. Чем ответственнее объект, тем меньше численное значение коэффициента.

рассчитать значение предельно-допустимой погрешности СИ, которое может быть использовано для контроля качества изготовления заданного размера детали $\pm \Delta_{\lim CU} \leq (0.6....0.8) \cdot \sigma_{_{U3M}}$.

Величину коэффициента выбирают в зависимости от квалификации человека, который будет использовать СИ. Чем выше квалификация, тембольшую погрешность может иметь СИ.

9.Выбрать средства измерения для контроля параметров детали (штангенциркуль, микрометр, рычажная скоба, индикаторный нутромер) и указать их метрологические характеристики (предел измерения, цену деленияи предельную погрешность СИ).

ПК-4.2: Использует методы прогнозирования, оптимизации, унификации при разработке нормативной документации, правила разработки и оформления методик выполнения измерений

Обучающийся владеет: способностью принимать участие в работах по расчету деталей и узлов разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.

Примеры заданий:

- 10. Объяснить табличную методику выбора универсальных измерительных средств, которая рекомендуется для серийного, крупносерийного и массового производства.
- 11. По чертежу детали (см. рис.) определить заданные контролируемые размеры согласно своего варианта.

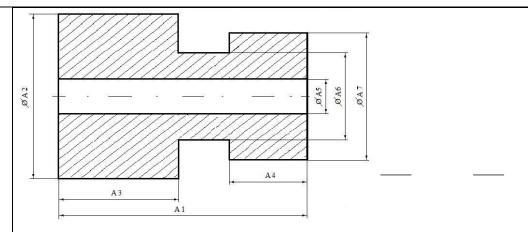


Рис. Чертеж детали Варианты заданий

Номер	Контролируемые параметры							
образ- цов	детали							
	A_1	A_2	A_3	A_4	A_5	A_6	A ₇	
1	$130 \pm \frac{\text{IT15}}{2}$	40a11	$30 \pm \frac{\text{IT}14}{2}$	50± IT14 2	18,5H9	32h12	34h8	
2	$130 \pm \frac{\text{IT15}}{2}$	39,5h9	$30 \pm \frac{\text{IT}14}{2}$	$50 \pm \frac{\text{IT}14}{2}$	18,5D10	32h12	34h8	
3	$140 \pm \frac{\text{IT15}}{2}$	42h9	$35 \pm \frac{\text{IT}14}{2}$	45± IT14 2	20,5D10	34h12	36h8	
4	$140 \pm \frac{\text{IT15}}{2}$	42h9	$35 \pm \frac{\text{IT}14}{2}$	45± IT14 2	20,5D10	34h12	36h8	
5	$150 \pm \frac{\text{IT15}}{2}$	43,5h9	$40 \pm \frac{\text{IT}14}{2}$	$40 \pm \frac{\text{IT}14}{2}$	22,5D10	36h12	38u8	
6	$150 \pm \frac{\text{IT15}}{2}$	43,5h9	$40 \pm \frac{\text{IT}14}{2}$	$40,5\pm \frac{1714}{2}$	20,5Js10	36js10	38u8	
7	$160 \pm \frac{\text{IT15}}{2}$	46u8	$45 \pm \frac{\text{IT}14}{2}$	$35\pm\frac{1114}{2}$	24,5Js10	38h12	40h8	
8	$160 \pm \frac{\text{IT15}}{2}$	46u8	$45 \pm \frac{\text{IT}14}{2}$	$35 \pm \frac{\text{IT}14}{2}$	24,5Js10	38h12	40h8	
9	$170 \pm \frac{\text{IT15}}{2}$	46u8	$50 \pm \frac{\text{IT}14}{2}$	$30 \pm \frac{\text{IT}14}{2}$	26,5D10	40h12	42u8	

Заданные

контролируемые размеры представлены в следующем виде:

$$130 \pm \frac{IT15}{}$$

 $130 \pm \frac{IT15}{2}$; 40a11; 20,5D10, где:

130, 40 и 20,5 – номинальный (теоретический) размер данного параметра детали,

IT, a и D — характеристика вида параметра детали (линейный размер, внутренний или внешний диаметры соответственно), 15, 11 и 10 - квалитет - характеристика класса точности изготовления данного размера.

12.Определить номинальный размер, квалитет, предельные отклонения элемента детали, используя ΓΟCT 25347-81,

ГОСТ 25346-81.

Для чего:

в соответствии с буквенной частью условного обозначения допустимых предельных отклонений (ІТ, a, h или D, H) определить ГОСТ, из которого следует выбирать численные значения предельных отклонений:

- IT линейные размеры ГОСТ 8.051-81
- a, h внешние диаметры ГОСТ 25347-81
- D, H внутренние диаметры ГОСТ 25346- 81.

по номеру квалитета в соответствующем ГОСТе выбрать таблицу для определения предельных

обозначений придельных отклонений (отклонений, по условному номинальному размеру (130, 40 и 20,5) из таблицы выбрать численные значения допустимых предельных отклонений на изготовление заданного размера (максимальное - верхнее число и минимальное – нижнее, в мкм).

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

по дисциплине «Методы и средства измерений и контроля»

- 1. Общие сведения об измерениях, испытаниях и контроле.
- 2. Измерение физических величин основа всех направлений человеческой деятельности.
- 3. Роль измерений, испытаний и контроля в повышении качества продукции, услуг и производства.
- 4. Структурная схема измерительного преобразователя (ИП).
- 5. Классификация измерительных преобразователей.
- 6. Измерительные цепи генераторных преобразователей.
- 7. Измерительные цепи параметрических преобразователей.
- 8. Определение и классификация средств измерений электрических величин.
- 9. Сигналы измерительной информации.
- 10. Измерение параметров элементов электрических цепей (L, C, R). Метод вольтметра-амперметра.
- 11. Измерение параметров элементов электрических цепей (L, C, R). Метод непосредственной оценки.
- 12. Автоматизация измерений.
- 13. Электронные омметры.
- 14. Измерительные мосты постоянного тока.
- 15. Измерительные мосты переменного тока.
- 16. Резонансный метод измерения.
- 17. Метод дискретного счета. Цифровые приборы.
- 18. Измерение частоты электромагнитных колебаний. Общие сведения.
- 19. Измерительные генераторы.
- 20. Измерение частоты методом сравнения.
- 21. Резонансный частотомер.
- 22. Электронно-счетный частотомер.
- 23. Электронно-лучевой осциллограф.
- 24. Анализ спектра сигналов.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Зачет по дисциплине проводится в устной форме. Билеты должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно быть определено с учетом количества студентов в экзаменуемых группах плюс пять билетов дополнительно. К зачету допускаются обучающиеся, выполнившие следующие требования: наличие письменного отчета по практическим занятиям. На подготовку к ответу по билету обучающемуся дается 35 минут.

Билет состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведении тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный, так и ошибочный ответ.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных ситуаций, где могут быть использованы электронные схемы. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) — получают студенты с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 89 - 70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69 - 40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧИ

Оценку «зачтено» — получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «незачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических машин и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических машин, правильно выполнившие все необходимые измерения и дополнительные расчеты при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «незачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических машин, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических машин, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЗАЧЕТУ

Оценку «отлично» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 95 % от общего объёма заданных вопросов.

Оценку «хорошо» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 75 % от общего объёма заданных вопросов.

Оценку «удовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 50 % от общего объёма заданных вопросов.

Оценку «неудовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – менее 50 % от общего объёма заданных вопросов.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

Методы и средства измерения и контроля

Учебным планом предусмотрена курсовая работа. Курсовая работа выполняется по теме — «Анализ измерительных устройств автоматических информационных систем». Целью курсовой работы является формирование у студентов теоретических и практических знаний и навыков по устройству, расчету и выбору элементов измерительных автоматизированных систем.

Для расчета курсовой работы используются следующие исходные данные: тип двигателя — СЛ-121; напряжение питания 110 В; номинальная мощность 5 Вт; номинальное возбуждение 0,07 А; номинальный ток якоря 0,21 А; номинальная скорость вращения 4800 об/мин; номинальный вращающий момент 1,4 Н·см; момент инерции якоря 0,5 Н·см; пусковой момент 4,2 Н·см; статический момент трения 1030 Н·см; сопротивление обмотки якоря 130 Ом; индуктивность обмотки якоря 89 мГн.

В программу расчета входит: привести принципиальную электромеханическую схему ПСС и ее основных элементов, дать краткое описание; привести передаточные функции звеньев и рассчитать их параметры; привести общую передаточную функцию ПСС; привести анализ динамики ПСС.

Вопросы

- 1. Назначение приборной следящей системы ПСС.
- 2. Назовите основные элементы ПСС.
- 3. Как строится структурная схема ПСС?
- 4. Что включает в себя статический анализ ПСС?
- 5. Как определить передаточную функцию звеньев ПСС?
- 6. Как определить общую передаточную функцию всей ПСС?
- 7. Зачем используется отрицательная обратная связь в ПСС?
- 8. Что включает в себя анализ динамики работы ПСС?
- 9. Зачем определяется переходный режим ПСП?
- 10. Чем определяется быстродействие ПСС?
- 11. Как определяется переходный режим ПСС?
- 12. Зачем ПСС исследуется на устойчивость?
- 13. Чем определяется устойчивость ПСС?
- 14. Что представляют критерии устойчивости?
- 15. Когда используется критерий устойчивости Рауса Гурвица?
- 16. Когда используется критерий устойчивости Михайлова?
- 17. Когда используется критерий устойчивости Найквиста?
- 18. Как определяется АЧХ и ФЧХ ПСС?
- 19. Чем определяется помехозащищенность прохождения сигнала в ПСС?