Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:57:55

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«Математическое моделирование систем и процессов»

Специальность

23.05.05 Системы обеспечения движения поездов

Специализация

«Автоматика и телемеханика на железнодорожном транспорте»

(дневная форма обучения)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет в 3 семестре .Ргр, экзамен - 4 семестр

Код и наименование компетенции	Код и наименование
	компетенции
OHM 1 C	OFFIC 1.4
ОПК-1: Способен решать инженерные задачи в профессиональной	ОПК-1.4
деятельности с использованием методов естественных наук, математического	
анализа и моделирования	
ОПК-10: Способен формулировать и решать научно-технические задачи в	ОПК-10.1
области своей профессиональной деятельности	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 4)
ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности	Обучающийся знает: методы математического моделирования, теоретического и экспериментального исследования систем и процессов в области решения задачи в научных и инженерных исследованиях. Обучающийся умеет: проводить необходимые расчеты на основе использования современных информационных технологий, применять оптимальные варианты решений нестандартных ситуаций, возникающих при выполнении работ по моделированию в научных и инженерных исследованиях.	Вопросы (№1 - №10) Тестовые задания (№1- №10)
	Обучающийся знает: рациональные способы устранения неисправностей путем математического моделирования.	Вопросы (№11- №20) Тестовые задания (№6-10)
ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях	Обучающийся умеет: изучать и анализировать информацию, технические данные, показатели и результаты работы систем обеспечения движения поездов, обобщать и систематизировать их	Задания (№1 - №3)
	Обучающийся владеет: Навыками применения программного обеспечения для решения задач математического моделирования, теоретического и экспериментального исследования систем и процессов в области профессиональной деятельности, в научной области и при инженерных исследованиях.	Задания (№1 - №3)

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
компетенции ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности	Обучающийся знает: методы математического моделирования, теоретического и экспериментального исследования систем и процессов в области решения задачи в научных и инженерных исследованиях.
ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях	Обучающийся знает: рациональные способы устранения неисправностей путем математического моделирования.

Типовые вопросы (тестовые задания)

1. Моделирование — это

- а) процесс замены реального объекта (процесса, явления) моделью, отражающей его существенные признаки с точки зрения достижения конкретной цели;
- б) процесс неформальной постановки конкретной задачи;
- в) процесс замены реального объекта (процесса, явления) другим материальным или идеальным объектом;
- г) процесс выявления существенных признаков рассматриваемого объекта.

2. Процесс построения модели, как правило, предполагает:

- а) описание всех свойств исследуемого объекта;
- б) выделение наиболее существенных с точки зрения решаемой задачи свойств объекта;
- в) выделение свойств объекта безотносительно к целям решаемой задачи;
- г) описание всех пространственно-временных характеристик изучаемого объекта;
- д) выделение не более трех существенных признаков объекта.

3. Математическая модель объекта — это:

- а) созданная из какого-либо материала модель, точно отражающая внешние признаки объекта-оригинала;
- б) описание в виде схемы внутренней структуры изучаемого объекта;
- в) совокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы;
- г) совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
- д) последовательность электрических сигналов.

4. Основная функция модели это:

- а) получить информацию о моделируемом объекте;
- б) отобразить некоторые характеристические признаки объекта;
- в) получить информацию о моделируемом объекте или отобразить некоторые характеристические признаки объекта;
- г) воспроизвести физическую форму объекта.
- 5. Какая форма математической модели отображает предписание последовательности некоторой системы операций над исходными данными с целью получения результата?
- а) аналитическая;
- б) графическая;
- в) цифровая;
- г) алгоритмическая.
- 6. Какой из шагов построения математической модели сформулирован неверно?

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- а) выполнить обобщенный анализ реального объекта или процесса
- б) выделить его наиболее существенные черты и свойства
- в) выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций

7. Непрерывно-детерминированные схемы моделирования определяют...

- а) математическое описание системы с помощью непрерывных функций с учётом случайных факторов;
- б) математическое описание системы с помощью непрерывных функций без учёта случайных факторов;
- в) математическое описание системы с помощью функций непрерывных во времени;
- г) Математическое описание системы с помощью дискретно-непрерывных функций.

8. Что требуется для нахождения объективных и устойчивых характеристик процесса при статистическом моделировании?

- а) однократное воспроизведение процесса;
- б) многократное воспроизведение процесса, с последующей статической обработкой полученных данных;
- в) многократное воспроизведение процесса, с последующей статистической обработкой полученных данных.

9. Какой из способов аппроксимации данных нашел большее применение на практике?

- а) способ, который требует, чтобы аппроксимирующая кривая F(x), аналитический вид которой необходимо найти, не проходила ни через одну узловую точку таблицы;
- б) способ, который требует, чтобы аппроксимирующая кривая F(x), аналитический вид которой необходимо найти, проходила через все узловые точки таблицы;
- в) способ, заключающийся в сглаживании опытных данных;
- г) нет правильного ответа.

10. Какой фактор определяет использование статистической имитационной модели?

- а) скорость процесса;
- б) случайные воздействия;
- в) высокая требуемая точность;
- г) количество имитируемых элементов.

11. Интерполяция — это...

- а) нахождение значения таблично заданной функции внутри заданного интервала;
- б) восстановление функции в точках за пределами заданного интервала табличной функции;
- в) усреднение или сглаживание табличной функции;
- г) нет правильного ответа.

12. Как называются модели, в которых предполагается отсутствие всяких случайных воздействий и их элементы (элементы модели) достаточно точно установлены?

- а) статические;
- б) детерминированные;
- в) дискретные;
- г) динамические.

13. Какие математические модели применяются при имитационном моделировании?

- а) с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели для всех возможных исходных данных;
- б) с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных;
- в) с помощью которых можно заранее вычислить или предсказать поведение системы, и для предсказания поведения системы нет необходимости в применении вычислительного эксперимента (имитации) на математической модели при заданных исходных данных.

14. В чем заключается центральная предельная теорема?

- а) при сложении достаточно большого количества независимых случайных величин с произвольным законом распределения получается случайная величина, распределенная по нормальному закону;
- б) при сложении достаточно большого количества взаимосвязанных случайных величин с произвольным законом распределения получается случайная величина, распределенная по равномерному закону;
- в) при сложении достаточно большого количества независимых случайных величин с произвольным законом распределения получается случайная величина, распределенная по равномерному закону;
- г) при сложении достаточно большого количества взаимосвязанных случайных величин с произвольным законом распределения получается случайная величина, распределенная по нормальному закону.

15. Как называется замещаемый моделью объект?

- а) оригинал;
- б) шаблон;
- в) копия;
- г) макет.

16. Какой из шагов не входит в состав исследования объекта, процесса или системы и составления их математического описания при математическом моделировании, но является частью математического моделирования?

- а) выделение наиболее существенных черт и свойств реального объекта или процесса
- б) определение внешних связей и описание их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций
- в) построение алгоритма, моделирующего поведение объекта, процесса или системы
- г) определение переменных, т.е. параметров, значения которых влияют на основные черты и свойства объекта

17. При исследовании гипотетической модели какого характера получатся выводы?

- а) абстрактного
- б) условного
- в) гипотетического
- г) динамического
- д) точного

18. Какой тип математических моделей использует алгоритмы?

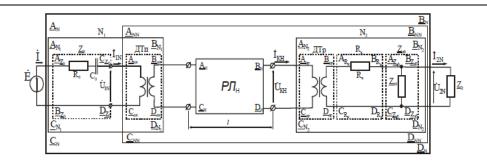
- а) Аналитические.
- б) Знаковые.
- в) Имитационные.
- г) Детерминированные

19. Что такое параметры системы?

- а) Величины, которая выражают свойство или системы, или ее части, или окружающей среды.
- б) Величины, характеризующие энергетическое или информационное наполнение элемента или подсистемы.
- в) Свойства элементов объекта.
- г) Величины, которая характеризует действия, которые могут выполнять объекты.

20. Какой из шагов построения математической модели сформулирован неверно?

- а) выполнить обобщенный анализ реального объекта или процесса
- б) выделить его наиболее существенные черты и свойства
- в) выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций


2.2 Типовые задания для оценки навыкового образовательного результата

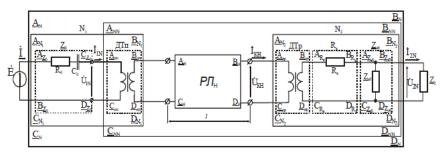
Проверяемый образовательный результат:

Код и наименование компетенции	Образовательный результат	
ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности	Обучающийся умеет: проводить необходимые расчеты на основе использования современных информационных технологий, применять оптимальные варианты решений нестандартных ситуаций, возникающих при выполнении работ по моделированию в научных и инженерных исследованиях.	
ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях	изучать и анализировать информацию, технические данные, показатели и результаты	

- 1. Вычислить второй начальный момент, если дискретная случайная величина X принимает значения x_1 =100 и x_2 =200 с вероятностями p_1 =0,9 и p_2 =0,1 соответственно.
- 2. Детерминированная величина: x = -20. Требуется вычислить математическое ожидание.
- 3. Определить матрицу передаточного сопротивления рельсовой цепи в нормальном режиме в соответствии со схемой:

$$Z_{no}^N = \frac{U_{2N}}{I_{1N}}.$$

ОПК-1.4: Применяет методы математического анализа и моделирования для решения прикладных задач в профессиональной деятельности


ОПК-10.1: Разрабатывает модели для решения задач в научных и инженерных исследованиях

Обучающийся владеет:

применения программного обеспечения для решения задач математического моделирования, теоретического и экспериментального исследования систем и процессов в области профессиональной деятельности, в научной области и при инженерных исследованиях.

- 1. Определить численные значения матрицы $[A]^{0}_{N}$ при длине рельсовой линии 2,6 км, $f_{\rm cr}=50$ Гц с использованием математических пакетов (программного обеспечения).
- 2. В одноканальную СМО поступает детерминированный поток заявок с интенсивностью $\lambda = 0.1~{\rm c}^{-1}$, длительность обслуживания которых равна $b = 2.0~{\rm c}^{-1}$. Вычислить среднее время пребывания заявок в системе с использованием математических пакетов (программного обеспечения).
- 3. Определить матрицу передаточного сопротивления рельсовой цепи в шунтовом режиме в соответствии со схемой с использованием математических пакетов (программного обеспечения):

$$Z_{no}^{S} = \frac{U_{2S}}{I_{1S}}.$$

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Использование моделирования при исследовании и проектировании сложных систем.
- 2. Требования к математической модели.
- 3. Этапы математического моделирования.
- 4. Проблемы математического моделирования.
- 5. Классификация математических моделей по форме представления.
- 6. Линейные и нелинейные математические модели. Примеры.
- 7. Непрерывные и дискретные математические модели. Примеры.
- 8. Стационарные и нестационарные математические модели. Примеры.
- 9. Детерминированные и стохастические математические модели. Примеры.
- 10. Статические и динамические математические модели. Примеры.
- 11. Математические модели систем с сосредоточенными и распределенными параметрами. Примеры.
 - 12. Классический подход к моделированию систем. Достоинства и недостатки.
 - 13. Системный подход к моделированию систем. Достоинства и недостатки.
- 14. Математические модели в форме систем линейных алгебраических уравнений (СЛАУ). Область применения и базовые понятия.
 - 15. Формирование модели СЛАУ на примере линейной электрической цепи постоянного тока.
 - 16. Методы решения моделей в форме СЛАУ.

- 17. Математическое моделирование систем с распределенными параметрами
- 18. Стохастический подход к моделированию физических систем.
- 19. Расчет электрической цепи с распределенными параметрами в программе.
- 20. Представление системы линейных алгебраических уравнений в матричном виде и ее решение средствами пакета .

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«не зачтено» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.