Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:54:34

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Микропроцессорные и микроэлектронные системы станционной автоматики

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

Автоматика и телемеханика на железнодорожном транспорте

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен в 9 семестре/ЗФО 5 курс
Курсовая работа в 9 семестре/ЗФО 5 курс

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
	ПК-5.1
документацию на устройства и системы железнодорожной автоматики и телемеханики	ПК-5.2

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 9)
ПК-5.1 Формирует проектные, технические решения на устройства и системы железнодорожной автоматики и телемеханики в соответствии с нормативно-технической документацией на проектирование и типовыми техническими решениями	Обучающийся знает: устройство, принципы действия, технические характеристики и схемные решения микропроцессорных и микроэлектронных станционных систем автоматики;	Тестовые задания (№1 - №10) Вопросы для подготовки к курсовому проекту (№1-№20)
	Обучающийся умеет: применять знания устройств, принципов действия, технических характеристик. Обучающийся владеет: навыками анализа работы устройств и определения характера и места повреждения аппаратуры, использования технической документации;	Задания (№1 - №3) Задания (№1 - №3)
ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативно-технических документов,	Обучающийся знает: основы построения и проектирования микропроцессорных и микроэлектронных систем станционной автоматики;	Тестовые задания (№10 - №20)
регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики	Обучающийся умеет: применять знания схемных решений при проектировании и обслуживании микропроцессорных и микроэлектронных станционных систем автоматики	Задания (№4-№6)
	Обучающийся владеет: навыками проектирования и обслуживания микропроцессорных и микроэлектронных систем станционной автоматики	Задания (№4-№6)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета

Промежуточная аттестация (курсовой проект) проводится в форме защиты курсового проекта на основе собеседования.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-5.1 Формирует проектные, технические решения на устройства и системы железнодорожной автоматики и телемеханики в соответствии с нормативно-технической документацией на проектирование и типовыми техническими решениями	Обучающийся знает: устройство, принципы действия, технические характеристики и схемные решения микропроцессорных и микроэлектронных станционных систем автоматики;
ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативно-технических документов, регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики	Обучающийся знает: основы построения и проектирования микропроцессорных и микроэлектронных систем станционной автоматики

1. Иерархическая структура системы ЭЦ-МПК представлена:

- а) 1 уровнем;
- б) 2 уровнями;
- в) 3 уровнями;
- г) 4 уровнями.
- 2. Во сколько раз вероятность отказа микропроцессорной системы электрической централизации ниже по сравнению с существующими релейными системами
- a) 10;
- б) 100;
- в) 1000;
- г) микропроцессорные системы менее надежны в эксплуатации.
- 3. Какой интерфейс передачи данных используется в системе МПЦ-МПК?
- a) RS-232;
- б) RS-422;
- в) RS-485.

4. К оборудованию МПЦ-МПК не относятся:

- а) автоматизированные рабочие места персонала;
- б) микропроцессорное и электротехническое оборудование, размещенное в специализированных шкафах;
- в) релейное и электротехническое оборудование, размещенное на релейных стативах;
- г) система контроля удаленного доступа;
- д) напольное оборудование СЦБ.
- 5. Какое число маршрутов следования отцепов для одного распускаемого состава может сформировать УВК ГАЦ системы ГАЦ МН?
- a) 16;
- б) 32;
- в) 64;
- r) 128.
- 6. В маршрутном режиме при вытяжке маневровой группы вагонов из сортировочного парка на вершину горки и повторном ее роспуске ГАЦ МН обеспечивает:

а) контроль целости рельсовой линии горочных рельсовых цепей; б) защиту стрелок от взреза при маневровых передвижениях между роспусками; в) контроль целостности нитей выключенных ламп маневровых светофоров. 7. Сколько объектных контроллеров может быть подключено к одному концентратору в системе Ebilock 950?
a) 4;
6) 8;
в) 16;
r) 32.
8. Один комплект процессорного модуля централизации (ПМЦ) МПЦ Ebilock- 950 может
управлять:
а) 100 логическими объектами;
б) 150 логическими объектами;
в) 200 логическими объектами;
г) 250 логическими объектами.
9. Максимальное количество петель связи на один ПМЦ системы Ebilock- 950:
a) 8;
6) 10;
в) 12;
г) 14.
10. Максимальное количество объектных контроллеров в каждой петле связи ПМЦ системы
Ebilock- 950:
a) 8;
6) 16;
в) 32;
г) 48.
11. От какого минимального числа независимых источников питания осуществляется питание
устройств МПЦ системы Ebilock- 950?
a) 1;
6) 2;
B) 3;
r) 4.
12. Источник питания типа PSU51 системы Ebilock- 950 предназначен для:
а) питания стрелочных приводов;
б) питания светофорных ламп и обмоток интерфейсных реле;
в) питания логики объектных контролеров и охлаждающих вентиляторных полок.
13. Источник питания типа PSU61 системы Ebilock- 950 предназначен для:
а) питания стрелочных приводов;
б) питания светофорных ламп и обмоток интерфейсных реле;
в) питания логики объектных контролеров и охлаждающих вентиляторных полок.
14. Источник питания типа PSU71 системы Ebilock- 950 предназначен для:
а) питания стрелочных приводов;
б) питания светофорных ламп и обмоток интерфейсных реле;
в) питания логики объектных контролеров и охлаждающих вентиляторных полок.
15. Источник питания типа PSU71 системы Ebilock- 950 формирует напряжение:
а) 24 В постоянного тока;
а) 24 В переменного тока;
а) 220 В постоянного тока;
а) 220 В переменного тока.
16. Процессор имеет 14 регистров общего назначения. Сколько разрядов в поле команды
необходимые для адресации к ним.
а) 7; б) 4; в) 3; г) 8
17. Процессор имеет 16 разрядов шины адреса и 8 разрядов шины данных. Какой объем
памяти, адресуется.
а) 64Kx8; б) 8Kx8; в) 2Kx4; г) 8Kx4
18. Сколько адресных входов имеет микросхема памяти 64Кх1.

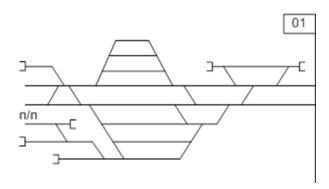
a) 8; δ) 11; в) 13; г) 16+ 19. Какой режим микропроцессорных систем используется для передачи больших массивов информации между памятью И внешним устройством. а)ожидания; б)прерывания; в)прямого доступа памяти; К г) прямой передачи данных. 20. Каково назначение контроллера прямого памяти доступа а)ускорить обмен между памятью внешним устройством; И б)срочное обслуживание устройства; внешнего в)выработка задержек; временных г) организация обмена в последовательном коде.

2.2 Типовые задания для оценки навыкового образовательного результата

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ПК-5.1 Формирует проектные, технические решения на устройства и системы железнодорожной автоматики и телемеханики в соответствии с нормативно-технической документацией на проектирование и типовыми техническими решениями	Обучающийся умеет: применять знания устройств, принципов действия, технических характеристик.
ПК-5.2: Проводит анализ и определяет номенклатуру технологической документации для разработки местных нормативнотехнических документов, регламентирующих техническое обслуживание и ремонт устройств и систем железнодорожной автоматики и телемеханики	Обучающийся умеет: применять знания схемных решений при проектировании и обслуживании микропроцессорных и микроэлектронных станционных систем автоматики

- 1. Для автоматизированной сортировочной горки выполнить расчет задаваемого системой КГМ значения скорости выхода V3 отцепа из парковой тормозной позиции (ПТП), , используя исходные фактические данные согласно варианту.
- 2. Назначение таймера/счетчика и принцип формирования им временных интервалов при работе в режиме таймера.
- 3. Построить график, иллюстрирующий изменение скорости движения отцепа вдоль сортировочного пути, используя данные расчета, полученные при выполнении задания по п.
- 4. Указать разрядность двоичных чисел, над которыми АЛУ микроконтроллера выполняет арифметические и логические операции.
- 5. Что такое слово состояния программы, его условное обозначение (мнемоника) и формат слова?
- 6. Какие порты используют микроконтроллера используют для обмена информацией с внешними устройствами?

ПК-5.1 Формирует проектные,	Обучающийся владеет: навыками анализа работы устройств и определения характера и
технические решения на	места повреждения аппаратуры, использования технической документации;
устройства и системы	
железнодорожной автоматики	
и телемеханики в соответствии	
с нормативно-технической	
документацией на	
проектирование и типовыми	


техническими решениями	
ПК-5.2: Проводит анализ и определяет номенклатуру	Обучающийся владеет: навыками проектирования и обслуживания микропроцессорных и микроэлектронных систем станционной
технологической документации для разработки	автоматики
местных нормативно-	
регламентирующих	
техническое обслуживание и ремонт устройств и систем	
железнодорожной автоматики и телемеханики	

- 1. Произвести оценку фактической скорости выхода отцепа Vвых из ПТП при реализации расчетной программы торможения и построить график, иллюстрирующий изменение скорости отцепа при движении по замедлителю парковой тормозной позиции.
- 2. Выполнить расчет программы торможения отцепа для автоматической отработки заданного значения скорости выхода отцепа V3 из ПТП. Результаты расчета представить в графическом виде.
- 3. Определить число концентраторов необходимых для подключения 23 объектных контроллеров в системе Ebilock 950.
- 4. Перечислить признаки (флаги), которые формируются внутри микроконтроллера и их назначение.
- 5. Какая память используется для размещения команд программы, ее обозначение и емкость адресного пространства памяти для резидентной памяти и внешней памяти программ.
- 6. Определить фактическую скорость соударения отцепов Vc на путях сортировочного парка или длину "окна" Lo в случае точной реализации системой КГМ заданного значения скорости выхода отцепа V3 из ПТП, используя исходные фактические данные согласно варианту.

Задание на выполнение курсовой работы

Задание на курсовой проект выбираются в методическом указании по двум последним цифрам учебного шифра. Для варианта 01 они следующие:

- 1. Вид тяги Т, тепловозная;
- 2. Длина приемо-отправочных путей 1250 м;
- 3. Расстояние между осями смежных путей -5,3 м;
- Прием на путь − 8.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Причины применения микропроцессорных централизаций на станциях.
- 2. Безопасность систем микропроцессорных централизаций.
- 3. Принципы построения программного обеспечения микропроцессорных централизаций.

- 4. Безопасные структуры МПЦ.
- 5. Передача ответственной информации в микропроцессорных централизациях.
- 6. Современные системы микропроцессорных централизаций.
- 7. Этапы развития системы МПЦ-МПК.
- 8. Эксплуатационно-технические характеристики МПЦ-МПК.
- 9. Функциональная структура системы МПЦ-МПК.
- 10. Техническая реализация МПЦ-МПК.
- 11. Устройства сопряжения с объектами МПЦ-МПК.
- 12. Этапы развития систем Ebilock- 950.
- 13. Эксплуатационно-технические характеристики системы Ebilock- 950.
- 14. Структура системы Ebilock- 950.
- 15. Процессорный модуль централизации системы Ebilock- 950.
- 16. Программное обеспечение системы Ebilock-950.
- 17. Электропитание системы МПЦ Ebilock-950.
- 18. Система МПЦ Ebilock-950 как объект технического обслуживания.
- 19. Микропроцессорная централизации стрелок и светофоров как объект технического обслуживания, ремонта и сопровождения.
 - 20. Система микропроцессорной горочной автоматической централизации (ГАЦ МН).

Перечень вопросов для подготовки к защите курсового проекта

- 1. Общие сведения об электрической централизации
- 2. Основы сигнализации на станциях
- 3. Маршрутизация и осигнализование станций
- 4. Двухниточный план станции
- 5. Станционные рельсовые цепи
- 6. Стрелочные электроприводы
- 7. Аппаратура бесконтактного автоматического контроля стрелки (АБАКС)
- 8. Аппараты управления и контроля
- 9. Режимы работы электрической централизации
- 10. Особенности построения безопасных схем релейной централизации
- 11. Схемы установки поездных и маневровых маршрутов
- 12. Схемы управления стрелочными электроприводами. Общие сведения
- 13. Кабельные сети электрической централизации. Общие сведения
- 14. Проектирование и расчеты кабельных сетей
- 15. Кабельная сеть стрелочных электроприводов
- 16. Кабельные сети рельсовых цепей
- 17. Особенности кабельных сетей в системах МПЦ
- 18. Возможные повреждения в кабельных сетях и монтаже устройств ЭЦ и способы их предупреждения
 - 19. Основные задачи технической диагностики
 - 20. Методы поиска неисправностей устройств СЦБ

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

- «Отлично/зачтено» ставится за работу, выполненную полностью без ошибок и недочетов.
- «**Хорошо**/зачтено» ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.
- «Удовлетворительно/зачтено» ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.
- «**Неудовлетворительно**/**не** зачтено» ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по курсовому проекту

«Отлично» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.