Документ подписан простой электронной подписью Информация о владельце:
ФИО: Гарании Максиу — МИНИСТЕ РСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность в Ректор
Дата подписания: 23.10.2025 09:58:4ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Уникальный програмфедеральное государственное бюджетное образовательное учреждение высшего образования 7708e⁷24.7666a8ce02714.73%d7c78bd4.4400f38 РСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Хладотранспорт и специализированный подвижной состав (наименование дисциплины(модуля) Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог (код и наименование) Направленность (профиль)/специализация Грузовые вагоны (наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: курсовая работа, зачёт, экзамен. Семестр 7: зачет, курсовая работа. Семестр 8: экзамен (для студентов очной формы обучения). Курс 4: зачет, крусовая, экзамен (для студентов заочной формы обучения).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1 Способен определять основные типы и модели железнодорожного подвижного состава, их назначение и особенности применения; определять основные технико-экономические параметры подвижного состава	ПК-1.10: Различает типы и модели, поясняет особенности конструкции специализированных грузовых вагонов, их основных узлов и элементов ПК-1.11: Определяет технико-экономические параметры специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
ПК-1.10: Различает типы и модели, поясняет особенности	Обучающийся знает: основные типы и модели специализированных грузовых вагонов;	
конструкции специализированных грузовых вагонов, их основных узлов и элементов	конструкцию специализированных грузовых вагонов в целом и типичных унифицированных узлов, определяющих условия безопасной эксплуатации вагонов	Вопросы (1-20)
	Обучающийся умеет: определять и классифицировать типы и модели специализированных вагонов; выбирать модели специализированных вагонов для эффективной перевозки разных грузов.	Задание (1-3)
	Обучающийся владеет: способностью анализировать особенности конструкции и навыками назначения специализированных грузовых вагонов разных типов.	Задание (4-7)
ПК-1.11: Определяет технико-	Обучающийся знает: технико-экономические	
экономические параметры	параметры специализированных грузовых	
специализированных грузовых вагонов; проводит	вагонов и холодильного оборудования разной комплектации	Вопросы (1-20)
теплотехнический расчёт	Обучающийся умеет: определять технико-	
изотермических вагонов и	экономические параметры специализированных	
холодильного оборудования с анализом полученных результатов	вагонов; рассчитывать параметры холодильной установки и изотермических вагонов разных типов.	Задание (8-10)
	Обучающийся владеет: навыками методики выбора эффективной модели специализированных вагонов для заданных условий перевозок грузов; навыками оценки теплотехнических качеств кузова изотермического вагона и параметров холодильной среды.	Задание (11-14)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС СамГУПС.

К промежуточной аттестации относятся: курсовая работа. зачет, экзамен,

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат				
достижения компетенции					
ПК-1.10: Различает типы	Обучающийся знает: основные типы и модели				
и модели, поясняет	специализированных грузовых вагонов; конструкцию				
особенности конструкции	специализированных грузовых вагонов в целом и типичных				
специализированных	унифицированных узлов, определяющих условия безопасной				
грузовых вагонов, их	эксплуатации вагонов				
основных узлов и элементов					

Примеры вопросов/заданий

- 1. Какой подвижной состав относится к специализированным изотермическим вагонам?
- 1. грузовой вагон 5-вагонной рефрижераторной секции БМЗ;
- 2. вагон-холодильник 12-вагонной рефрижераторной секции;
- 3. автономный рефрижераторный вагон;
- 4. цистерна-термос
- 2. Модель цистерны для перевозки молока:
- 1. 15-886
- 2. 15-6926
- 3. 15-1209
- 4. 15-1230
- 3. Модель крытого вагона для перевозки живой рыбы:
- 1. 11-1807-1
- 2. 11-9962
- 3. 11-70-38
- 4. 11-280-13
- 4. На каком изотермическом подвижном составе используется рассольная система охлаждения?
- 1. автономный рефрижераторный вагон;
- 2. 5-вагонная рефрижераторная секция БМЗ
- 3. 5-вагонная рефрижераторная секция ZB-5
- 4. 12-вагонная изотермическая секция
- 5. В каком изотермическом вагоне нет холодильной установки?
- 1. автономный рефрижераторный вагон;
- 2. 5-вагонная рефрижераторная секция БМЗ
- 3. 5-вагонная рефрижераторная секция ZB-5

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

4. 12-вагонная изотермическая секция

- 6. Какой изотермический вагон не оборудован холодильной установкой?
- 1. 5-вагонная рефрижераторная секция БМЗ
- 2. автономный рефрижераторный вагон
- 3. 12-вагонная рефрижераторная секция
- 4. вагон-термос.
- 7. Какой из этих вагонов относится к вагонам самосвалам?
- 1. специализированная платформа
- 2. думпкар
- 3. хоппер-дозатор
- 4. вагон-хоппер открытого типа.
- 8. Цистерна модели 15-1408 предназначена для перевозки:
- 1. аммиака
- 2. нефтепродуктов
- 3. сжиженных газов
- 4. хлора.
- 9. Сколько выделяют классов опасности грузов при перевозках в цистернах?
- 1. пять
- 2. девять
- 3. десять
- 4. восемь
- 10. Какая модель цистерны оснащена наружной термоизоляцией?
- 1. 15-1480- цистерна для перевозки серы
- 2. 15-1432 цистерна для ядохимикатов
- 3. 15-897 цистерна для перевозки вязких нефтепродуктов
- 4. 15-1608 цистерна для перевозки уксусной кислоты
- 11. Какая модель цистерн оборудована электроподогревом?
- 5. 15-1532- цистерна для перевозки жидкого пека
- 6. 15-1527 цистерна для перевозки бензола
- 7. 15-1565 цистерна для перевозки сульфанола
- 8. 15-897 цистерна для перевозки вязких нефтепродуктов
- 12. Модель какой цистерны оборудована теневой защитой?
- 1. 15-Ц858-цистерна для перевозки молока
- 2. 15-897 цистерна для перевозки вязких нефтепродуктов
- 3. 15-1432 цистерна для ядохимикатов
- 4. 15-1414 цистерна для перевозки этиловой жидкости
- 13. В каком габарите эксплуатируются транспортеры сочлененного типа?
- 1. 03-BMst
- 2. Тпр
- 3. Тц
- 4. 1-T
- 14. Какого нет типа вагона транспортера?
- 1. колодцевого
- 2. сочлененного
- 3. контейнерного
- 4. сцепного

15. Полувагон какой модели предназначен для перевозки автомобилей? 1. 12-282 2. 12-197-02 3. 12-159 4. 12-132 16. На каком изотермическом подвижном составе используется рассольная система охлаждения? 1. автономный рефрижераторный вагон 2. 5-вагонная рефрижераторная секция БМЗ 3. 5-вагонная рефрижераторная секция ZB-5 4. 12-вагонная изотермическая секция 17.Какая тележка предназначена для эксплуатации в изотермических вагонах? 1. КВЗ-И2 2. 18-100 3. 18-115 4. КВЗ-ЦНИИ 18. Какой угол наклона имеют торцевые стены цементовоза? 1. 55 2. 45 3, 50 4. 60 19. Сколько холодильных машин имеет 12-ти вагонная рефрижераторная секция? 2. 10 3. 12 4. 1 20. Сколько клапанов имеет универсальный сливной прибор? 1. два 2. один 3. четыре 4. два ПК-1.11: Определяет техникознает: Обучающийся технико-экономические экономические параметры параметры специализированных грузовых вагонов и холодильного оборудования разной комплектации специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов Примеры вопросов/заданий 1. Средний коэффициент теплопередачи для грузового вагона 5- вагонной рефрижераторной секции БМЗ составляет: 1. $0.32 \text{ BT/m}^2 \times \text{K}$ 2. $0.032 \text{ BT/m}^2 \times \text{K}$ 3. $3.2 \text{ BT/m}^2 \times \text{K}$ 4. $32 \text{ BT/m}^2 \times \text{K}$ 2. Основной компонент пенополистирола: 1. пена 2. воздух 3. полистирол 4. склеиватель

- 3. Толщина (мм) пенополистирола в теплоизоляции боковой стены изотермического вагона: 1. 65 2. 2 3. 15 4. 5. 5. Какова холодопроизводительность (Вт) установки 5-вагонной реф.секции БМЗ? 1. 20900 2. 2090 3. 209000 4. 209. 6. Работа цикла холодильной машины равна разности работ: 1. компрессора и конденсатора 2. компрессора и испарителя 3. компрессора и детандера 4. испарителя и конденсатора 7. Холодильный коэффициент тем выше, чем: 1. чем меньше работа, затрачиваемая на получение единицы холода 2. чем выше работа, затрачиваемая на получение единицы холода 3. меньше подводимой теплоты к испарителю 8. Что показывает критическая температура на энтальпийной диаграмме: 1. предельную температуру, при которой хладагент не может испаряться 2. предельную температуру, при которой конденсация хладагента невозможна 3. предельную температуру паров хладагента в компрессоре 4. температуру, при которой может быть нарушена герметичность холодильного контура 9. Холодопроизводительность одного 1 кг хладагента это разность энтальпий в: 1. компрессоре и конденсаторе 2. компрессоре и испарителе 3. компрессоре и терморегулирующем вентиле 4. компрессе и ресивере 10. От какого параметра не зависит часовой объем, описываемый поршнем одноцилиндрового компрессора? 1. диаметр цилиндра 2. ход поршня 3. число оборотов компрессора в минуту 4. высота рабочей полости цилиндра 11. Чему равен технический коэффициент тары автономного рефрижераторного вагона при его массе таре 48 т и грузоподъемности 36 т? 1. 0,75 2. 1.33
- 12. У какого специализированного вагона, больше технический коэффициент тары?
- 1. минерал воза;
- 2. зерновоза;

0,25
 12.

- 3. двухъярусной платформы для перевозки автомобилей;
- 4. цементовоза.

13. Чему равен технический коэффициент тары цистерны модели 15-Ц863 при массе таре 23,1 т и грузоподъемности 60 т?
1. 0,385
2. 2,59 3. 0,615
4. 36,9
14. Чему равен технический коэффициент тары вагона для перевозки легковых автомобилей модели 11-1804 при его массе таре 41,2 m и грузоподъемности 25 m?
1. 16,2 2. 1,64
3. 0,6
4. 0,5
15. Чему равен коэффициент загрузки котла цистерны, если полный объем составляет $61,2\mathrm{m}^3$, а полезный объем котла меньше полного на 2% ?
1. 0,02 2. 0,98
3. 1,02
4. 0,2
16. Осевая нагрузка на ось колесной пары (mc) транспортера сцепного типа: 1. 15
2. 23,5
3. 25
4. 10,5
17. Максимальное количество осей у транспортера сочлененного типа: 1. 20
2. 28
3. 32
4. 36
18. Внутренний диаметр (мм) котла типа 62 нефтебензиновых цистерн: 1. 2000
2. 1500
3. 2500
4. 3000
19. Максимальная грузоподьемность (т) вагонов-транспортеров:
1. 250 2. 350
3. 420
4. 700
20. Чему равна длина консоли 4-осного крытого вагона-хоппера, при длине раме и базе вагона - 13,5 м и 10,5 м соответственно?
1. 3 2. 15
2. 1,5 3. 2
4. 2,75

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения компетенции	Образовательный результат
ПК-1.10: Различает типы	Обучающийся умеет: определять и классифицировать типы и
и модели, поясняет особенности	модели специализированных вагонов; выбирать модели специализированных вагонов для эффективной перевозки разных
конструкции специализированных	грузов.
грузовых вагонов, их	
основных узлов и	
элементов	

Примеры заданий

Задание 1

- 1. Определите тип вагонов, приведенных на рисунках.
- 2. Поясните назначение вагонов.
- 3. У какого из этих вагонов в составе поезда выше скорость движения?
- 4. В каком вагоне выгрузка груза обеспечивается за счёт наклона кузова?

б)

- 1. Автономный рефрижераторный вагон (а); вагон-думпкар (б); транспортёр колодцевого типа (в).
- 2. Автономный рефрижераторный вагона с машинным охлаждением предназначен для перевозки скоропортящихся грузов; вагон-думпкар для перевозки и автоматизированной выгрузки сыпучих грузов (угольно-рудных грузов, грунта, песка, щебня и др.)
- 3. Предельно допустима скорость движения у изотермических вагонов составляет 120 км/ч, тогда, как у вагона-думпкара и транспортёра 90 км/ч.
- 4. Автоматизированная выгрузка груза за счёт наклона кузова обеспечивается в вагонедумпкаре.

Задание 2

1. Но номеру вагона определите его тип и осность.

78579880

Ответ

1. Первая цифра в номере определяет его род. 2 – крытый вагон; 4 – платформа; 6 – полувагон; 7 – цистерна;8 – изотермический; 9 – прочие. Второй знак – осность вагона. 0,1 – две оси; 2-7 – четыре оси; 8 – шесть; 9 – много. Номер 73579880 определяет шестиосную цистерну.

Задание 3

Определите тип вагонов, модели которых представлены в ауд. 8306.

б)

Ответ

- а) восьмиосная специализированная цистерна безрамной конструкции мод. 15-1500
- б) восьмиосный специализированный полувагон мод.12-508

ПК-1.10: Различает типы и модели, поясняет особенности конструкции специализированных грузовых вагонов, их основных узлов и элементов

Обучающийся владеет: способностью анализировать особенности конструкции и навыками назначения специализированных грузовых вагонов разных типов.

Примеры заданий

Задание 4

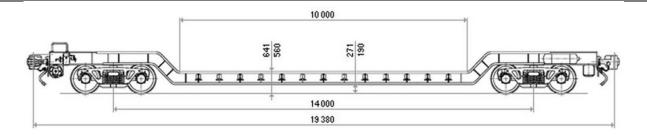
1. По каким признакам можно классифицировать вагон хоппер для перевозки зерна представленный на рисунке.

Ответ

1. По типу кузова (закрытый); по форме крыши (эллиптическая); по форме боковой стены (с вертикальными стойками); по форме торцевой стены (переменного угла наклона); по наличию или отсутствия хребтовой балки (без хребтовой балки); направление выгрузки (на обе стороны пути); расположение бункеров (двухрядное); тип выгрузочного устройства (шибер).

Задание 5

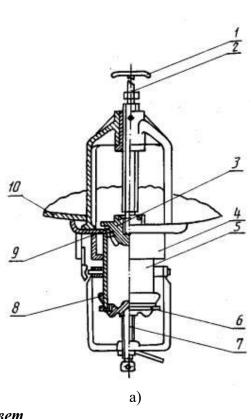
1. По каким признакам на рисунке определяется изотермический вагон?

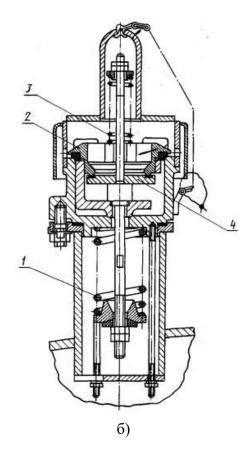


Ответ

Конструкция изотермического вагона определяется формой кузова, наличием дверей в грузовое помещение вагона, в машинное отделение и типом тележки КВЗ-И2 (с листовыми рессорами в центральном проеме) которые подкатываются только под изотермические вагоны.

Задание 6


- 1. Определите, какой вагон изображен на рисунке.
- 2. Какие особенности конструкции вагона определяют область его использования?



- 1. Вагон-транспортер площадочного типа
- 2. Такие транспортёры имеют пониженную погрузочную площадку благодаря изогнутой форме главной балки, что позволяет понизить индекс негабаритности груза и соответственно стоимость перевозки по железной дороге. Поэтому используются для перевозки негабаритных и тяжеловесных грузов

Задание 7

- 1. Поясните, назначение устройств, приведенных на рисунках.
- 2. Какие цистерны оборудуются такими устройствами.
- 3. Обозначьте позиции, представленные на рисунке.

Ответ

- 1. Сливной прибор (a) предназначен для слива груза. Предохранительный впускной клапан (б) для защиты котла от вакуума при охлаждении груза и конденсации его паров.
- 2. Нефтебензиновые и спиртовые цистерны.

Позициями на рисунке обозначены: а) -1 вороток; 2 — винтовая штанга; 3 — клапан; 4 — кожух; 5 — труба сливного прибора; 6 — откидная крышка; 7 — наружный винт; 8 — кольцевой наконечник; 9 — уплотнительное кольцо; 10 — седло; 6) — 1 — пружина клапана максимального давления; 2 — клапан максимального давления; 3 — пружины вакуумного клапана; 4 — вакуумный

ПК-1.11: Определяет технико-экономические

Обучающийся умеет: обучающийся умеет: определять техникоэкономические параметры специализированных вагонов; параметры специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов

рассчитывать параметры холодильной установки и изотермических вагонов разных типов.

Задание 8

Исходные данные. Вагон для перевозки цемента мод. 19-758. Грузоподъемность вагона -72 т, масса тары -19,5 т, длина вагона по осям сцепления составляет -11,92 м. Определите технический коэффициент тары, осевую нагрузку от колёсной пары, погонную нагрузку.

Ответ

Технический коэффициент тары представляет собой отношение массы тары вагона к грузоподъемности и показывает какая часть массы тары приходится на единицу грузоподъемности.

$$k_T = \frac{T}{P}$$

где k_{T} – технический коэффициент тары;

T — тара вагона, кг;

P –грузоподъемность вагона, кг;

$$k_T = \frac{19.5}{72} = 0.27$$

Осевая нагрузка – нагрузка от колесной пары на рельсы,

$$P_0 = \frac{P + T}{n_o}$$

где P_0 – нагрузка от колесной пары на рельсы, кH, (1 кгс = 9,8 H);

P – грузоподъемность вагона, кг;

 n_0 — осность вагона.

$$P_0 = \frac{72 + 19,5}{4} = 22,87 \text{ mc}$$

Погонная нагрузка — нагрузка от вагона на один метр пути, характеризует возможность пропуска вагонов по искусственным сооружениям и определяется делением массы брутто на его длину по осям сцепления автосцепок.

$$P_{\delta p} = \frac{P + T}{L_{o\delta}}$$

где $P_{\delta n}$ – погонная нагрузка, кH/M;

 $L_{o\delta}$ – общая длина вагона, измеренная по осям сцепления автосцепок, м.

$$P_{\delta p} = \frac{72 + 19.5}{11.92} = 7.67 \text{ m/m}$$

Задание 9

Определить количество осей в цистерне по величине осевой нагрузки. Грузоподъемность вагона -120 т, масса тары -48.8 т.

Осевая нагрузка — нагрузка от колесной пары на рельсы. Предельно допустимая осевая нагрузка составляет 25 тс.

$$P_0 = \frac{P + T}{n_o}$$

где P_0 – нагрузка от колесной пары на рельсы, кH, (1 кгс = 9,8 H);

P – грузоподъемность вагона, кг;

 n_0 — осность вагона.

1 вариант
$$P_0 = \frac{120 + 48,5}{4} = 42,12 \ mc$$

42,12 тс более предельно допустимой осевой нагрузки на 17,12 тс

2 вариант
$$P_0 = \frac{120 + 48,5}{6} = 28,08 \text{ mc}$$

28,08 тс более предельной допустимой осевой нагрузки на 3,08 тс

3 вариант
$$P_0 = \frac{120 + 48,5}{8} = 21,06$$
 тс

21,06 тс не превышает предельно допустимой осевой нагрузки

Следовательно, цистерна с грузоподъемность – 120 т и массой тарой – 48,8 т имеет восемь

Задание 10

Определите значение холодильного коэффициента и производительности компрессора холодильной установки автономного вагона с «сэндвич» панелями. Холодопроизводительность одного 1 кг холодильного агента — 115 кДж/кг; теоретическая работа сжатия хладагента компрессора — 30 кдж/кг; холодопроизводительность установки — 21,2 кВт.

Ответ

Холодильный коэффициент цикла:

$$\varepsilon = \frac{q_0}{A_t}$$

где q_0 – удельная холодопроизводительность хладагента, кДж/кг;

 A_{I} – тепловой эквивалент работы сжатия в компрессоре, кДж/кг.

$$\varepsilon = \frac{115}{30} = 3.8$$

Масса хладагента, циркулирующего в холодильной машине, или количество агента, всасываемое, компрессором за час:

$$G = 3600 \times \frac{Q_0}{q_0}$$

где G – масса циркулирующего хладагента, кг/ч;

 Q_0 – часовая холодопроизводительность, кВт.

$$G = 3600 \times \frac{21,2}{115} = 663 \kappa \epsilon / 4$$

ПК-1.11: Определяет технико-экономические параметры специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов

Обучающийся владеет: навыками методики выбора эффективной модели специализированных вагонов для заданных условий перевозок грузов; навыками оценки теплотехнических качеств кузова изотермического вагона и параметров холодильной среды.

Задание 11

По исходным данным, приведенным в таблице 1, определить основные абсолютные и относительны технико-экономические параметры двух моделей крытых вагонов. По результатам расчета выбрать модель вагона, которая характеризуется более высокой экономической эффективностью

Род и модель вагона		Грузоподъёмность, т	Tapa	Объём	Общая длина
			вагона, т	кузова, м ³	вагона, м
Вагон для	19-758	72	19,5	60	11,92
перевозки	19-9862	72,5	21	63	12,02
цемента					

Ответ

1. Расчет технического коэффициента тары для 2-х моделей вагонов-хопперов:

$$k_T = \frac{T}{P}$$

где

 k_T – технический коэффициент тары;

T – тара вагона, кг;

$$k_{TI} = \frac{19,5}{72} = 0,27$$
$$k_{T2} = \frac{21}{72,5} = 0,28$$

2. Расчет удельного объёма кузова для 2-х моделей вагонов-хопперов:

$$V_y = \frac{V}{P}$$

где $V_{y}-\,$ удельный объём кузова, м $^{3}/_{\mathrm{T}}.$

V – объема кузова, м³.

$$V_{y_I} = \frac{60}{72} = 0.83 \text{ m}^3/\text{m}$$

$$V_{y_2} = \frac{63}{72.5} = 0.86 \text{ m}^3/\text{m}$$

3. Расчет осевой нагрузки для 2-х моделей вагонов-хопперов:

$$P_0 = \frac{P + T}{n_o}$$

где P_0 – нагрузка от колесной пары на рельсы, тс;

P – грузоподъемность вагона, кг;

 n_0 — осность вагона.

$$P_{01} = \frac{72 + 19,5}{4} = 22,87 \text{ mc}$$

$$P_{02} = \frac{72,5 + 21}{4} = 23,37 \text{ mc}$$

4. Расчет погонной нагрузки для 2-х моделей вагонов-хопперов:

$$P_{\delta p} = \frac{P + T}{L_{o\delta}}$$

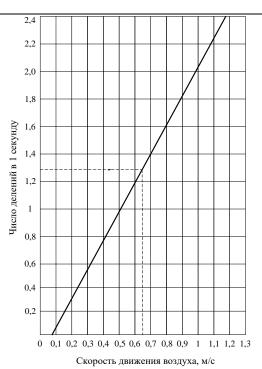
где $P_{\delta p}$ – погонная нагрузка, кH/M;

 L_{ob} – общая длина вагона, измеренная по осям сцепления автосцепок, м.

$$P_{\delta p1} = \frac{72 + 19,5}{11,92} = 7,67 \text{ m/m}$$

$$P_{\delta p2} = \frac{72,5 + 21}{12.02} = 7,67 \text{ m/m}$$

Результаты расчётов сводятся в таблицу.


Род и модель вагона		Технический коэф. тары	Удельный объем кузова, м ³ /т	Осевая нагрузка тс	Погонная нагрузка т/м	Выбор модели
Вагон для	19-758	0,27↓	0,83↓	22,87	7,67	√
перевозки	19-9862	0,28	0,86	23,371	7,771	
цемента						

Более высокой эффективностью характеризуется вагон-хоппер модели 19-758, т.к. он имеет лучшее соотношение тары к грузоподъемности и более рациональное использование полезного объёма кузова.

Задание 12

Определите скорость движения воздуха в грузовом помещении изотермического вагона при помощи показаний циферблатов крыльчатого анемометра и тарированного графика.

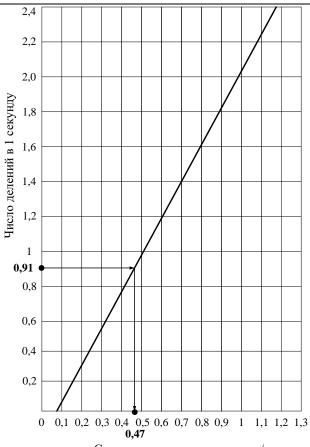
Показания циферблатов крыльчатого анемометра					Время			
	начальное			замера,				
единицы	сотни	тысячи	единицы	единицы сотни тысячи				
5	5	2	60	(0)				

Тарированный график для определения скорости движения воздуха крыльчатым анемометром

Техника замера скорости движения воздуха крыльчатым анемометром, происходит так. В измеряемом воздушном потоке анемометр устанавливают вертикально. На трех циферблатах анемометра по показаниям стрелок фиксируют цифровые значения. Прибор располагают навстречу воздушному потоку. Включают в работу на 1-2 мин. Выключают прибор, вновь записывают показания трех шкал и рассчитывают скорость вращения крыльчатки (количество делений шкалы за секунду – A):

$$A = \frac{N_2 + N_I}{t}$$

где


 $N_{\scriptscriptstyle I}$ – показания шкал прибора до измерения;

 N_2 – показания шкал прибора после измерения;

t — продолжительность измерения в секундах.

Полученное число делений в 1 сек находят на вертикальной оси графика, (у каждого анемометра ест свой индивидуальный график, который прилагается к анемометру) приданного прибору, соединяют эточку с диагональю графика, опускают перпендикуляр на ось абсцисс графика и определяют искому скорость движения воздуха.

$$A = \frac{60,0408 - 5,0502}{60} = 0,91$$

Скорость движения воздуха, м/с

Скорость движения воздуха в грузовом помещении изотермического вагона по заданным показаниям крыльчатого анемометра составила 0,47 м/с

2.3 Типовые задания для оценки курсовой работы

Задание 13

По исходным данным, приведенным в таблице, определить средний коэффициент теплопередачи ограждающей конструкции для двух вариантов. По результатам расчёта выбрать кузов вагона обладающего лучшими теплотехническими свойствами.

Исходные данные для расчёта среднего коэффициента теплопередачи

Элемент ограждения	Фактический коэффициент теплопередачи Вт/(м ² ×K)	Площадь элемента ограждения, м ²				
	k_i	$\overline{F_i}$				
	Вариант 1					
Пол	0,23	47,1				
Боковая стена	0,11	38,46				
Торцевая стена	0,28	7,35				
Крыша	0,17	53,69				
	Вариант 2					

Пол	0,33	57,66
Боковая стена	0,41	52,08
Торцевая стена	0,29	8,68
Крыша	0,27	65,73

Средний коэффициент теплопередачи кузова изотермического вагона для двух вариантов:

$$k_c = \frac{\sum_{i=1}^{n} k_i F_i}{\sum_{i=1}^{n} F_i}$$

где k_c — средний коэффициент теплопередачи кузова вагона, $\mathrm{Br/(m^2\times K)};$

n — количество элементов ограждения;

 F_i – площади наружных поверхностей элементов ограждения, м².

$$k_{cI} = \frac{\sum_{0.23 \times 47,1} + 0.11 \times 38,46 + 0.11 \times 38,46 + 0.28 \times 7,35 + 0.28 \times 7,35 + 0.17 \times 53,69}{47,1 + 38,46 + 7,35 + 53,69} = \frac{32,23}{146,6} = 0,002 \text{ Bt/(M}^2 \times \text{K)}$$

$$k_{c2} = \frac{\sum 0.33 \times 57,66 + 0.41 \times 52,08 + 0.41 \times 52,08 + 0.29 \times 8,68 + 0.29 \times 8,68 + 0.27 \times 65,73}{57,66 + 52,08 + 52,08 + 52,08 + 8,68 + 8,68 + 65,73} = \frac{84,4}{245} = 0,34 \text{ BT/(M}^2 \times \text{K)}$$

Первый вариант теплоограждающей констукции имеет лучшие характеристики т.к. его средний коэффициент теплопередачи имеет меньшее значение, что обеспечивается более выгодными теплотехническими и размерными свойствами теплоизоляции.

Задание 14

По суммарной величине теплопритоков выбрать установленную мощность холодильной установки.

Теплопритоки в грузовое помещение вагона, Вт						
Q1 Q2 Q3 Q4 Q5 Q6						
7236						

Ответ

В грузовое помещение изотермического вагона поступает тепло от различных источников. Величину суммарного теплопритока рассчитывают по следующей формуле:

$$\sum Q = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6,$$

где Q_1 — теплоприток через ограждения кузова, кДж;

 Q_2 — теплоприток за счёт биохимического тепла продуктов, кДж;

 Q_3 — теплоприток за счёт инфильтрации воздуха, кДж;

 Q_4 – количество тепла, вносимого наружным воздухом, при вентиляции, кДж;

 $Q_5\,$ — теплоприток за счёт солнечной радиации, кДж;

 $Q_6\,-\,$ прочие теплопритоки (при открывании дверей вагона, при работе людей и др.), кДж.

 $Q = 7236 + 120 + 3000 + 1278 + 2300 + 1800 = 15734Bm = 15,73 \kappa Bm$

Холодопроизводительность штатных установок изотермических вагонов

	Холодильная установка					
	одноступенчатая	двухступенчатая				
Показатель	5-вагонная	12-вагонная секция		APB		
	секция БМЗ				II	
		I ступень	II ступень	І ступень	ступень	
Холодопроизводительность, Вт	20900	55000		930	00	

По суммарной величине теплопритоков 15,73 кВт выбирается одноступенчатая холодильная машина, которая устанавливается на 5-вагонной секции БМЗ.

2.4 Перечень вопросов для подготовки обучающихся к промежуточной аттестации Перечень вопросов по зачету (7 семестр):

ПК-1.10: Различает типы и модели, поясняет особенности конструкции специализированных грузовых вагонов, их основных узлов и элементов

- 1. Представление о хладотранспорте и его классификация
- 2. Задачи хладотранспорта и его виды
- 3. Классификация и общее устройство изотермических контейнеров
- 4. Виды скоропортящихся грузов, перевозимых ж.д. хладотранспортом
- 5. Режимы перевозок скоропортящихся грузов ж.д. хладотранспортом
- 6. Выбор типа изотермического подвижного состава
- 7. Документальное оформление перевозок грузов в изотермических вагонах
- 8. Холодильные склады для хранения и перегрузки грузов на ж.д. транспорт
- 9. Основные направления развития изотермического подвижного состава
- 10. Теооретический рабочий процесс компрессора
- 11. Классификация холодильных машин
- 12. Конструктивные особенности рефрижераторного подвижного состава
- 13. Основные понятия и определения автоматизации холодильных машин
- 14. Конструктивные особенности вагонов-термосов
- 15. Классификация способов охлаждения
- 16. Типы компрессоров холодильных машин
- 17. Назначение и устройство теплообменников и переохладителей

- 18. Конструкция, принцип работы терморегулирующего вентиля
- 19. Теоретические основы машинного охлаждения скоропортящихся грузов
- 20. Экипировка изотермического подвижного состава
- 21. Теплообменные аппараты холодильных установок
- 22. Типы и конструкции конденсаторов холодильных машин
- 23. Конструктивные особенности винтовых и турбовинтовых компрессоров
- 24. Конструктивные особенности рефрижераторной секции ZB-5 и 5-БМЗ
- 25. Конструктивные особенности автономного рефрижераторного вагона
- 26. Устройство и работа паровой компрессионной холодильной машины
- 27. Комплектация двенадцати вагонной рефрижераторной секции
- 28. Основные конструкции фреоновых компрессоров
- 29. Изоляционные материалы кузова изотермических вагонов
- 30. Особенности конструкции вагонов-ледников
- 31. Особенности рассольной системы охлаждения изотермического вагона
- 32. Устройство кузова изотермического вагона
- 33. Техническое обслуживание и экипировка изотермических вагонов
- 34. Конструктивные особенности вагонов-термосов
- 35. Средства механизации при перевозки скоропортящихся грузов
- 36. Особенности подготовки изотермических вагонов к перевозкам ПК-1.11: Определяет технико-экономические параметры специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов
- 37. Измерительные параметры холодильной среды и грузов
- 38. Способы контроля и учёта температурного режима в вагоне
- 39. Способы и средства определения утечек хладагентов
- 40. Параметры, характеризующие работу холодильной машины
- 41. Автоматическое регулирование и заполнения испарителя хладагентом
- 42. Методика расчёта скорости движения воздуха в грузовом вагоне с помощью анемометра
- 43. Тепловой расчет холодильной машины
- 44. Объемные потери действительного компрессора
- 45. Виды теплопритоков и их расчёт
- 46. Определение коэффициента теплопередачи ограждения кузова
- 47. Расчет теплоприток в грузовое помещение изотермических контейнеров
- 48. Подбор холодильного оборудования
- 49. Методика построения холодильного цикла холодильной машины
- 50. Рабочие коэффициенты компрессионной машины

Перечень вопросов к экзамену (8 семестр):

ПК-1.10: Различает типы и модели, поясняет особенности конструкции специализированных грузовых вагонов, их основных узлов и элементов

- 1. Назначение и классификация специализированных грузовых вагонов
- 2. Структура парка специализированных грузовых вагонов на сети ж.д.
- 3. Направления развития специализированных грузовых вагонов
- 4. Габариты подвижного состава спец. грузовых вагонов
- 5. Виды специализированных полувагонов
- 6. Типы и особенности конструкции изотермических вагонов
- 7. Конструктивные особенности спец. полувагонов с глухим кузовом
- 8. Специализированный полувагон для перевозки технологической щепы
- 9. Конструктивные особенности кузова спец. полувагонов
- 10. Специализированный полувагон для перевозки окатышей и агломерата
- 11. Классификация спец. цистерн для перевозки опасных грузов
- 12. Знаки и надписи специализированных грузовых полувагонов
- 13. Окраска и маркировка цистерн для перевозки опасных грузов
- 14. Типовые элементы конструкции специализированных цистерн
- 15. Нефтебензиновые и спиртовые цистерны

- 16. Классификация выгрузочных устройств спец. цистерн
- 17. Особенности конструкции универсального сливного прибора
- 18. Особенности конструкции предохранительного клапана спец. цистерны
- 19. Особенности конструкции цистерн с парообогревательным кожухом
- 20. Особенности конструкции цистерн термоизоляцией
- 21. Особенности конструкции цистерны для вязких нефтепродуктов
- 22. Особенности конструкции цистерн для фенола
- 23. Типовые элементы конструкции цистерн для сжиженных газов
- 24. Выгрузочные устройства цистерн для сжиженных газов
- 25. Основные направления развития специализированных цистерн
- 26. Типовые и сборочные единицы цистерн для порошкообразных грузов
- 27. Основные принципы конструктивного построения вагонов-хопперов
- 28. Габариты подвижного состава вагонов-хопперов.
- 29. Конструктивные особенности вагонов-хопперов для перевозки цемента
- 30. Конструктивные особенности вагонов-хопперов для перевозки зерна
- 31. Особенности конструкции выгрузочных устройств вагонов-хопперов
- 32. Вагоны-цистерны для застывающих и вязких грузов
- 33. Типовые элементы конструкции цистерн для кислот и химических продуктов
- 34. Виды форм кузова саморазгрузающихся грузовых вагонов
- 35. Основные направления развития вагонов-хопперов
- 36. Типы транспортеров и их конструктивные особенности
- 37. Конструктивные особенности транспортеров сочлененного типа
- 38. Типы вагонов самосвалов и основные элементы их конструкции
- 39. Типы спец. вагонов, модернизированных из универсальных
- 40. Спец. вагоны, модернизированные из универсальных крытых вагонов
- 41. Спец. вагоны, модернизированные из универсальных платформ
- 42. Специализированные грузовые вагоны зарубежных конструкций
- 43. Особенности конструкции механизма наклона кузова вагона-самосвала
- 44. Пневматическая система управления разгрузкой вагона-самосвала
- 45. Особенности конструкции рамы вагона-самосвала
- 46. Вагоны-самосвалы с электрогидравлической системой разгрузки
 - ПК-1.11: Определяет технико-экономические параметры специализированных грузовых вагонов; проводит теплотехнический расчёт изотермических вагонов и холодильного оборудования с анализом полученных результатов
- 47. Технические параметры нефтебензиновых и спиртовых цистерн
- 48. Технико-экономические параметры вагонов-самосвалов
- 49. Габаритные размеры вагонов-самосвалов
- 50. Эксплуатационные характеристики специализированных вагонов

3. Методические материалы, определяющие процедуру и критерии оценивания сформированный компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по защите курсовой работы

«Отлично» (5 баллов) — получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты расчета без арифметических ошибок, а также грамотно ответившие на все встречные вопросы преподавателя.

«Хорошо» (4 балла) — получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты расчета без грубых ошибок. При этом при ответах на вопросы преподавателя студент допустил не более одной грубой ошибки или двух негрубых ошибок.

«Удовлетворительно» (3 балла) — получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты расчета. При этом при ответах на вопросы преподавателя студент допустил две-три грубые ошибки или четыре негрубых ошибок.

«Неудовлетворительно» (0 баллов) – ставится за отчет, если число ошибок и недочетов превысило норму для оценки «удовлетворительно».

Критерии формирования оценок по зачету

«Зачтено» – высокий уровень формирования компетенции, обучающийся показывает полное знание программного материала, основной и дополнительной литературы; дает полные ответы на теоретические вопросы; демонстрирует хороший уровень освоения материала и в целом подтверждает освоение компетенций, предусмотренных программой.

«Зачтено» — продвинутый уровень формирования компетенции, обучающийся показывает хорошие знание программного материала, основной и дополнительной литературы; дает ответы на теоретические вопросы, допуская некоторые неточности; демонстрирует хороший уровень освоения материала и в целом подтверждает освоение компетенций, предусмотренных программой.

«Зачтено» – базовый уровень формирования компетенции, обучающийся ориентируется в знание программного материала; дает неполные ответы на теоретические вопросы; допускает неточности, некоторые вопросы ставят его в затруднение; демонстрирует средний уровень освоения материала; в целом обучающийся подтверждает освоение компетенций, предусмотренных программой, хотя и не в полном объеме.

«Не зачтено» – компетенция не сформирована, обучающийся имеет существенные пробелы в знаниях основного учебного материала по дисциплине; не способен, аргументировано и последовательно его излагать, допускает грубые ошибки в ответах, неправильно отвечает на задаваемые вопросы или затрудняется с ответом; не подтверждает освоение компетенций, предусмотренных программой.

«Отличный уровень компетенции» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хороший уровень компетенции» (4 балла) — обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительный уровень компетенции» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительный уровень компетенции» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки

Экспертный лист

оценочных материалов для проведения промежуточной аттестации по дисциплине «Хладотранспорт и специализированный подвижной состав»

по направлению подготовки/специальности

23.05.03 Подвижной состав железных дорог

Грузовыевагоны	
профиль / специализация	

квалификация выпускника

1. Формальное оценивание		
Показатели	Присутствуют	Отсутствуют
Наличие обязательных структурных элементов:		
– титульный лист		

пояснительная записка			
– типовые оценочные материалы			
 методические материалы, определяющие 			
процедуру и критерии оценивания			
Содержат	сельное оцениван	ие	•
Показатели	Соответствует	Соответствует	Не
		частично	соответствует
Соответствие требованиям ФГОС ВО к			
результатам освоения программы			
Соответствие требованиям ОПОП ВО к			
результатам освоения программы			
Ориентация на требования к трудовым			
функциям ПС (при наличии			
утвержденного ПС)			
Соответствует формируемым			
компетенциям, индикаторам достижения			
компетенций			

Заключение: ФОС <u>рекомендуется</u>/ не рекомендуется к внедрению; <u>обеспечивает</u>/ не обеспечивает объективность и достоверность результатов при проведении оценивания результатов обучения; критерии и показатели оценивания компетенций, шкалы оценивания <u>обеспечивают</u>/ не обеспечивают проведение всесторонней оценки результатов обучения.

Эксперт, должность, ученая степень, ученое звание	/ Ф.И.О.
(подпись)	

МΠ