Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 09:58:40 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Техническая диагностика вагонов		
(наименование дисциплины(модуля)	_	
Направление подготовки / специальность		
23.05.03 Подвижной состав железных дорог		
(код и наименование)		
Направленность (профиль)/специализация		
Грузовые вагоны		

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Форма промежуточной аттестации: зачет 7 семестр, зачет с оценкой 8 семестр – очная форма обучения; 5 курс зачет, зачет с оценкой – заочная форма обучения.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1: Способен определять типы, комплектность, конструктивные особенности, технико-экономические параметры и техническое состояние единиц подвижного состава	ПК-1.2: Анализирует конструктивные особенности узлов и деталей, оценивает техническое состояние подвижного состава
ПК-2: Способен планировать работы по техническому обслуживанию и ремонту грузовых вагонов, в том числе в автоматизированной системе	ПК-2.1: Определяет объемы работ при техническом обслуживании и ремонте вагонов по результатам контроля технического состояния и диагностики узлов и элементов
ПК-3: Способен осуществлять выбор эффективных цифровых решений при планировании работ на участке производства	ПК-3.2: Разрабатывает технологические процессы диагностирования и контроля технического состояния грузовых вагонов с применением цифровых технологий

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование	Результаты обучения по дисциплине	Оценочные	
индикатора достижения		материалы	
компетенции			
ПК-1.2: Анализирует	Обучающийся знает: основные задачи и	Вопросы 1-14	
конструктивные	терминологию технической диагностики; методы		
особенности узлов и	неразрушающего контроля, их физическую основу		
деталей, оценивает	и особенности применения при диагностировании		
техническое состояние	узлов вагонов;		
подвижного состава	Обучающийся умеет: выбирать и анализировать	Задания 1-5	
	диагностические параметры; разрабатывать		
	диагностические модели и строить блочно-		
	функциональную декомпозицию объекта		
	диагностирования; определять и анализировать		
	природу дефектов узлов вагонов;		
	Обучающийся владеет: навыками применения	Задания 6-8	
	математического аппарата технической		
	диагностики, использования вероятностных		
	методов при постановке диагноза; навыками		
	организации неразрушающего контроля на		
	предприятиях вагонного хозяйства; опытом выбора		
	методов и средств неразрушающего контроля для		
	диагностирования узлов вагонов;		
ПК-2.1: Определяет	Обучающийся знает: порядок организации	Вопросы 15-33	
объемы работ при	неразрушающего контроля на предприятии;		

техническом	назначение и принципы построения	
обслуживании и ремонте	информационных систем управления и контроля	
вагонов по результатам	подвижного состава; назначение и структуру	
<u> </u>	диагностических комплексов по оценке	
состояния и диагностики	технического состояния грузовых вагонов в	
узлов и элементов	эксплуатации;	D (14
	Обучающийся умеет: определять назначение,	Задания 6-14
	пояснять принцип действия и правила размещения	
	автоматизированных средств контроля	
	технического состояния вагонов в эксплуатации;	
	Обучающийся владеет: навыками применения	Задания 6-14
	нормативных и руководящих документов по	
	неразрушающему контролю и дефектоскопии узлов	
	вагонов; навыками построения и анализа схем	
	информационных потоков от устройств контроля в	
	системе; опытом применения нормативных и	
	руководящих документов по организации контроля	
	технического состояния вагонов в эксплуатации с	
	использованием автоматизированных систем;	
ПК-3.2: Разрабатывает	Обучающийся знает: основные направления	Вопросы 34-42
технологические процессы	цифровизации железнодорожного транспорта в	
диагностирования и	части диагностики и контроля технического	
контроля технического	состояния подвижного состава (вагонов);	
состояния грузовых	особенности и возможности применения цифровых	
вагонов с применением	технологий и инструментов при диагностировании	
цифровых технологий	и контроле технического состояния вагонов при	
	ремонте и в эксплуатации; (цифровой двойник;	
	большие данные; интернет вещей; технологии	
	виртуальной и дополненной реальности);	
	Обучающийся умеет: оценивать техническое	Задания 15-19
	состояние узлов и элементов вагонов в процессе	Кейс-задача
	эксплуатации и ремонта с применением цифровых	
	технологий и средств; оценивать риски и	
	анализировать проблемы цифровизации процессов	
	диагностирования и контроля технического	
	состояния вагонов; оценивать эффективность	
	применения современных цифровых технологий	
	контроля технического состояния вагонов	
	Обучающийся владеет: навыками предиктивной	Задания 15-19
	аналитики и прогнозирования ресурса вагонов на	Кейс-задача
	протяжении жизненного цикла с использованием	
	цифровых технологий и средств; навыками оценки	
	и анализа перспективных направлений развития	
	цифровых технологий диагностирования и	
	контроля технического состояния вагонов;	
	навыками применения технологий виртуальной и	
	дополненной реальности для обучения	
	специалистов в области диагностики и контроля	
	технического состояния узлов и деталей вагонов	
	Team reckers cocronina yours in detailed but offor	

Промежуточная аттестация (зачет, зачет с оценкой) проводится в одной из следующих форм: 1) собеседование; 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения	Образовательный результат	
компетенции		
ПК-1.2: Анализирует конструктивные особенности	Обучающийся знает: основные задачи и	
узлов и деталей, оценивает техническое состояние	терминологию технической диагностики;	
подвижного состава	методы неразрушающего контроля, их	
	физическую основу и особенности	
	применения при диагностировании узлов	
	вагонов;	

Примеры тестовых вопросов

- 1. Задачей диагноза является определение
- 1. Контролепригодности объекта;
- 2. Состояния, в котором находился объект ранее;
- 3. Состояния, в котором окажется объект в последующий момент времени;
- 4. Состояния, в котором находится объект в настоящий момент времени.
- 2. Задачей прогноза является определение
- 1. Состояния, в котором окажется объект в последующий момент времени;
- 2. Контролепригодности объекта;
- 3. Состояния, в котором находился объект ранее;
- 4. Состояния, в котором находится объект в настоящий момент времени.
- 3. Объектом диагностирования называется:
- 1. Любой объект, для которого решается задача распознавания состояния;
- 2. Любой технический объект, пошедший диагностирование;
- 3. Технический объект, для которого решается вопрос работоспособности;
- 4. Технологический объект.
- 4. Что такое полный отказ:
- 1. состояние потери работоспособности и нештатного функционирования;
- 2. отказы попеременно исчезают, а затем снова появляются;
- 3. полная потеря работоспособности;
- 4. отказ отдельных элементов приводит к отказу всей системы.
- 5. Что понимается под дефектом:
- 1. ответы объекта на входные воздействия;
- 2. любое несоответствие свойств объекта заданным, требуемым или ожидаемым его свойствам;
- 3. значение параметров в текущий момент времени в требуемых пределах.
- 6. В основе процесса диагностирования лежит:
- 1. Статистические данные.
- 2. Алгоритм диагностирования.
- 3. Математическая модель диагноза.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 4. Система тестов.
 - 7. Акустический метод делится на:
- 1. Активный и пассивный.
- 2. Активный и реактивный.
- 3. Прямой и обратный.
- 4. Дискретный и аналоговый.
- 8. Внутренние кольца подшипников, напрессованные на шейки оси контролируются методом
- 1. УЗК:
- 2. MΠK;
- 3. феррозондовым.
- 9. Ось колесной пары (свободная) диагностируется методом:
- 1. МПК (по всему объему) и феррозондовым по всей поверхности;
- 1. УЗК (ось по всему объему) и МПК (все цилиндрические поверхности);
- 2. МПК (все цилиндрические поверхности) и вихретоковым (подступичная часть).
- 10. Боковая рама тележки 18-100 проверяется методом:
- 1. ФЗК или ВТК, МПК (при необходимости подтверждения результатов контроля);
- 2. МПК и ФЗК, ВТК (при необходимости);
- 3. только МПК.
- 11. Рама тележки КВЗ и ЦМВ контролируется методом:
- 1. ФЗК, ВТК и МПК (при необходимости подтверждения результатов контроля);
- 1. только МПК;
- 2. только ВТК.
- 12. Элементы автосцепного устройства проверяются методом:
- 1. MΠK;
- 2. ФЗК или МПК и ВТК;
- 3. BTK.
- 13. Для диагностирования поверхности котла цистерны (кроме сварных швов) применяется метод
 - 1. Бесконтактный УЗК (метод контроля котла на плотность);
 - 2. $\Phi 3K$;
 - 3. УЗК.
- 14. Сварные швы котла цистерны, вставок и накладок, крепления фасонной лапы к котлу, приварки лестницы проверяются методами
 - 1. только УЗК;
- 2. ФЗК (экспресс-метод контроля, позволяющий локализовать зоны контроля для последующего УЗК) и УЗК;
 - 3. только МПК.
- ПК-2.1: Определяет объемы работ при техническом обслуживании и ремонте вагонов по результатам контроля технического состояния и диагностики узлов и элементов

Обучающийся знает: порядок организации неразрушающего контроля на предприятии; назначение И принципы построения информационных систем управления и контроля подвижного состава; назначение и структуру оценке диагностических ПО комплексов состояния грузовых вагонов в технического эксплуатации;

Примеры тестовых вопросов

- 15. Комплекс технических средств, используемых при контроле технического состояния и содержащих устройства для операции контроля, устройства регистрации и отображения результатов контроля, называется:
- 1. системой диагностирования;
- 2. средством технического диагностирования;
- 3. алгоритмом диагностирования;
- 4. элементной базой диагностирования.
- 16. Дефектоскописты должны повышать свою квалификацию не реже:
- 1. одного раза в 2 года, а также после перерыва в практической работе более 6 месяцев;
- 2. одного раза в 3 года;
- 3. одного раза в 2 года, а также после перерыва в практической работе более 12 месяцев;
- 17. Рабочее место (участок) для проведения НК должно быть организовано:
- 1. на каждом ремонтном участке;
- 2. непосредственно на участке предприятия, на котором в соответствии с установленным технологическим процессом проводятся ремонтные работы;
- 3. за территорией предприятия, на котором ведутся ремонтные работы.
- 18. Рабочее место должно быть обеспечено средствами НК в соответствии с:
- 1. номенклатурой продукции;
- 2. требованиями технологических документов;
- 3. финансовыми возможностями предприятия.
- 19. Автоматизированные информационные системы это ...
- а) системы для ввода и вывода информации;
- б) системы для накопления, переработки и хранения информации;
- в) системы для сбора, накопления, хранения, поиска, передачи, обработки информации с использованием вычислительной техники.
- 20. Какова цель создания АСУ-В?
- а) получение мультипликативного технико-экономического эффекта во всех областях деятельности вагонного хозяйства за счет обеспечения перевозочного процесса исправным подвижным составом в требуемых объемах, а также заданного уровня безопасности движения поездов;
- б) обеспечение перевозочного процесса достаточным количеством подвижного состава;
- в) интеграция со средствами технического диагностирования и неразрушающего контроля (НК).
- 21. Что понимается под техническим состоянием вагона:
- 1. результат старения машин, находящихся в эксплуатации, при котором нецелесообразна дальнейшая эксплуатация еще работоспособных машин;
- 2. изменение параметров составных частей или даже вагона в целом, остающихся в пределах установленных норм;
- 3. совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемых в определенный момент времени признаками, установленными технической документацией на объект;
- 4. сборочная единица или сопряжение деталей достигли предельного значения?
- 22. Выберите лишнее. Руководитель подразделения НК на предприятии обеспечивает:
- 1. организацию разработки и наличие на рабочих местах (участках) НК операционных или технологических карт на НК деталей;

- 2. оснащение рабочих мест стендами-кантователями, подъемными механизмами и другими приспособлениями, обеспечивающими удобство осмотра, поворота и перемещения контролируемых леталей:
- 3. рабочие места (участки) средствами НК;
- 4. организацию технического обслуживания дефектоскопов, вспомогательных приборов, устройств и оборудования, а также ведение документации по учету результатов указанных видов работ;
- 5. контроль за своевременным проведением калибровки (поверки) дефектоскопов и аттестации стандартных образцов;
- 6. микроклимат на рабочих местах НК;
- 7. контроль за профессиональной подготовкой и своевременным повышением квалификации дефектоскопистов;
- 8. контроль за выполнением требований нормативных документов по НК;
- 9. контроль за оформлением и хранением результатов НК;
- 10. анализ результатов НК на предприятии;
- 11. внедрение на предприятии современных методов и средств НК.
- 23. Для проведения НК предприятие должно иметь:
- 1. нормативные и технологические документы по НК деталей конкретного типа, утвержденные в установленном порядке;
- 2. средства НК, номенклатура и технические характеристики которых сооветствуют требованиям нормативных и технологических документов по НК;
- 3. персонал, обладающий требуемым уровнем квалификации по соответствующим методам НК;
- 4. обучающий центр для подготовки дефектоскопистов.
- 24. Основное назначение комплекса технических средств многофункционального КТСМ-02?
- а) контроль параметров подвижного состава, привязанных к конкретным осям, или подвижным единицам, а также координации работы подключенных к нему подсистем и обеспечении информационного взаимодействия через систему централизации с системами контроля и управления верхнего уровня (АСК ПС, ДНЦ, ДГП).
- б) контроль параметров подвижного состава, привязанных к конкретным рамам тележек, или подвижным единицам, а также координации работы подключенных к нему подсистем и обеспечении информационного взаимодействия через систему централизации с системами контроля и управления верхнего уровня (АСК ПС, ДНЦ, ДГП).
- в) контроль подвижного состава, привязанных к конкретным осям, или подвижным единицам, а также координации работы подключенных к нему двух подсистем («Б» и «Т»).
- 25. Для чего предназначена система «CAKMA»?
- а) данная подсистема применяется для контроля наличия неисправностей автосцепных устройств, по причине которых может произойти саморасцеп автосцепок вагонов на ходу поезда.
- б) данная подсистема применяется для контроля наличия неисправных устройств автотормозной системы, по причине которых может произойти сход вагонов на ходу поезда.
- в) данная подсистема применяется для контроля наличия неисправностей автосцепных устройств, по причине которых может произойти саморасцеп автосцепок грузовых вагонов на ходу поезда.
- 26. Какие параметры контролирует система «CAKMA»?:
- а) износ замков; излом направляющего зуба; поверхностей контура зацепления, перемычки между направляющим зубом и сигнальным отростком; полуутопленное состояния замков; приводящие в режиме тяги поезда к уширению зуба.
- б)износ замков; излом направляющего зуба; излом предохранителя от саморасцепа; износ замков, поверхностей контура зацепления, перемычки между направляющим зубом и сигнальным отростком; полуутопленное состояния замков; трещины в большом и малом зубе, приводящие в режиме тяги поезда к уширению зуба; уширение зева.
- в) износ замков; излом направляющего зуба; поверхность катания колеса; поверхностей контура зацепления, полуутопленное состояния замков; приводящие в режиме тяги поезда к уширению зуба; износ полочки предохранителя от саморасцепа.

- 27. Для чего предназначена аппаратура «ДДК»?
- а) данная аппаратура предназначена для контроля технического и коммерческого состояния грузовых вагонов в прибывающих на станцию поездах и обеспечивает автоматизированное выявление деформаций, открытых люков, качки и других неисправностей на основе обработки и суммирования данных, поступающих от камер и датчиков.
- б) данная аппаратура относится к напольным средствам автоматической диагностики технического состояния вагонов на ходу поезда и предназначена для выявления колёсных пар с дефектами на поверхности катания колёс, вызывающих недопустимые динамические перегрузки неподрессоренных элементов вагонов и пути
- в) данная аппаратура применяется для контроля наличия неисправностей автосцепных устройств, по причине которых может произойти саморасцеп автосцепок грузовых вагонов на ходу поезда.

28. Для чего предназначено КГУ?

- а) предназначено для контроля верхнего габарита подвижного составаи должно срабатывать при проходе поезда, если очертание вагона выступает за пределы габарита подвижного состава, в результате механического взаимодействия его с специализированным устройством (датчиком)
- б) для автоматического ограничения скорости поезда, предупреждая ее превышение в зависимости от показаний локомотивного светофора, и является устройством безопасности, дублирующим действия машиниста по управлению тормозами поезда в указанных в настоящем пункте случаях
- в) предназначено для контроля нижнего габарита подвижного состава(волочащихся и провисающих деталей) и должно срабатывать при проходепоезда, если подвагонное оборудование выступает за пределынижнего габарита подвижного состава, в результате механического взаимодействия его с путевым устройством

29. Для чего предназначено УКСПС?

- а) устройство контроля схода подвижного состава, является дополнительным средством повышения безопасности движения поездов. Оно взаимодействует с аппаратом управления входного светофора и предназначен для автоматического обнаружения наличия волочения деталей, выступающих за нижний габарит подвижного состава, а также схода подвижного сотава
- б) предназначено для контроля верхнего габарита подвижного составаи должно срабатывать при проходе поезда, если очертание вагона выступает за пределы габарита подвижного состава, в результате механического взаимодействия его с специализированным устройством (датчиком)
- в) устройство контроля диагностиования подвижного состава, является основнымсредством повышения безопасности движения поездов. Оно взаимодействует с аппаратом управления входного светофора и предназначен для автоматического обнаружения наличия деталей, выступающих за верхний габарит подвижного состава, а также схода подвижного состава.

30. Устройство УКТП позволяет:

- а) автоматизировать процессы подготовки тормозов подвижного состава в парках отправления, осуществлять контроль над качеством подготовки тормозов и соблюдением технологической дисциплины в парке отправления
- б) автоматизировать процессы подготовки ходовых частей подвижного состава в парках отправления, осуществлять контроль над качеством подготовки их и соблюдением технологической дисциплины в парке отправления
- в) автоматизировать процессы подготовки тормозов подвижного состава в парках отправления, осуществлять контроль над качеством подготовки тормозов и соблюдением технологической дисциплины в каждом из парков ПТО
- 31. В какую автоматизированную систему объединены средства контроля технического состояния подвижного состава?
- a) CKAT
- б) АСОУП
- в) АСУ-В
- г) ДИСКОР

- 32. Какой принцип контроля заложен в работу системы ПАК?
- а) принцип измерения и анализа акустических шумов
- б) принцип измерения теплового контроля
- в) принцип измерения инфракрасного излучения
- г) триангуляционный метод измерений расстояния
- 33. Какие дефекты подвижного состава распознает система АСООД?
- а) нарушение геометрии ходовых частей вагонов (разность диаметров колесных пар, эллипсность колес, тонкий гребень) и дефектов подвески кузова вагона (узел пятник-подпятник, отсутствие или излом шкворня).
- б) выявление колёсных пар с дефектами на поверхности катания колёс, вызывающих недопустимые динамические перегрузки неподрессоренных элементов вагонов и пути
- в) наличия неисправностей автосцепных устройств, по причине которых может произойти саморасцеп автосцепок грузовых вагонов на ходу поезда.

ПК-3.2: Разрабатывает технологические процессы диагностирования и контроля технического состояния грузовых вагонов с применением цифровых технологий

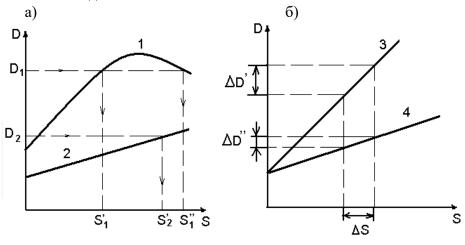
Обучающийся знает: основные направления цифровизации железнодорожного транспорта в части диагностики и контроля технического состояния подвижного состава (вагонов); особенности и возможности применения цифровых технологий и инструментов при диагностировании и контроле технического состояния вагонов при ремонте и в эксплуатации (цифровой двойник; большие данные; интернет вещей; технологии виртуальной и дополненной реальности);

Примеры тестовых вопросов

- 34. Какие технологии используют для сбора данных?
- 1. 5G, Квантовые технологии, Облака
- 2. IoT, Big Data
- 3. Облака, Блокчейн
- 4. Искусственный интеллект, 5G
- 35. Как может быть использованы инструменты интернета вещей на транспорте?
- 1. Контроль дислокации и состояния подвижного состава
- 2. Организация передачи и хранения больших объемов данных
- 3. Анализ и обработка больших данных
- 4. Все вышеперечисленное верно
- 36. При помощи каких технических средств может быть создан цифровой двойник вагона?
- 1. Техновизор, АСООД, ПАУК
- 2. УЗОТ-РМ, Пеленг-Автомат
- 3. Дефектоскопы ФД-112, УДБ-2
- 37. Какова главная цель создания цифрового двойника вагона?
- 1. Автономное обслуживание
- 2. Диагностика узлов в режиме реального времени и переход на ремонт по состоянию
- 3. Интеллектуальный контроль безопасности движения
- 38. Создание каких блоков цифровых платформ НЕ предусмотрено Стратегией развития ОАО «РЖД» в части цифровой трансформации компании?
- 1. Клиентский блок
- 2. Производственный блок
- 3. Офисный блок
- 4. Образовательный блок

- 6. Какие технологии не относятся к сквозным цифровым технологиями?
- 1. нейротехнологии и искусственный интеллект
- 2. космические технологии
- 3. квантовые технологии
- 4. большие данные
- 39. Технология скоростной обработки структурированных и неструктурированных данных для выявления неочевидных связей и формирования результатов, воспринимаемых человеком это...
- 1. Большие данные
- 2. Распределенные реестры
- 3. Квантовые технологии
- 40. Какие технологии помогают анализировать и принимать решения?
- 1. Блокчейн, ІоТ
- 2. Искусственный интеллект, Нейротехнологии
- 3. Блокчейн, Облака
- 4. 5G, Облака
- 41. Выберите внутренние источники рисков проектов внедрения цифровых технологий:
- 1. Действия конкурентов
- 2. Используемые технологические решения
- 3. Законодательство
- 4. Компетентность исполнителей
- 42. Технология сбора и передачи информации о состоянии объектов без участия человека для последующей ее автоматической обработки и формирования управляющих воздействий это....
- 1. Искусственный интеллект
- 2. Интернет вещей
- 3. Квантовые технологии

2.2 Типовые задания для оценки навыкового образовательного результата


Проверяемый образовательный результат:

Код и наименование индикатора достижения	Образовательный результат	
компетенции		
ПК-1.2: Анализирует конструктивные	Обучающийся умеет: выбирать и анализировать	
особенности узлов и деталей, оценивает	диагностические параметры; разрабатывать	
техническое состояние подвижного состава диагностические модели и строить блочно-		
	функциональную декомпозицию объекта	
	диагностирования; определять и анализировать	
	природу дефектов узлов вагонов;	

Примеры заданий

Задание 1

На рисунке приведена диаграмма для определения однозначности (а) и широты измерения (чувствительности) (б) диагностических параметров D по отношению к структурному параметру S. Требуется привести сравнительную характеристику однозначности и чувствительности параметров, обосновать сделанный вывод.

Задание 2

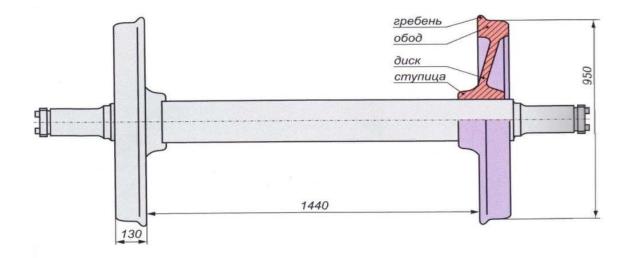
Построить блочно-функциональную декомпозицию грузового вагона, заданного типа, используя 4 уровня декомпозиции.

Задание 3

Изобразите в виде блок-схемы процесс постановки и виды диагноза технического состояния объекта диагностирования.

Задание 4

На рисунке приведена диагностическая модель грузового вагона.



Требуется:

- 1. Пояснить, к какому виду относятся диагностические параметры, выделенные в 4 блока.
- 2. Используя пример приведенной диагностической модели вагона, построить диагностическую модель тележки грузового вагона модели 18-100.

Задание 5

На рисунке приведен эскиз колесной пары вагона. Требуется разработать карту дефектов колесной пары (нанести на рисунке места расположения и виды дефектов). Пояснить причины возникновения дефектов и их природу.

ПК-1.2: Анализирует конструктивные особенности узлов и деталей, оценивает техническое состояние подвижного состава

Обучающийся владеет: навыками применения математического аппарата технической диагностики, использования вероятностных методов при постановке диагноза; навыками организации неразрушающего контроля на предприятиях вагонного хозяйства; опытом выбора методов и средств неразрушающего контроля для диагностирования узлов вагонов;

Задание 6

При техническом диагностировании объекта фиксируются два признака K_1 и K_2 . Появление этих признаков связано с неисправными состояниями объекта D_1 и D_2 . В исправном состоянии D_3 признак K_1 наблюдается в 0 % $(P(K_1/D_3))$ случаев, а признак K_2 – в 6 % $(P(K_2/D_3))$ случаев. В неисправном состоянии D_1 признак K_1 наблюдается в 11 % $(P(K_1/D_1))$ случаев, а признак K_2 – в 39 % $(P(K_2/D_1))$ случаев. В неисправном состоянии D_2 признак K_1 наблюдается в 26 % $(P(K_1/D_2))$ случаев, а признак K_2 – в 16% случаев. Известно, что 64% объектов отрабатывают свой ресурс в исправном состоянии, $P(D_1)$ 22% объектов имеют состояние D_1 и $P(D_2)$ 14% объектов имеют состояние D_2 .

Требуется: построить диагностическую таблицу по исходным данным; используя метод Байеса постановки диагноза, рассчитать диагностическую матрицу и определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков.

Задание 7

Разработать программу организации диагностирования колесных пар ультразвуковым (вихретоковым) методом при текущем ремонте (выбор технических средств, проверка контролепригодности и пр.). В виде блок-схемы привести порядок действий персонала.

Задание 8

Привести схемы прозвучивания оси колесной пары при ультразвуковом контроле. Указать, какие эталонные отражатели используются и место их расположения.

ПК-2.1: Определяет объемы работ при техническом обслуживании и ремонте вагонов по результатам

Обучающийся умеет: определять назначение, пояснять принцип действия и правила размещения автоматизированных средств контроля технического состояния вагонов в эксплуатации;

контроля технического состояния и диагностики узлов и элементов

Обучающийся владеет: навыками применения нормативных и руководящих документов по неразрушающему контролю и дефектоскопии узлов вагонов; навыками построения и анализа схем информационных потоков от устройств контроля в системе; опытом применения нормативных и руководящих документов по организации контроля технического состояния вагонов в эксплуатации с использованием автоматизированных систем;

Задание 9

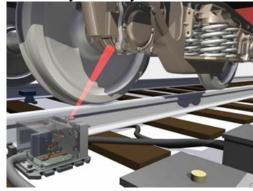
Используя нормативную документацию, заполнить таблицу, в которой указаны и приведены эскизы элементов колесной пары, подлежащие НК. Необходимо указать метод (методы) НК, применяемый(е) для элемента в целом (или участка, части), и привести вид ремонта КП, при котором проводится НК.

Наименование и эскиз детали, зоны	Метод неразрушающего	Виды ремонта, при
контроля	контроля, средства	которых проводится НК
•	контроля	
Ось колесной пары в сборе	-	
1 — шейка и предподступичная часть; 2 — средняя часть; 3 — подступичная часть		
Внутренние кольца подшипников,		
напрессованные на шейки оси		
1 – наружная поверхность колец		
Цельнокатаное колесо		
1 – обод, 2 – приободная зона диска, 3 –		
переход от диска к ступице, 4 – кромка		
ступицы, 5 – поверхность катания; 6 –		
гребень		

Задание 10

Используя нормативные и руководящие документы, разработать программу диагностирования боковой рамы тележки грузового вагона модели 18-100. Привести основные требования к организации участка (отделения) неразрушающего контроля и к персоналу, выполняющему контроль.

Задание 11


На рисунке приведен общий вид технического средства автоматизированного контроля.

Требуется: назвать средство контроля; пояснить его назначение, принцип действия; составить схему информационных потоков при выявлении неисправности вагона приведенным устройством. Каковы действия персонала ПТО при получении информации от устройства? Пояснить правила размещения устройства.

Задание 12

На рисунке приведена иллюстрация автоматизированного комплекса по контролю технического состояния буксовых узлов вагонов.

Требуется: определить, какое устройство приведено на рисунке; пояснить назначение и принцип работы системы. Привести состав комплекса и правила размещения оборудования. Пояснить действия персонала ПТО при техническом обслуживании поезда, в котором выявлены неисправности приведенным устройством.

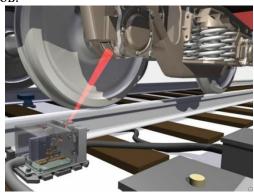
Задание 13

Привести в виде блок-схемы состав и структуру СКАТ. Разработать схему информационных потоков с указанием устройств безопасности движения.

Задание 14

Пояснить назначение, состав и привести схему размещения устройств системы АСООД. Составить схему информационных потоков при выявлении неисправности устройством.

ПК-3.2: Разрабатывает технологические процессы диагностирования и контроля технического состояния грузовых вагонов с применением цифровых технологий


Обучающийся умеет: оценивать техническое состояние узлов и элементов вагонов в процессе эксплуатации и ремонта с применением цифровых технологий и средств; оценивать риски и анализировать проблемы цифровизации процессов диагностирования и контроля технического состояния вагонов; оценивать эффективность применения современных цифровых технологий контроля технического состояния вагонов

Обучающийся владеет: навыками предиктивной аналитики и прогнозирования ресурса вагонов на протяжении жизненного цикла с использованием цифровых технологий и средств; навыками оценки и анализа перспективных направлений

развития цифровых технологий диагностирования и контроля технического состояния вагонов; навыками применения технологий виртуальной и дополненной реальности для обучения специалистов в области диагностики и контроля технического состояния узлов и деталей вагонов

Примеры заданий Задание 15

На рисунке приведена иллюстрация автоматизированного комплекса по контролю технического состояния буксовых узлов вагонов.

Требуется: определить, какое устройство приведено на рисунке; пояснить назначение и принцип работы системы. Привести состав комплекса и правила размещения оборудования. Какие цифровые технологии и инструменты могут быть применены при реализации данной технологии контроля? Составить схему информационных потоков от приведенного устройства в систему АСК ПС.

Задание 16

Пояснить назначение, состав и привести схему размещения устройств системы АСООД. Составить схему информационных потоков при выявлении неисправности устройством. Какие сквозные цифровые технологии могут быть применены при реализации контроля технического состояния вагонов системой АСООД?

Задание 17

Представьте возможности применения цифрового двойника в области профессиональной деятельности — при диагностировании и контроле технического состояния грузовых вагонов при ремонте и в эксплуатации соответственно. Заполните таблицу, приведенную ниже (5-7 примеров)

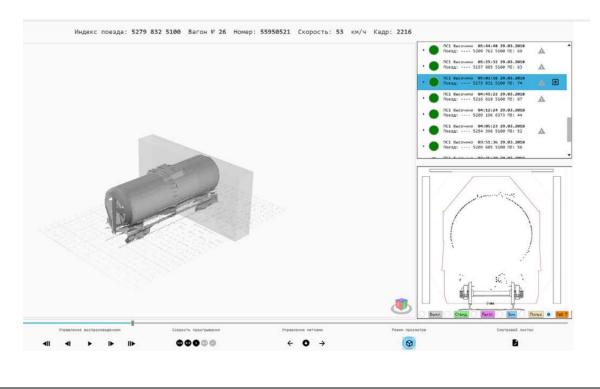
Использование цифровых двойников при диагностировании и контроле технического состояния грузового вагона

Пример	Сфера применения	Ссылка на источник (при наличии)	Описание процесса

Кейс-задача 1

Методом мозгового штурма, работая в командах провести SWOT-анализ проекта внедрения (использования) цифровых технологий в процессах диагностирования и контроля состояния грузовых вагонов при ремонте и в эксплуатации соответственно.

Группа обучающихся делится на две команды, каждая из которых получает задание от преподавателя. Первая команда – применение цифровых технологий при диагностировании грузовых вагонов; вторая – при техническом контроле состояния грузовых вагонов в эксплуатации. Для проведения анализа используется типовая таблица, приведенная на рисунке.


Задание 18

Используя общие правила и порядок разработки тренажера виртуальной реальности и нормативную документацию изобразите в виде блок-схемы структуру тренажерного комплекса для освоения технологического процесса диагностирования узла вагона по заданию преподавателя. Разработайте описание сцен и картин виртуальной реальности. Разработайте тестовые задания, которые потребуется выполнить при прохождении режима контроля навыков выполнения операций диагностирования.

Задание 19

3.

Поясните, рабочее окно APM какого средства (системы) контроля технического состояния цистерны приведено на рисунке. Какие цифровые технологии используются при реализации работы системы?

- 2.4. Перечень вопросов для подготовки обучающихся к промежуточной аттестации
- 2.4.1. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (зачету)
- 1. Основные цели и задачи технической диагностики подвижного состава.
- 2. Структурная схема диагностирования подвижного состава.

- 3. Виды технического состояния вагонов. Основные виды неисправностей и повреждений. Критерии оценки технического состояния.
 - 4. Параметры технического состояния.
- 5. Общая схема формирования процессов диагностирования, технического обслуживания и ремонта вагонов.
 - 6. Общая классификация методов диагностирования технического состояния подвижного состава.
 - 7. Средства технической диагностики в вагонном хозяйстве.
 - 8. Виды моделей диагностируемых объектов в технической диагностике.
 - 9. Моделирование технического состояния вагона.
 - 10. Понятия диагностических тестов и диагностических параметров.
 - 11. Блочно-функциональная декомпозиция объекта диагностирования.
 - 12. Суть метода Байеса. Классификация технических состояний.
 - 13. Классификация дефектов подвижного состава.
- 14. Назначение неразрушающего контроля. Нормативная документация ОАО "РЖД" по неразрушающему контролю.
 - 15. Общая классификация видов и методов неразрушающего контроля.
 - 16. Визуальный и измерительный неразрушающий контроль.
 - 17. Системы неразрушающего контроля деталей и узлов вагонов, их оперативные характеристики.
 - 18. Акустический вид неразрушающего контроля. Методы акустического контроля.
 - 19. Физические основы акустического контроля.
- 20. Физические основы ультразвукового неразрушающего контроля. Методы ультразвукового контроля.
 - 21. Технические средства ультразвукового контроля деталей вагонов.
 - 22. Отраслевые стандартные образцы УЗК.
- 23. Магнитный вид неразрушающего контроля. Классификация методов магнитного неразрушающего контроля.
 - 24. Способы магнитного дефектоскопирования деталей и узлов вагонов.
 - 25. магнитопорошковый метод неразрушающего контроля. Технология МПК.
 - 26. Детали и узлы грузовых вагонов, подлежащие неразрушающему контролю.
 - 27. Технические средства магнитопорошкового контроля.
 - 28. Феррозондовый метод НК. Физические основы метода.
 - 29. Технические средства феррозондового контроля.
 - 30. Технология проведения ФЗК.
 - 31. Вихретоковый (электромагнитный) вид НК. Физическая сущность.
 - 32. Технические средства ВТК.
 - 33. Тепловой вид НК. Физические основы.
 - 34. Средства контроля температуры.
 - 35. Физическая сущность акустико-эмиссионного неразрушающего контроля.
 - 36. Диагностика основных узлов вагонов при изготовлении и ремонте.
 - 37. Вибродиагностика узлов вагонов.
 - 38. Вибродиагностика роликовых подшипников.
- 39. Вибродиагностика редукторов приводов вагонных генераторов от средней части оси колесной пары.
 - 40. Диагностика рам и кузовов вагонов в ремонте и эксплуатации.
 - 41. Диагностика элементов тормозной системы вагонов.
 - 42. Принцип работы и устройство установки УЗОТ-РМ.
 - 43. Методы и средства диагностирования электрооборудования пассажирских вагонов.
- 44. Организация неразрушающего контроля на предприятиях вагонного хозяйства. Требования к персоналу и техническим средствам.
 - 45. Техническая диагностика вагонов в эксплуатации и при ремонте.
- 46. Сквозные цифровые технологии, применяемые при диагностировании и контроле технического состояния грузовых вагонов.
 - 47. Цифровой двойник грузового вагона при реализации диагностирования в ремонте.

- 1. Глобальная компьютерная сеть. Корпоративная сеть ОАО «РЖД».
- 2. Защита государственной тайны и коммерческих интересов в корпоративной сети ОАО «РЖД».
- 3. Автоматизированная система управления ОАО «РЖД»
- 4. Примеры информационных технологий в обеспечение качества эксплуатационной деятельности вагонного хозяйства ОАО «РЖД».
- 5. Примеры информационных технологий в обеспечении качества ремонтно-восстановительной деятельности вагонного хозяйства ОАО «РЖД».
 - 6. Система АСУ-В, как вертикаль управления вагонным хозяйством
 - 7. Интеграция АСУ-В с комплексом смежных задач железнодорожного транспорта
 - 8. Принципы построения локальных компьютерных сетей на предприятиях вагонного хозяйства
 - 9. Автоматизированный линейный район управления и концентрации информации (АЛРУ-КИ)
 - 10. АСУ опорной станции
- 11. Схема информационных связей автоматизации вагонного хозяйства Куйбышевской железной дороги
 - 12. Автоматизированная система СКАТ-портал.
 - 13. Автоматизированная система КАСАНТ
 - 14. Автоматизированная система АСК ПС
 - 15. Автоматизированные системы ВЧДЭ ПТО
 - 16. Паспортизация объектов подвижного состава и его основных узлов
 - 17. Паспортизация предприятий по техническому обслуживанию и ремонту вагонов
 - 18. Паспортизация технологической оснащенности ВЧДЭ ПТО.
 - 19. Система автоматической идентификации подвижного состава.
 - 20. Система оптической идентификации номеров транспортных средств в движении СОИ
 - 21. Система оптической идентификации номеров транспортных средств в движении САР
 - 22. Система оптической идентификации номеров транспортных средств в движении САИПС
 - 23. Нормирование технологических процессов технического обслуживания вагонов.
- 24. Выделение ключевых элементов технологического процесса и обеспечение автоматизированного соблюдения барьерных условий качества и производительности труда.
- 25. Организация мониторинга технического состояния и эксплуатационного ресурса объектов инфраструктуры железнодорожного транспорта
- 26. Организация мониторинга технического состояния и эксплуатационного ресурса подвижного состава
 - 27. Организация слежения за нормами технического обслуживания вагонов
- 28. Организация мониторинга технического состояния и эксплуатационного ресурса технологического оборудования вагонного хозяйства
 - 29. Автоматизация зарядки и опробования тормозов поезда с помощью УЗОТ-РМ.
 - 30. Автоматизированная система контроля узлов вагонов КТСМ-03
 - 31. Автоматизированная система контроля колесных пар «Комплекс»
 - 32. Устройство контроля схода подвижного состава УКСПС
 - 33. Основные функции контрольно-габаритных устройств (КГУ)
- 34. Основные функции автоматической диагностической установки для контроля упряжного устройства вагонов
 - 35. Система автоматического контроля механизма автосцепки
- 36. Организация внутриотраслевой кооперации управления вспомогательным производством и внереализационной составляющей в системе ОАО «РЖД».
 - 37. Единое информационное пространство средств технической диагностики подвижного состояния.
- 38. Взаимодействие ВЧДЭ с компаниями-собственниками подвижного состава и объектов инфраструктуры.
 - 39. Архитектура системы СКАТ-портал,
 - 40. Архитектура системы КАСАНТ
 - 41. Архитектура системы АСК ПС
 - 42. Архитектура АСУ ВЧДЭ ПТО
- 43. Комплекс автоматизированных рабочих мест предприятий технического обслуживания вагонов (APM TOB)

- 44. Информационные технологии обеспечения качества технического обслуживания вагонов на ПТО
 - 45. Информационные технологии обеспечения качества текущего отцепочного ремонта вагонов
 - 46. Система «Барьер» и ее информационное обеспечение
 - 47. Информационные технологии обеспечения качества деповского ремонта вагонов
 - 48. Технология бережливого производства и ее информационное обеспечение
 - 49. Комплекс автоматизированных рабочих мест предприятий по ремонту вагонов (АРМ ВЧД)
 - 50. Автоматизированные операции складских операций
- 51. Использование цифровой технологии большие данные для прогнозирования технического состояния грузовых вагонов. Реализация стратегии технического обслуживания и ремонта «по потребности».
- 52. Применение сквозной цифровой технологии интернет вещей (инструменты) для контроля технического состояния грузовых вагонов в эксплуатации.
- 53. Поясните, какие средства контроля подвижного состава входят в состав интегрированного поста (ППСС). Какие цифровые технологии положены в основу работы комплекса?
- 54. Назовите и поясните источники внутренних и внешних рисков проекта цифровизации железнодорожного транспорта.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы дисциплины: его базовых понятий, определений, основных проблем и методов их решения; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил грубых ошибок при ответе, достаточно последовательно излагает материал, допуская только незначительные неточности и нарушения последовательности изложения.

«Не зачтено» - выставляется, если обучающийся демонстрирует фрагментарные знания основных разделов изучаемой дисциплины; у обучающегося слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала; отсутствуют необходимые умения и навыки; допущены грубые ошибки и незнание терминологии; неспособность отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по зачету с оценкой

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.