Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 11:28:37 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение 1 к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Математическое моделирование систем и процессов

(наименование дисциплины (модуля)

Специальность

23.05.01 Наземные транспортно-технологические средства

(код и наименование)

Специализация

«Подъемно-транспортные, строительные, дорожные средства и оборудование»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен (4 семестр / 2 курс очная форма обучения)

2. Перечень компетенций, формируемых в процессе освоения дисциплины

Таблица 1.1

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-1 Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей	ОПК-1.4 Применяет цифровые инструменты для математического анализа и моделирования в процессе решения инженерных задач в профессиональной деятельности

3. Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Таблица 1.2

Код и наименование	Результаты обучения по дисциплине	Оценочные
	т сзультаты обучения по дисциплине	
индикатора достижения		материалы
компетенции		(семестр_ <u>4</u>)
ОПК-1.4 Применяет	Обучающийся знает: методы математического	Вопросы (№1 -
цифровые инструменты	моделирования, методы теоретического и	№5)
для математического	экспериментального исследования; численные	
анализа и моделирования в	методы исследования математических моделей;	
процессе решения	методы моделирования сложных систем и процессов	
инженерных задач в	в профессиональной деятельности.	
профессиональной	Обучающийся умеет: применять методы	Задания (№1 -
деятельности	математического моделирования, методы	№3)
	теоретического и экспериментального исследования;	
	использовать численные методы исследования	
	математических моделей; выполнять математическое	
	моделирование процессов и сложных систем в	
	профессиональной деятельности.	
	Обучающийся владеет: способностью применять	Задания (№4 -
	методы математического моделирования, методы	№6)
	теоретического и экспериментального исследования;	
	способностью численные методы исследования	
	математических моделей; способностью выполнять	
	математическое моделирование процессов и сложных	
	систем в профессиональной деятельности.	

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение тестовых заданий в ЭИОС университета. тестовых заданий в ЭИОС университета.

3. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

3.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый знаниевый образовательный результат

Таблица 1.3

Код и наименование компетенции	Образовательный результат
ОПК-1.4: Применяет цифровые инструменты для математического анализа и моделирования в процессе решения инженерных задач в профессиональной деятельности	Обучающийся знает: методы математического моделирования, методы теоретического и экспериментального исследования; численные методы исследования математических моделей; методы моделирования сложных систем и процессов в профессиональной деятельности.

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/).

Примеры тестовых вопросов (Экзамен):

- 1) Приближенным числом a называют число, незначительно отличающиеся от
- а) точного А
- b) неточного A
- с) среднего А
- d) точного не известного
- е) приблизительного А
- 2) a называется приближенным значением A по недостатку, если
- a) a < A
- b) a > A
- c) a = A
- d) $a \ge A$
- e) $a \le A$
- 3) a называется приближенным значением числа A по избытку, если
- a) a > A
- b) a < A
- c) a = A
- d) $a \ge A$
- e) $a \le A$
- 4) Под ошибкой или погрешностью Δa приближенного числа a обычно понимается разность между соответствующим точным числом A и данным приближением, т.е.
- a) $\Delta a = A a$
- b) $\Delta a = A + a$
- c) $\Delta a = A/a$
- d) $a = \Delta a A$
- e) $A = \Delta a + A$
- 5) Если ошибка положительна А>, то
- a) $\Delta a > 0$
- b) $\Delta a < 0$
- c) $\Delta a = 0$

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

3.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый навыковый образовательный результат

Таблица 1.4

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-1.4 Применяет цифровые	Обучающийся умеет: применять методы математического
инструменты для математического	моделирования, методы теоретического и экспериментального
анализа и моделирования в процессе	исследования; использовать численные методы исследования
решения инженерных задач в	математических моделей; выполнять математическое
профессиональной деятельности	моделирование процессов и сложных систем в
	профессиональной деятельности.
	Обучающийся владеет: способностью применять методы
	математического моделирования, методы теоретического и
	экспериментального исследования; способностью численные
	методы исследования математических моделей; способностью
	выполнять математическое моделирование процессов и
	сложных систем в профессиональной деятельности.

Примеры комплексных заданий для оценки сформированности компетенции в части «уметь» и «владеть»

Задание 1. Найти решение системы линейных алгебраических уравнений одним из численных методов с помощью одной из программ инженерного анализ

Задание 2. Определить экстремум функции заданного вида численным методом с помощью одной из программ инженерного анализа

Задание 3. Найти корни уравнения заданного вида численным методом с помощью одной из программ инженерного анализа

Примеры комплексных заданий для оценки сформированности компетенции в части «владеть»

- **Задание 4.** Составить алгоритм решения трансцендентного уравнения методом касательных, продемонстрировать действие алгоритма на примере решения уравнения заданного вида с помощью одной из программ инженерного анализ
- **Задание 5.** Составить алгоритм нахождения экстремума методом бисекции, продемонстрировать действие алгоритма на примере решения уравнения заданного вида с помощью одной из программ инженерного анализ
- **Задание 6.** Составить алгоритм решения системы линейных алгебраических уравнений методом Гаусса, продемонстрировать действие алгоритма на примере решения системы линейных алгебраических уравнений с помощью одной из программ инженерного анализ

3.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Понятие о системном подходе при моделировании сложных систем
- 2. Классический подход при моделировании сложных систем

- 3. Классификация методов моделирования сложных систем.
- 4. Понятие о материальном моделировании технических объектов
- 5. Понятие об имитационном моделировании сложных систем.
- 6. Понятие об аналоговом моделировании физических процессов
- 7. Понятие об аналитическом решении математических моделей
- 8. Нахождение определенного интеграла численными методами.
- 9. Решение уравнений численными методами (метод итераций, метод бисекции)
- 10. Решение уравнений численными методами (метод касательных)
- 11. Решение уравнений численными методами (метод хорд)
- 12. Нахождение экстремума функции численными методами (метод Ньютона, метод бисекции)
- 13. Метод Симпсона при численном интегрировании
- 14. Метод трапеций при численном интегрировании
- 15. Метод прямоугольников при численном интегрировании
- 16. Решение уравнений методом бисекции (деления отрезка пополам)
- 17. Нахождение экстремума функции нескольких переменных методом координатного спуска
- 18. Понятие об оптимизационных задачах.
- 19. Методы нахождения экстремума.
- 20. Назначение теории планирования эксперимента
- 21. Основные понятия теории планирования эксперимента.
- 22. Построение оптимального плана эксперимента.
- 23. Назначение функции регрессии в теории планирования эксперимента.
- 24. Решение системы линейных алгебраических уравнений методом Якоби.
- 25. Решение системы линейных алгебраических уравнений методом Гаусса.
- 26. Анализ размерностей в уравнениях математической физики.
- 27. Анализ погрешности численных методов исследования математических моделей.
- 28. Привести примеры математических задач в профессиональной деятельности ремонта и технического обслуживания подъемно- транспортных, строительных, дорожных средств и оборудования
- 29. Привести примеры оптимизационных задач в профессиональной деятельности ремонта и технического обслуживания подъемно- транспортных, строительных, дорожных средств и оборудования
- 30. Линейные регрессионные модели. Понятие о линейном программировании

4. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 75% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -74-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух

недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы. *Виды ошибок*:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.