Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 29.10.2025 10:12:08 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основы теории надежности

(наименование дисциплины(модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

Электроснабжение железных дорог

(наименование)

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен - 5 семестр (ОФО), 3 курс (ЗФО).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4. Способен выполнять проектирование и расчёт транспортных объектов в соответствии с требованиями нормативных документов	ОПК-4.3. Использует методы расчета показателей надежности работы оборудования при проектировании и эксплуатации технических систем

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование	Результаты обучения по дисциплине	Оценочные				
индикатора		материалы				
достижения						
компетенции						
ОПК-4.3. Использует	Обучающийся знает: методы расчета надежности систем	Тест (№ 1- №13)				
методы расчета	электроснабжения железнодорожного транспорта, при разработке	Вопросы				
показателей	технологических процессов производства, эксплуатации, технического	(№ 1- №74)				
надежности работы	обслуживания и ремонта систем обеспечения движения поездов,					
оборудования при	показатели надежности работы оборудования, виды технических					
проектировании и	отказов и состояний оборудования					
эксплуатации	Обучающийся умеет: выполнить расчет показателей надежности	Задания (№ 1- №4)				
технических систем	современных систем электроснабжения железнодорожного транспорта					
	при разработке технологических процессов производства,					
	эксплуатации, технического обслуживания и ремонта систем					
	обеспечения движения поездов, осуществить экспертизу технической					
	документации в части показателей надежности работы оборудования, видов технических отказов и состояний оборудования					
	Обучающийся владеет: методологией расчета надежности систем	Задания				
	электроснабжения железнодорожного транспорта при разработке	(№5- №8)				
	технологических процессов производства, эксплуатации, технического					
	методами расчета показателей надежности работы оборудования					

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и	наименование индикатора дос	тижения компетенции	Образовательный результат				
ЭПК-4.3 работы	. Использует методы расчета оборудования при проектировких систем	показателей надежности	оксплуатации обучающийся знает: методы расчета надежности с электроснабжения железнодорожного транспорта, разработке технологических процессов производ эксплуатации, технического обслуживания и рем систем обеспечения движения поездов, показы надежности работы оборудования, виды техниче				
№п.п.	Вопрос	Вариант ответа на вопрос	отказов и состояний оборудования				
1.	Дать определение надежности объекта	1. Надежность — свойство объекта сохранять во времени в установленных пределах значения своих характеристик (параметров) при заданных режимах и условиях эксплуатации, технического обслуживания, ремонта, хранения и транспортировки.					
		 Надежность – свойство объекта сохранять в течении эксплуатации в установленных пределах значения своих характеристик (параметров) при заданных режимах и условиях эксплуатации, технического обслуживания, ремонта, хранения и транспортировки. Надежность – свойство объекта сохранять в установленных пределах значения своих характеристик (параметров) при заданных режимах и условиях эксплуатации, технического обслуживания, ремонта, хранения и транспортировки. 					
2.	Дать определение безотказности объекта	1. Безотказность работоспособное состо наработки.	 свойство объекта при эксплуатации сохранят яние в течение некоторого времени или некоторо 				
		 Безотказность – свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. Безотказность – свойство объекта непрерывно сохранять работоспособное состояние в течение эксплуатации. 					
3.	Дать определение долговечности объекта	состояние при установле 2. Долговечность - сво состояние до наступлентехнического обслужива 3. Долговечность - сво	ойство объекта непрерывно сохранять работоспособно енной системе технического обслуживания. ойство объекта непрерывно сохранять работоспособно ния предельного состояния при установленной систем ния и ремонта. ойство объекта непрерывно сохранять работоспособно ния предельного состояния при установленной систем				
4.	Дать определение сохраняемости объекта	технического обслужива 1. Сохраняемость — сво параметров, характериз функции, в течение хран 2. Сохраняемость — сво параметров, характериз функции, в течение хран 3. Сохраняемость — сво параметров, характериз характериз характериз характериз технического параметров, характериз	ния.				
5.	Дать определение ремонтопригодности объекта	1. Ремонтопригодн приспособленности к состояния путем техниче 2. Ремонтопригодн	юсть – свойство объекта, заключающееся поддержанию и восстановлению работоспособног еского обслуживания и ремонта.				

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

		состояния путем ремонта.
		3. Ремонтопригодность – свойство объекта, заключающееся в приспособленности к ремонту.
6.	Что такое коэффициент готовности?	1. Коэффициентом готовности Кг называется отношение среднего времени работы между отказами То к сумме среднего времени работы между отказами Т и среднего времени восстановления Тв. 2. Коэффициентом готовности Кг называется отношение времени работы между отказами То к сумме среднего времени работы между отказами Т и среднего времени восстановления Тв. 3. Коэффициентом готовности Кг называется отношение времени работы между отказами То к сумме времени работы между отказами То к сумме времени работы между отказами Т и среднего времени восстановления Тв.
7.	Что такое функция готовности?	Функцией готовности Кг(t) называется вероятность того, что восстанавливаемая система функционирует в момент времени t. Функцией готовности Кг(t) называется вероятность того, что восстанавливаемая система работоспособна в момент времени t. Функцией готовности Кг(t) называется вероятность того, что восстанавливаемая система исправна в момент времени t.
8.	Что такое коэффициент простоя?	 Коэффициентом простоя Кп называется отношение среднего времени простоя Тв к сумме среднего времени работы между отказами То и среднего времени восстановления Тв. Коэффициентом простоя Кп называется отношение среднего времени восстановления Тв к сумме среднего времени работы между отказами То и среднего времени восстановления Тв. Коэффициентом простоя Кп называется отношение среднего времени восстановления Тв. Коэффициентом простоя Кп называется отношение среднего времени восстановления Тв к сумме среднего времени простоя между отказами То и среднего времени восстановления Тв.
9.	Что такое функция простоя?	1. Функцией простоя Кп(t) называется вероятность того, что невосстанавливаемая система не исправна в момент времени t. 2. Функцией простоя Кп(t) называется вероятность того, что восстанавливаемая система не исправна в момент времени t. 3. Функцией простоя Кп(t) называется вероятность того, что невосстанавливаемая система исправна в момент времени t.
10.	Сколько параметров в экспоненциальном законе распределения?	 Экспоненциальный закон распределения является однопараметрическим – имеет один параметр, при помощи которого можно описать изменение всех остальных интересующих нас величин. Экспоненциальный закон распределения является двухпараметрическим – имеет два параметр, при помощи которых можно описать изменение всех остальных интересующих нас величин. Экспоненциальный закон распределения является трехпараметрическим – имеет три параметра, при помощи которых можно описать изменение всех остальных интересующих нас величин.
11.	Сколько и какие параметры в нормальном законе распределения?	 Нормальный закон распределения является двухпараметрическим – имеет два параметра, при помощи которых можно описать изменение всех остальных интересующих нас величин. Этими параметрами являются интенсивность отказов λ и среднее квадратическое отклонение σ времени безотказной работы элемента. Нормальный закон распределения является двухпараметрическим – имеет два параметра, при помощи которых можно описать изменение всех остальных интересующих нас величин. Этими параметрами являются математическое ожидание m и интенсивность отказов λ работы элемента. Нормальный закон распределения является двухпараметрическим – имеет два параметра, при помощи которых можно описать изменение всех остальных интересующих нас величин. Этими параметрами являются математическое ожидание m и среднее квадратическое отклонение σ времени безотказной работы элемента.
12.	В каких случаях применяется усеченное нормальное распределение?	 В случае, когда случайная величина изменяется в диапазоне -∞ ≤ t ≤ ∞, применяется усеченное нормальное распределение. В случае, когда случайная величина изменяется в диапазоне -∞ ≤ t ≤ 0, применяется усеченное нормальное распределение. В случае, когда случайная величина изменяется в диапазоне 0 ≤ t ≤ ∞, применяется усеченное нормальное распределение.
13.	Сколько и какие параметры в логарифмически нормальном законе распределения?	 Логарифмически нормальное распределение является двухпараметрическим и зависит от двух параметров σ и s. Логарифмически нормальное распределение является двухпараметрическим и зависит от двух параметров μ и s. Логарифмически нормальное распределение является двухпараметрическим и зависит от двух параметров μ и σ.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат				
индикатора достижения					
компетенции					
ОПК-4.3. Использует методы	Обучающийся умеет: выполнить расчет показателей надежности современных систем				
расчета показателей	электроснабжения железнодорожного транспорта при разработке технологических				
надежности работы	процессов производства, эксплуатации, технического обслуживания и ремонта систем				
оборудования при	обеспечения движения поездов, осуществить экспертизу технической документации в				
проектировании и	части показателей надежности работы оборудования, видов технических отказов и				
эксплуатации технических	состояний оборудования				
систем					

- 1. На заданном полигоне и заданной наработке в течение трех лет рассчитать интенсивность отказов эталонной контактной сети, тяговой подстанции и линий электропередач.
- 2. Рассчитать коэффициент готовности эталонной контактной сети, тяговой подстанции и линий электропередач и для каждого из отказов технических средств на заданном участке определить продолжительность простоя за период наблюдения. В соответствии с предложенным алгоритмом и коэффициентом готовности спланировать дальнейшее повышение уровня надежности на объектах.
- 3. Определить допустимую интенсивность отказов эталонной контактной сети, при этом среднее значение времени до восстановления принять в соответствии с системой КАСАНТ.
- 4. Определить допустимую интенсивность отказов эталонной тяговой подстанции, при этом среднее значение времени до восстановления принять в соответствии с системой КАСАНТ.

	A								
ОПК-4.3. Использует методы			Обучающийся владеет: методологией расчета надежности систем электроснабжения						
	расчета	показателей	железнодорожного транспорта при разработке технологических процессов						
	надежности	работы	производства, эксплуатации, технического обслуживания и ремонта систем						
	оборудования	при	обеспечения движения поездов, методами расчета показателей надежности работы						
	проектировании	И	оборудования						
	эксплуатации	технических							
	систем								

- 5. Зная данные по отказам технических средств из системы КАСАНТ выполнить расчет проектной и фактической интенсивности отказов эталонной контактной сети, где коэффициент частичного работоспособного состояния принимать равным 0,33.
- 6. Зная данные по отказам технических средств из системы КАСАНТ выполнить расчет проектной и фактической интенсивности отказов эталонной тяговой подстанции, где коэффициент частичного работоспособного состояния принимать равным 0,25.
- 7. На основании исходных данных по отказам технических средств из системы КАСАНТ выполнить расчет проектного, допустимого и фактического коэффициентов простоя контактной сети. Определить сценарий для принятия решений в зависимости от соотношения фактического, проектного и допустимого коэффициентов простоя.
- 8. На основании исходных данных по отказам технических средств из системы КАСАНТ выполнить расчет проектного, допустимого и фактического коэффициентов простоя тяговой подстанции. Определить сценарий для принятия решений в зависимости от соотношения фактического, проектного и допустимого коэффициентов простоя.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Понятия надежности, безотказности, долговечности, сохраняемости и ремонтопригодности.
- 2. Понятия исправности и работоспособности, предельного состояния и повреждения.
- 3. Понятия отказа, внезапного отказа, постепенного отказа, независимого, полного и частичного отказа, перемежающегося отказа и избыточности.
- 4. Понятие системы и элемента, восстанавливаемого и невосстанавливаемого объекта.
- 5. Параметрический и непараметрический подходы в расчетах надежности.
- 6. Особенности структурного и функционального расчетов надежности.
- 7. Три этапа формирования надежности объекта, особенности надежности устройств электроснабжения
- 8. Вероятность безотказной работы, понятие плотности распределения наработки до отказа, понятия интенсивности отказов, понятие средней наработки до отказа.
- 9. Модель «нагрузка и прочность случайные величины», понятие коэффициента запаса и способы его снижения.
- 10. Понятия функций математического ожидания и дисперсии случайных процессов, понятие и свойства функции усталости.
- 11. Модель «параметр поле допуска», графическое изображение и допущения.
- 12. Аналитическая запись модели диагностирования.
- 13. Физическое толкование закономерности появления отказов невосстанавливаемых объектов.
- 14. Зависимость интенсивности отказов от наработки.

- 15. Оценка функций показателей надежности невосстанавливаемых объектов.
- 16. Учет статистического влияния процесса нагрузки в параметрических моделях.
- 17. Виды восстанавливаемых объектов, их описание и примеры.
- 18. Понятие параметра потока отказов, условие постоянства параметра потока отказов.
- 19. Понятие математического ожидания наработки на отказ объекта с нулевым временем восстановления.
- 20. Показатели надежности объекта с конечным временем восстановления.
- 21. Понятие плотности распределения наработки между очередными восстановлениями объекта.
- 22. Понятие параметра потока восстановлений.
- 23. Понятие функции готовности и оперативной готовности.
- 24. Понятие коэффициентов готовности и оперативной готовности.
- 25. Понятия математического ожидания времени безотказной работы, времени восстановления и времени между очередными событиями потока.
- 26. Оценка показателей надежности восстанавливаемых объектов.
- 27. Понятия сходства и различия, достоинства и недостатки расчетов структурной и функциональной надежности.
- 28. Понятие структурной схемы надежности.
- 29. Понятие последовательного соединения по надежности для восстанавливаемых и невосстанавливаемых объектов.
- 30. Области изменения вероятности безотказной работы системы с последовательным соединением элементов.
- 31. Понятие параллельного соединения по надежности и вычисление функций надежности и ненадежности.
- 32. Вычисление математического ожидания наработки до отказа и интенсивности отказов при параллельным по надежности соединением элементов.
- 33. Области изменения вероятности безотказной работы системы с параллельным по надежности соединением элементов.
- 34. Понятие преобразования «звезда треугольник» и область его применения.
- 35. Понятие преобразования «треугольник звезда» и область его применения.
- 36. Расчет надежности системы из двух элементов с использованием графов состояний и переходов.
- 37. Непараметрический расчет надежности протяженных объектов.
- 38. Параметрический расчет надежности протяженных объектов.
- 39. Структурное и функциональное резервирование, достоинства, недостатки и области применения.
- 40. Пассивное и активное резервирование, области применения.
- 41. Изменение условий нагружения элементов при пассивном резервировании и его влияние на надежность.
- 42. Активное резервирование, достоинства и недостатки.
- 43. Структурная схема общего резервирования. Вероятности отказа и безотказной работы при общем резервировании.
- 44. Плотность распределения наработки до отказа и интенсивность отказов при общем резервировании.
- 45. Математическое ожидание наработки до отказа и функция резервирования при общем резервировании.
- 46. Структурная схема раздельного резервирования. Вероятности отказа и безотказной работы при раздельном резервировании.
- 47. Плотность распределения наработки до отказа и интенсивность отказов при раздельном резервировании.
- 48. Математическое ожидание наработки до отказа и функция резервирования при раздельном резервировании.
- 49. Особенности расчета активного резервирования в устройствах электроснабжения с учетом надежности переключений.
- 50. Особенности пассивного резервирования с перераспределением нагрузки.
- 51. Пассивное резервирование в гирлянде из двух изоляторов постоянного тока.
- 52. Закономерности изменения интенсивности отказов при пассивном резервировании с перераспределением нагрузки.
- 53. Пассивное резервирование в гирлянде из трех изоляторов переменного тока.
- 54. Ненагруженный резерв, особенности и допущения.
- 55. Расчет вероятности безотказной работы дублированной системы при ненагруженном резерве.
- 56. Расчет интенсивности отказов дублированной системы при ненагруженном резерве.
- 57. Особенности скользящего резервирования в устройствах электроснабжения.
- 58. Расчет показателей надежности при скользящем резервировании.
- 59. Особенности резервирования по нагрузке в устройствах электроснабжения.
- 60. Расчет показателей надежности при резервировании по нагрузке. Модель дублированной восстанавливаемой системы.
- 61. Вычисление показателей готовности дублируемой восстанавливаемой системы.
- 62. Расчет функциональной надежности.
- 63. Модели функциональной надежности. Частные задачи и показатели функциональной надежности устройств электроснабжения.
- 64. Порядок расчетов показателей надежности при функциональном резервировании.
- 65. Анализ эксплуатационной надежности устройств электроснабжения.
- 66. Влияние надежности устройств на работу железнодорожного транспорта.
- 67. Показатели эффективности функционирования системы электроснабжения.
- 68. Риск отказов оборудования контактной сети.
- 69. Эксплуатационная надежность объектов системы электроснабжения.
- 70. Причины отказов оборудования систем электроснабжения. Повреждение, старение и износ объектов и систем.
- 71. Методы повышения эксплуатационной надежности систем электроснабжения.
- 72. Классификация стратегий технического обслуживания, критерии их оптимизации.
- 73. Непараметрические стратегии технического обслуживания.
- 74. Параметрические стратегии технического обслуживания.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) — обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«**Неудовлетворительно**» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ

отвечать оценки.	на	дополнительные	вопросы,	знание	которых	необходимо	для	получения	положительной