Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 29.10.2025 10:13:12 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Прикладная механика

(наименование дисциплины(модуля))

Направление 23.05.05 СИСТЕМЫ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ПОЕЗДОВ

(код и наименование)

Профиль

Электроснабжение железных дорог

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет с оценкой (5 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

пере тепь компетенции, фермируемым в предессе объемы диедининыя	
Код и наименование компетенции	Код индикатора достижения
	компетенции
ПК-8: Способен выполнять проекты устройств электрификации и электроснабжения и разрабатывать к ним техническую документацию	ПК-8.3: Производит расчёты механизмов и сооружений, анализирует механические системы на стадиях проектирования устройств
	системы электроснабжения

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы(семестр)
ПК-8.3: Производит расчёты механизмов и сооружений, анализирует механические системы на стадиях проектирования устройств системы	Обучающийся знает: методы расчёта механизмов и сооружений	Примеры тестовых вопросов 1.11.4 Вопросы к зачету с оценкой 1-28
электроснабжения	Обучающийся умеет: анализировать механические системы	Задания к зачету с оценкой 1.1-1.8
	Обучающийся владеет: методами расчёта механизмов и сооружений	Задания к зачету с оценкой 2.1-2.9

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение тестовых заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

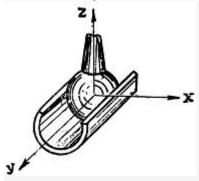
2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат

¹

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-8.3: Производит расчёты	Обучающийся знает: методы расчёта механизмов и сооружений
механизмов и сооружений,	
анализирует механические	
системы на стадиях	
проектирования устройств	
системы электроснабжения	

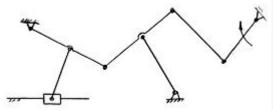

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды ИОС университета

Примеры тестовых вопросов:

1.1 Кому принадлежит приоритет в создании структурной формулы плоских механизмов?

Выберите один ответ:

- а. П.О.Сомову и А.П.Малышеву
- b. П.Л.Чебышеву
- с. Ф.Рело
 - 1.2 Определите класс кинематической пары


Выберите один ответ:

третий

четвертый

второй

1.3 Определите степень подвижности механизма

Выберите один ответ:

1 2 3

т. - дополните опре

1.4 Дополните определение: "ползуном называется ..."

Выберите один ответ:

- а. звено, совершающее колебательное (качательное) движение относительно неподвижной оси
- b. звено, совершающее полный оборот вокруг неподвижной оси
- с. звено, перемещающееся поступательно

Вопросы для подготовки к зачету с оценкой

- 1. Машина, механизм, автомат, автоматическая линия, промышленный робот.
- 2.Механический КПД. Общий КПД последовательно и параллельно соединенных механизмов.
- 3.Схематизированные объекты, рассматриваемые в сопротивлении материалов. Внешние силы, сосредоточенные и распределенные. Расчетная схема.
 - 4.Внутренние силы. Метод сечений. Напряжения: полное, нормальное и касательное.
- 5. Центральное растяжение и сжатие. Напряжения при растяжении и сжатии в поперечных сечениях.
 - 6. Деформация при центральном растяжении и сжатии. Закон Гука. Модуль упругости.

Коэффициент Пуассона.

- 7. Механические характеристики материалов. Диаграмма растяжений.
- 8.Изгиб. Внутренние силовые факторы, поперечная сила и изгибающий момент. Построение эпюр Q(x) и M(x).
 - 9. Напряжение на чистом и поперечном изгибе.
- 10. Кручение круглого прямого бруса. Деформации и напряжения при кручении. Расчет на прочность.
- 11. Усталость материалов. Характеристики циклов переменных напряжений. Кривая усталости и предел выносливости.
 - 12. Назначение и классификация передач.
 - 13.Зубчатые передачи: назначение и классификация.
 - 14.Основные геометрические и кинематические параметры зубчатых передач.
 - 15. Определение передаточных отношений многоступенчатых и рядовых зубчатых передач.
 - 16. Эвольвентное зубчатое зацепление: основные параметры.
 - 17. Основные виды повреждений зубчатых передач и критерии их расчета.
 - 18. Расчет цилиндрических зубчатых передач на контактную прочность.
 - 19. Расчет цилиндрических зубчатых передач на изгиб.
- 20. Червячные передачи. Назначение, область применения, достоинства и недостатки. Основные геометрические и кинематические параметры.
- 21. Расчет червячной передачи на прочность по контактным напряжениям и по напряжениям изгиба.
- 22. Фрикционные передачи. Основные кинематические и геометрические параметры. Фрикционный вариатор.
 - 23. Валы и оси. Классификация и назначение. Критерии расчета.
 - 24. Подшипники качения. Назначение и конструкции. Критерии выбора.
 - 25. Подшипники скольжения. Назначение и конструкции. Критерии выбора.
 - 26. Заклепочные соединения деталей. Достоинства и недостатки.
 - 27. Сварные соединения деталей. Достоинства и недостатки, типы сварных швов.
- 28. Штифтовое и профильное соединение.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ПК-8.3: Производит расчёты	Обучающийся умеет: анализировать механические системы
механизмов и сооружений,	
анализирует механические	
системы на стадиях	
проектирования устройств	
системы электроснабжения	

Задания к зачету с оценкой

Исследовать простейшую деталь(стержень, балку, вал) на прочность

- 1.1Перечислите характеристики прочности и пластичности материала.
- 1.2Начертите машинную диаграмму растяжения образца пластичного материала, обозначьте и укажите названия ее характерных участков
- 1.3Укажите на соответствующей диаграмме отрезок, равный относительной остаточной деформации рабочей части образца после разрыва
- 1.4Дайте определение условному пределу текучести и укажите последовательность действий для его определения с помощью диаграммы. Для каких материалов его определяют
- 1.53апишите формулу для расчета допускаемого напряжения в общем виде.
- 1.6Перечислите основные факторы, которые следует учитывать при назначении коэффициента запаса прочности.
- 1.7Перечислите механические характеристики материала, которые изменяются в результате наклепа.
- 1.8Перечислите механические характеристики материала, которые не изменяются в результате наклепа.\

ПК-8.3: Производит расчёты	Обучающийся владеет: методами расчёта механизмов и сооружений
механизмов и сооружений,	

анализирует механические
системы на стадиях
проектирования устройств
системы электроснабжения

Задания к зачету с оценкой

Исследовать простейшие соединения деталей машин

- 2.1. Определить крутящий момент на ведущем валу изображенной передачи, если мощность на выходном валу равна 6.6 кВт, скорость на входе и выходе 60 и 15 рад/с, КПД 0.96.
- 2.2. Построить проекции линии пересечения двух поверхностей
- 2.3. Определить достаточна ли прочность болта с внутренним диметром резьбы 16 мм, установленного в отверстия с зазором и нагруженного осевой силой 4000H (Допускаемое напряжение 400 мПа)
- 2.4. Определить передаточное отношение число редуктора и угловую скорость ведомого вала, если ведущий вал вращается с угловой скоростью $\omega 1 = 45c$ -1, а число зубьев Z1=28, Z2=42.
- 2.5. Определить величину крутящего момента, который может передать стальной шрифт диаметром 6 мм. (Диаметр вала 25мм, диаметр ступицы 35мм, $[\tau]$ сp = 70 Mna, $[\sigma]$ см = 200 Mna)
- 2.6. Определить достаточна ли прочность болта диаметром 20 мм, установленного в отверстия без зазора. Соединение нагружено поперечной силой P=5 Кн. (Допускаемое напряжение 200 Мпа)
- 2.7. Определить достаточна ли прочность болта с внутренним диаметром резьбы 20 мм, установленного в отверстия с зазором и нагруженного осевой силой 6000 Н. (Допускаемое напряжение 400 Мпа)
- 2.8. Рассчитать диаметр болта, установленного в отверстия с зазором, если на соединение действует поперечная сила P=15 Кн. (Допускаемое напряжение 200 Мпа, коэффициент трения в стыке 0,2)
- 2.9. Рассчитать диаметр болта, установленного в отверстия с зазором, если на соединение действует поперечная сила P=10 Кн. (Допускаемое напряжение 200 Мпа, коэффициент трения в стыке 0,2)

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету с оценкой

- 1. Машина, механизм, автомат, автоматическая линия, промышленный робот.
- 2. Механический КПД. Общий КПД последовательно и параллельно соединенных механизмов.
- 3.Схематизированные объекты, рассматриваемые в сопротивлении материалов. Внешние силы, сосредоточенные и распределенные. Расчетная схема.
 - 4. Внутренние силы. Метод сечений. Напряжения: полное, нормальное и касательное.
- 5.Центральное растяжение и сжатие. Напряжения при растяжении и сжатии в поперечных сечениях.
- 6.Деформация при центральном растяжении и сжатии. Закон Гука. Модуль упругости. Коэффициент Пуассона.
 - 7. Механические характеристики материалов. Диаграмма растяжений.
- 8.Изгиб. Внутренние силовые факторы, поперечная сила и изгибающий момент. Построение эпюр Q(x) и M(x).
 - 9. Напряжение на чистом и поперечном изгибе.
- 10. Кручение круглого прямого бруса. Деформации и напряжения при кручении. Расчет на прочность.
- 11. Усталость материалов. Характеристики циклов переменных напряжений. Кривая усталости и предел выносливости.
 - 12. Назначение и классификация передач.
 - 13.Зубчатые передачи: назначение и классификация.
 - 14.Основные геометрические и кинематические параметры зубчатых передач.
 - 15.Определение передаточных отношений многоступенчатых и рядовых зубчатых передач.
 - 16. Эвольвентное зубчатое зацепление: основные параметры.
 - 17.Основные виды повреждений зубчатых передач и критерии их расчета.
 - 18. Расчет цилиндрических зубчатых передач на контактную прочность.
 - 19. Расчет цилиндрических зубчатых передач на изгиб.
- 20. Червячные передачи. Назначение, область применения, достоинства и недостатки. Основные геометрические и кинематические параметры.
- 21. Расчет червячной передачи на прочность по контактным напряжениям и по напряжениям изгиба.

- 22. Фрикционные передачи. Основные кинематические и геометрические параметры. Фрикционный вариатор.
 - 23. Валы и оси. Классификация и назначение. Критерии расчета.
 - 24. Подшипники качения. Назначение и конструкции. Критерии выбора.
 - 25.Подшипники скольжения. Назначение и конструкции. Критерии выбора.
 - 26. Заклепочные соединения деталей. Достоинства и недостатки.
 - 27. Сварные соединения деталей. Достоинства и недостатки, типы сварных швов.
 - 28. Штифтовое и профильное соединение.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету с оценкой

«Отлично/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно**/**не** зачтено» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.