Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф ЕЭГЕРАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: ЕЭГЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
Дата подписания: 71.10.2025 15:09:13
Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Высшая математика

рабочая программа дисциплины (модуля)

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 15 ЗЕТ

Виды контроля в семестрах:

экзамены 4, 1 зачеты 3, 2

Распределение часов дисциплины по семестрам

	· · ·	1		дисци			. I				
Семестр (<Курс>.<Семестр на курсе>)	1 (1.1)	2 (1	1.2)	3 (2	2.1)	4 (2	2.2)	Итого		
Недель	16	1/6	16 4/6		16 2/6		16 2/6		1		
Вид занятий	УП	РΠ	УП	РП	УП	РΠ	УП	РП	УП	РΠ	
Лекции	32	32	32	32	16	16	16	16	96	96	
Практические	48	48	32	32	32	32	16	16	128	128	
Конт. ч. на аттест.	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	1,6	1,6	
Конт. ч. на аттест. в период ЭС	2,3	2,3	0,15	0,15	0,15	0,15	2,3	2,3	4,9	4,9	
Итого ауд.	80	80	64	64	48	48	32	32	224	224	
Контактная работа	82,7	82,7	64,55	64,55	48,55	48,55	34,7	34,7	230,5	230,5	
Сам. работа	72,6	72,6	70,6	70,6	50,6	50,6	48,6	48,6	242,4	242,4	
Часы на контроль	24,7	24,7	8,85	8,85	8,85	8,85	24,7	24,7	67,1	67,1	
Итого	180	180	144	144	108	108	108	108	540	540	

Программу составил(и):

к.ф.-м.н., доцент, Кириченко Светлана Викторовна

Рабочая программа дисциплины

Высшая математика

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

составлена на основании учебного плана: 13.03.02-25-2-ЭЭб.plm.plx

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Рабочая программа одобрена на заседании кафедры

Высшая математика

Зав. кафедрой

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
1.1	сформировать представления о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики;
1.2	овладеть математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно - научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;
1.3	сформировать готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
1.4	сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
Цикл (раздел) ОП:	Б1.О.11				

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач

ОПК-3.1 Применяет методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	основные понятия и методы аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления; основы теории вероятностей, математической статистики;
3.2	Уметь:
3.2.1	применять аппарат алгебры, геометрии, математического анализа, теории вероятностей и математической статистики;
3.3	Владеть:
3.3.1	навыками применения основных законов естественнонаучных лиспиплин в профессиональной деятельности.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и тем /вид занятия/	Семестр	Часов	Примечание
занятия	D 1 H V Z	/ Kypc		
	Раздел 1. Линейная алгебра			
1.1	Введение. Предмет математики. Основные алгебраические структуры.	1	2	
	Линейная алгебра. Определители второго и третьего порядков. Основные			
	свойства определителей, минор и алгебраическое дополнение Понятие об			
	определителе n-ого порядка и его вычисление. /Лек/			
1.2	Определители и их свойства, вычисление определителей 2-го; 3-го;, п-	1	2	
	ого порядков. /Пр/			
1.3	Матрицы. Их виды. Алгебра матриц. Обратная матрица. Теорема	1	2	
	существования и единственности обратной матрицы. Элементарные			
	преобразования матриц. Ранг матрицы. /Лек/			
1.4	Матрицы и операции над ними. Умножение матриц. Обратная матрица.	1	4	
	Нахождение ранга матрицы. /Пр/			
1.5	Решение систем линейных уравнений (СЛУ) методом Крамера и	1	2	
	матричным методом. /Лек/			
1.6	Решение невырожденных систем. Матричный метод решения СЛАУ. Метод	1	2	
	Крамера. /Пр/			
1.7	Теорема Кронекера-Капелли. Решение СЛУ методом Гаусса, методом	1	2	
	Жордана-Гаусса. Однородные системы. /Лек/			
1.8	Теорема Кронекера-Капелли. Решение СЛУ методом Гаусса, методом	1	4	
	Жордана-Гаусса. Решение однородных систем. /Пр/			
	Раздел 2. Векторная алгебра			
2.1	Векторы. Линейные операции над векторами, их свойства. Базис в	1	2	
	пространстве, орты, декартова система координат. Направляющие			
	косинусы. Скалярное произведение, его свойства, приложения. Векторное			
	произведение. Его свойства. Геометрический и механический смысл			
	векторного произведения. Условие коллинеарности векторов. Смешанное			
	произведение. Его свойства, вычисление, приложения. /Лек/			

	1			
2.2	Векторы. Линейные операции над векторами. Скалярное произведение векторов. Векторное и смешанное произведения векторов, базис. /Пр/	1	2	
	Раздел 3. Аналитическая геометрия			
3.1	Прямая на плоскости, прямая и плоскость в пространстве: способы	1	4	
	задания, взаимное расположение, углы и расстояния. /Лек/			
3.2	Уравнения плоскости. Прямая в пространстве и на плоскости. Полярные координаты точки. Уравнения линий в полярных координатах. /Пр/	1	8	
3.3	Линии второго порядка: окружность, эллипс, гипербола, парабола. Канонический вид кривых второго порядка. /Лек/	1	2	
3.4	Линии второго порядка: окружность, эллипс, гипербола, парабола. Приведение к каноническому виду кривых второго порядка. /Пр/	1	6	
	Раздел 4. Введение в математический анализ			
4.1	Понятие функции, предел функции и последовательности. Основные	1	4	
	теоремы о пределах, замечательные пределы. Бесконечно малые и			
1.2	бесконечно большие величины, эквивалентные величины. /Лек/	1	1	
4.2	Непрерывность функции в точке, непрерывность элементарных функций. Свойства функций, непрерывных на отрезке. Точки разрыва и их классификация. /Лек/	1	4	
4.3	Вычисление пределов функций, последовательностей. Первый и второй замечательные пределы. Раскрытие неопределенностей. Сравнение бесконечно малых функций. Исследование функций на непрерывность. /Пр/	1	6	
	Раздел 5. Дифференциальное исчисление функций одной переменной			
5.1	Определение производной, основные правила дифференцирования.	1	4	
	Производная сложной и обратной функции. Производная параметрической и неявной функции. Дифференциал. Уравнения касательной и нормали. Свойства дифференцируемых функций. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя для вычисления пределов. /Лек/			
5.2	Вычисление производных и дифференциалов функций одной переменной. Вычисление производных сложных, неявных и параметрических функций. Вычисление производных высших порядков. Нахождение пределов с использованием правила Лопиталя. /Пр/	1	8	
5.3	Исследование функции с помощью производных. Интервалы монотонности, экстремумы, интервалы выпуклости и вогнутости, точки перегиба, асимптоты. Построение графика функции. Наибольшее и наименьшее значения функции на отрезке. Формула Тейлора. /Лек/	1	4	
5.4	Исследование функций с помощью производных. Нахождение точек экстремума и точек перегиба. Нахождение асимптот графика функции. Полное исследование функций и построение графиков. Разложение функция по формуле Тейлора. /Пр/	1	6	
5.5	Подготовка к лекциям. /Ср/	1	16	
5.6	Подготовка практическим занятиям. /Ср/	1	48	
5.7	Контрольная работа. /Ср/	1	8,6	
	Раздел 6. Контактные часы на аттестацию			
6.1	Контрольная работа. /КА/	1	0,4	
6.2	Экзамен. /КЭ/	1	2,3	
	Раздел 7. Дифференциальное исчисление функций нескольких переменных			
7.1	Основные понятия: область определения, линии уровня, предел, непрерывность. Частные производные, полный дифференциал, геометрический смысл частных производных. Производная сложной функции, инвариантность формы первого дифференциала. Касательная плоскость и нормаль к поверхности. /Лек/	2	2	
7.2	Область определения, предел, непрерывность ФНП. Нахождение частных производных и дифференциалов, производных сложных и неявных функций. Касательная плоскость и нормаль к поверхности. /Пр/	2	2	

7.3	Производная по направлению, градиент. Частные производные и дифференциалы высших порядков. Приближенные вычисления. Необходимые и достаточные условия экстремума функции многих переменных. Условный экстремум. /Лек/	2	4	
7.4	Нахождение производной по направлению, вектора градиент, частных производных и дифференциалов высших порядков. Приближенные вычисления. Исследование функции многих переменных на локальный и условный экстремум. /Пр/	2	2	
7.5	Наибольшее и наименьшее значение функции в замкнутой области. Формула Тейлора. /Лек/	2	2	
7.6	Нахождение наибольшего и наименьшего значений функции в замкнутой области. Формула Тейлора. /Пр/	2	4	
	Раздел 8. Интегральное исчисление			
8.1	Первообразная. Неопределенный интеграл, его свойства. Таблица основных формул интегрирования. Правила интегрирования. Интегрирование в конечном виде. Замена переменной в неопределенном интеграле (метод подстановки). Интегрирование по частям. /Лек/	2	4	
8.2	Непосредственное интегрирование. Вычисление неопределенного интеграла методами подстановки и по частям. /Пр/	2	2	
8.3	Разложение дробной рациональной функции на простейшие. Интегрирование простейших рациональных дробей. Интегрирование произвольной рациональной дроби /Лек/	2	4	
8.4	Разложение дробной рациональной функции на простейшие. Интегрирование простейших рациональных дробей. Интегрирование произвольной рациональной дроби. /Пр/	2	4	
8.5	Интегрирование некоторых иррациональных выражений. Интегрирование выражений, содержащих тригонометрические функции. /Лек/	2	4	
8.6	Интегрирование некоторых иррациональных выражений. Интегрирование выражений, содержащих тригонометрические функции /Пр/	2	4	
8.7	Определенный интеграл, геометрический и физический смысл, свойства. Теорема о среднем значении. Теорема о производной интеграла с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Геометрические приложения определенного интеграла /Лек/	2	4	
8.8	Определенный интеграл. Геометрические приложения определенного интеграла. Вычисление площадей плоских фигур и объемов тел вращения. Вычисление длин дуг плоских кривых и площадей поверхности тел вращения. Некоторые физические приложения определенного интеграла. /Пр/	2	4	
8.9	Несобственные интегралы: интеграл по бесконечному промежутку, интеграл от неограниченной функции. Признаки сходимости несобственных интегралов. /Лек/	2	4	
8.10	Вычисление несобственных интегралов. /Пр/	2	4	
	Раздел 9. Комплексные числа			
9.1	Алгебраические операции над комплексными числами. Запись комплексных чисел в алгебраической, тригонометрической и показательной форме. /Лек/	2	4	
9.2	Комплексные числа и действия с ними. Решение уравнений во множестве комплексных чисел. /Пр/	2	6	
9.3	Подготовка к лекциям. /Ср/	2	16	
9.4	Подготовка к практическим занятиям. /Ср/	2	32	
9.5	Приближенные методы вычисления определенных интегралов. /Ср/	2	14	
9.6	Контрольная работа. /Ср/	2	8,6	
9.7	Контрольная работа. /КА/	2	0,4	
9.8	Зачет. /КЭ/	2	0,15	

	Раздел 10. Обыкновенные дифференциальные уравнения			
10.1	Дифференциальные уравнения. Общие понятия и определения. Уравнения первого порядка. Частное и общее решение. Задача Коши. Уравнения с разделяющимися переменными. Однородные и линейные уравнения первого порядка. Уравнения Бернулли. Уравнения в полных дифференциалах. /Лек/	3	2	
10.2	Уравнения с разделяющимися переменными. Однородные дифференциальные уравнения. Линейные уравнения первого порядка. Уравнения Бернулли. Уравнения в полных дифференциалах. /Пр/	3	4	
10.3	Уравнения, допускающие понижение порядка. Линейные ДУ n-го порядка: свойства решений однородных и неоднородных уравнений, структура общего решения. /Лек/	3	2	
10.4	Уравнения, допускающие понижение порядка. /Пр/	3	4	
10.5	Линейные дифференциальные уравнения с постоянными коэффициентами. Метод вариации постоянных, частное решение неоднородного уравнения с правой частью специального вида. Нормальные системы ДУ. Метод исключения. /Лек/	3	2	
10.6	Линейные однородные ДУ п-ого порядка с постоянными коэффициентами. Решение линейных неоднородных ДУ с постоянными коэффициентами со специальной правой частью. Метод вариации произвольных постоянных. Решение нормальных системы ДУ. /Пр/	3	6	
	Раздел 11. Числовые и функциональные ряды			
11.1	Основные определения, необходимый признак сходимости ряда. Достаточные признаки сходимости числовых рядов с положительными членами. Знакопеременные ряды, абсолютная и условная сходимость. Знакочередующиеся ряды, признак Лейбница. /Лек/	3	2	
11.2	Числовые ряды. Достаточные признаки сходимости: признак Даламбера и радикальный признак Коши. Интегральный признак Коши. Признаки сравнения. /Пр/	3	2	
11.3	Знакопеременные ряды. Признак Лейбница. Условная и абсолютная сходимости. /Пр/	3	2	
11.4	Функциональные ряды. Сходимость. Равномерная сходимость. Свойства равномерно сходящихся рядов. Признак Вейерштрасса. Степенные ряды. Теорема Абеля, область сходимости. Радиус сходимости. /Лек/	3	2	
11.5	Функциональные ряды. Сходимость. Свойства равномерно сходящихся рядов. Степенные ряды. Теорема Абеля, область сходимости. Радиус сходимости. /Пр/	3	4	
11.6	Ряд Тейлора. Разложение некоторых элементарных функций в ряд Маклорена. Приближенные вычисления при помощи степенных рядов. Применение степенных рядов для приближенного решения дифференциальных уравнений. /Лек/	3	4	
11.7	Ряд Тейлора. Разложение некоторых элементарных функций в ряд Маклорена. Приближенные вычисления при помощи степенных рядов. Применение степенных рядов для приближенного решения дифференциальных уравнений. /Пр/	3	6	
11.8	Тригонометрический ряд. Ряд Фурье. Теорема Дирихле. Ряд Фурье для четных и нечетных функций. Разложение в ряд Фурье непериодических функций. /Лек/	3	2	
11.9	Разложение функций в ряд Фурье. /Пр/	3	4	
11.10	Приложения степенных рядов. /Ср/	3	2	
11.11	Подготовка к лекциям. /Ср/	3	8	
11.12	Подготовка к практическим занятиям. /Ср/	3	32	
11.13	Выполнение контрольной работы по теме "Дифференциальные уравнения и ряды". /Ср/	3	8,6	
11.14	Контрольная работа. /КА/	3	0,4	

VII: 13.03.02-25-2-ЭЭб.plm.plx стр.

11.15	Зачет. /КЭ/	3	0,15	
	Раздел 12. Теория вероятностей			
12.1	Теория вероятностей. Случайные события. Совместные и несовместные события. Классическое определение вероятности. Геометрическая, статистическая вероятность. Теоремы сложения и умножения вероятностей. /Лек/	4	2	
12.2	Случайные события. Совместные и несовместные события. Классическое определение вероятности. Геометрическая, статистическая вероятность. Теоремы сложения и умножения вероятностей. /Пр/	4	2	
12.3	Формула полной вероятности. Вероятность гипотез (формула Байеса). Схема испытаний Бернулли. Теоремы Лапласа. Теорема Пуассона. /Лек/	4	2	
12.4	Формула полной вероятности. Вероятность гипотез (формула Байеса). Схема испытаний Бернулли. Теоремы Лапласа. Теорема Пуассона. /Пр/	4	2	
12.5	Случайные величины (дискретные и непрерывные). Закон распределения (функция распределения, ряд распределения, плотность распределения). Числовые характеристики СВ (математическое ожидание и дисперсия случайной величины, моменты, мода, медиана. /Лек/	4	2	
12.6	Случайные величины (дискретные и непрерывные). Закон распределения (функция распределения, ряд распределения, плотность распределения). Числовые характеристики СВ (математическое ожидание и дисперсия случайной величины, моменты, мода, медиана. /Пр/	4	2	
12.7	Законы распределения дискретной, непрерывной случайных величин. /Лек/	4	2	
12.8	Законы распределения дискретной, непрерывной случайных величин. /Пр/	4	2	
	Раздел 13. Математическая статистика			
13.1	Предмет математической статистики. Генеральная и выборочная совокупность. Вариационный, интервальный ряд, полигон, гистограмма. /Лек/	4	2	
13.2	Выборочный метод. Генеральная и выборочная совокупность. Вариационный, интервальный ряд. Построение полигонов частот и гистограммы. /Пр/	4	2	
13.3	Эмпирическая функция распределения. Числовые характеристики статистического распределения /Лек/	4	2	
13.4	Эмпирическая функция распределения. Числовые характеристики статистического распределения /Пр/	4	2	
13.5	Точечные оценки математического ожидания и дисперсии. Доверительные интервалы. Статистическая гипотеза. Критерий Пирсона. /Лек/	4	2	
13.6	Точечные оценки математического ожидания и дисперсии. Доверительные интервалы. Статистическая гипотеза. Критерий Пирсона. /Пр/	4	2	
13.7	Корреляционно-регрессионный анализ. Функциональная, стохастическая и корреляционная зависимости. Определение формы парной корреляционной зависимости. Коэффициент корреляции. Линейные уравнения парной регрессии /Лек/	4	2	
13.8	Корреляционно-регрессионный анализ. Понятие о корреляции случайных величин. Коэффициент корреляции. Линейные уравнения парной регрессии. /Пр/	4	2	
	Раздел 14. Самостоятельная работа			
14.1	Подготовка к лекциям /Ср/	4	8	
14.2	Дисперсионный анализ /Ср/	4	16	
14.3	Подготовка к практическим занятиям /Ср/	4	16	
14.4	Контрольная работа "Теория вероятностей и математическая статистика" /Ср/	4	8,6	
	Раздел 15. Контактные часы на аттестацию			

15.1	Экзамен /КЭ/	4	2,3	
15.2	Контрольная работа /КА/	4	0,4	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС

		ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИ 6.1. Рекомендуемая литература		
		6.1.1. Основная литература		
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес
[1.1	Васильев А. А.	Теория вероятностей и математическая статистика: Учебник и практикум для вузов	Москва: Юрайт, 2020	tps://urait.ru/bcode/45
[1.2	Карасева Р. Б.	Высшая математика: дифференциальное исчисление функции нескольких переменных, интегральное исчисление функции одной действительной переменной: учебное пособие	Омск: СибАДИ, 2020	://e.lanbook.com/book
[1.3	Карасева Р. Б.	Высшая математика: линейная алгебра, векторная алгебра, аналитическая геометрия, введение в математический анализ, дифференциальное исчисление функции одной действительной переменной: учебное пособие	Омск: СибАДИ, 2019	://e.lanbook.com/book
		6.1.2. Дополнительная литература		
	Авторы, составители	Заглавие	Издательс тво, год	Эл. адрес
I2.1	Архангельский А. И., Бажанов В. И.	Сборник индивидуальных заданий по математике для технических высших учебных заведений. Часть 1	Санкт- Петербур г: Лань, 2021	://e.lanbook.com/book
6.2	Информационные тех	 нологии, используемые при осуществлении образователь (модулю)	ьного процесс	 са по дисциплине
	6.2.1 Перечені	ь лицензионного и свободно распространяемого программ	иного обеспеч	нения
.2.1.1	Microsoft Office 2010	Professional		
	6.2.2 Перечен	ь профессиональных баз данных и информационных сп	равочных си	стем
.2.2.1	zbMATH – самая полн	ая математическая база данных, охватывающая		
.2.2.2	2 материалы с конца 19	века. zbMath содержит около 4 000 000 документов, из		

6.2.2.4	также машиностроению, физике, естественным наукам и др zbmath.org
6.2.2.5	Общероссийский математический портал (информационная система)
6.2.2.6	- http://www.mathnet.ru/
6.2.2.7	Mathcad- справочник по высшей математике
6.2.2.8	-http://www.exponenta.ru/soft/Mathcad/learn/learn.asp/
	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Учебные аудитории для проведения занятий лекционного типа, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование для предоставления учебной информации большой аудитории и/или звукоусиливающее оборудование (стационарное или переносное).
7.2	Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное)
7.3	Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета.
7.4	Помещения для хранения и профилактического обслуживания учебного оборудования

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Высшая математика
(наименование дисциплины(модуля)
Направление подготовки / специальность
13.03.02 Электроэнергетика и электротехника
(код и наименование)
Направленность (профиль)/специализация
Электрический транспорт
(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации (по очной форме обучения): экзамены (1, 4 семестры) зачет (2, 3 семестр)

Перечень компетенций, формируемых в процессе освоения дисциплины

В соответствии с ФГОС 3++

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3.1 Применяет методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности.

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

В соответствии с ФГОС 3++

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
		(семестр)
ОПК-3 Способен применять	Обучающийся знает: основные понятия и методы	Вопросы (№ 1 –
соответствующий физико-	аналитической геометрии и линейной алгебры,	№ 163)
математический аппарат, методы анализа	дифференциального и интегрального исчисления;	Задания (№ 1-
и моделирования, теоретического и	основы теории вероятностей, математической	№20)
экспериментального исследования при	статистики;	
решении профессиональных задач	Обучающийся умеет: применять аппарат алгебры,	Задания (№ 21-
ОПК-3.1 Применяет методы	геометрии, математического анализа, теории	№33)
математического анализа и	вероятностей и математической статистики;	
моделирования для обоснования	Обучающийся владеет: навыками применения	Задания (№ 34-
принятия решений в профессиональной	основных законов естественнонаучных дисциплин в	№36)
деятельности	профессиональной деятельности.	,

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат		
достижения компетенции			
ОПК-3 Способен применять	Обучающийся знает: основные понятия и методы аналитической геометрии и линейной		
соответствующий физико-	алгебры, дифференциального и интегрального исчисления; основы теории вероятностей,		

математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач ОПК-3.1 Применяет методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности

математической статистики;

- 1. Укажите верные утверждения:
 - А) транспонировать можно любую матрицу
 - В) если A и В две квадратные матрицы одинаковой размерности, то всегда верно AB = BA
 - С) обратная матрица существует только для вырожденной матрицы
 - D) одним из элементарных преобразований матрицы является умножение всех элементов ряда матрицы на число, отличное от нуля
 - Е) операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.
- 2. Что можно сказать о системе линейных уравнений с матрицей (A)и расширенной матрицей (A|B), если rang(A) < rang(A|B):
 - А) система имеет единственное решение;
 - В) существование такой системы невозможно;
 - С) система не имеет решений.
- 3. Даны координаты точек A(1; 1; 0), B(2; 1; -1). Координаты вектора AB:

A).
$$AB = (2+1; 1+1; -1+0)$$
 B). $AB = (2-1; 1-1; -1-0)$ C). $AB = (2\cdot1; 1\cdot1; -1\cdot0)$.

4. Какие из уравнений являются уравнением гиперболы:

1)
$$(x+3)^2 - 4(y+4)^2 = 36$$

2)
$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{16} = 1$$

3)
$$\frac{(x-1)^2}{9} - \frac{(y-2)^2}{16} = 1$$

4)
$$\frac{(x-1)^2}{9} - \frac{(y-2)}{16} = 1$$

5)
$$x^2 = 1 + y^2$$

- 5. Укажите верные равенства:
 - 1) $(\sin u)' = \cos u \cdot u'$

2)
$$(\operatorname{arctg} u)' = -\frac{1}{1+u^2} \cdot u'$$

3)
$$(a^u)' = a^u \cdot \lg a \cdot u'$$

4)
$$(\log_a u)' = \frac{1}{u \ln a} \cdot u'$$

5)
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u'$$

6)
$$(\arcsin u)' = \frac{1}{\sqrt{1-u}} \cdot u'$$
.

- 6. Производная функции y = f(x) в точке $x = x_0$ это:
 - A) приращение функции Δy ;

- B) отношение $\Delta y \kappa \Delta x$;
- С) предел отношения Δy к Δx при $\Delta x \rightarrow 0$;
- D) предел функции при $x \to x_0$.

7. Указать верные равенства:

- 1) d(uv) = du + dv
- 2) dC = Cdx (C = const)
- 3) $dx = \Delta x$, если x независимая переменная
- 4) $df(u) = f_u^{\prime}(u)u'dx$

5)
$$d\left(\frac{u}{v}\right) = \frac{du}{dv}$$
 $(dv \neq 0)$.

8. Скорость точки, движущейся по закону S = S(t), находится по формуле:

A)
$$V = S(t) - S'(t)$$
;

B)
$$V = \int S(t)dt$$
; C) $V = S'(t)$.

C)
$$V = S'(t)$$

- 9. Частной производной функции нескольких переменных называется:
 - А) производная от частного аргумента функции;
 - В) производная от произведения аргументов функции;
 - С) производная от частного аргументов функции;
 - D) производная от функции при условии, что все аргументы кроме одного остаются
- 10. Найти *gradz* функции z = f(x, y) находится по формуле:

A)
$$\overline{gradz} = z'_{x}i + z'_{y}j$$
;

A)
$$\overline{gradz} = z'_x i + z'_y j;$$
 B) $\overline{gradz} = z'_x \cos \alpha + z'_y \cos \beta;$
C) $\overline{gradz} = z'_x i - z'_y j;$ D) $\overline{gradz} = z'_x + z'_y.$

C)
$$\overline{gradz} = z'_{x}i - z'_{y}j$$
;

D)
$$\overline{gradz} = z'_x + z'_y$$
.

11. Функция F(x) называется первообразной для непрерывной функции y = f(x), если:

A)
$$F(x) = f(x) + C$$
; B) $F'(x) = f(x)$; C) $F(x) = f'(x)$; D) $F'(x) = f'(x)$.

B)
$$F'(x) = f(x)$$

$$C) F(x) = f'(x);$$

$$D) F'(x) = f'(x)$$

12. Формула интегрирования по частям имеет вид:

A)
$$\int u dv = uv + \int v du$$
; B) $\int u dv = uv - \int v du$;

B)
$$\int u dv = uv - \int v du$$

C)
$$\int u dv = \int u dx + \int v dx$$
; D) $\int u dv = \int u dx - \int v dx$

13. Какое из следующих свойств определенного интеграла является неверным:

A)
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx;$$
 B) $\int_{a}^{b} Af(x)dx = A \int_{a}^{b} f(x)dx;$

B)
$$\int_{a}^{b} Af(x)dx = A \int_{a}^{b} f(x)dx$$
;

C)
$$\int_{a}^{b} f(x)dx = 1;$$

$$D)\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

14. Дифференциальным уравнением первого порядка является уравнение:

1)
$$xy' + \sin x \cdot y = 0$$
;

1)
$$xy' + \sin x \cdot y = 0$$
; 2) $x + \sin x \cdot y = 0$;

3)
$$v'' + v' \sin x + v = 1$$
; 4) $v''' + v' - 2 = \cos x$.

4)
$$v''' + v' - 2 = \cos x$$

15. Дифференциальным уравнением с разделяющимися переменными является уравнение вида:

1)
$$y' + p(x) \cdot y = q(x)$$
;

2)
$$y^{(n)} = f(x)$$
;

3)
$$P_1(x)Q_1(y)dx + P_2(x)Q_2(y)dy = 0$$
.

- 16. Если имеется n несовместных событий H_i , образующих полную группу, и известны вероятности $P(H_i)$, а событие A может наступить после реализации одного из H_i и известны вероятности $P(A/H_i)$, то P(A) вычисляется по формуле
 - А) полной вероятности
 - В) Бернулли
 - С) Муавра- Лапласа
 - D) Байеса
- 17. Вероятность появления события A в испытании равна p. Чему равна дисперсия числа появления

события A в одном испытании?	
A) 1-p	
B) p(1-p)	
C) p	
D) 1/p	

- 18. Функцией распределения случайной величины X называется функция F(x), задающая вероятность того, что случайная величина X примет значение:
 - А). большее х
 - В). меньшее или равное х
 - С). равное х
 - D). меньшее x
- 19. Комбинации, число которых определяется по формуле $C_n^m = \frac{n!}{m!(n-m)!}$, называются:
 - А) сочетаниями;
 - В) размещениями;
 - С) перестановками;
 - D) размещениями с повторением.
- 20. Числовое значение середины доверительного интервала характеризует:
 - А) точечную оценку параметра распределения;
 - В) интервальную оценку параметра распределения;
 - С) надежность оценки параметра распределения;
 - D) точность оценки параметра распределении.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

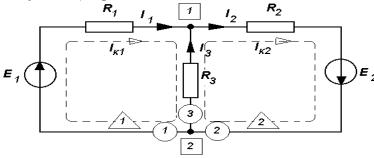
Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-3 Способен применять	Обучающийся умеет: применять аппарат алгебры, геометрии, математического анализа,
соответствующий физико-	теории вероятностей и математической статистики.
математический аппарат,	
методы анализа и	
моделирования, теоретического	
и экспериментального	
исследования при решении	
профессиональных задач	
ОПК-3.1 Применяет методы	
математического анализа и	
моделирования для обоснования	
принятия решений в	
профессиональной	
деятельности.	

- 21. Найти произведение матриц $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 3 & 4 \\ 3 & 1 \end{pmatrix}$.
- 22. Найти векторное произведение векторов. \bar{a} ={2; 1; 3} и \bar{b} ={1; 2; 3}.
- 23. Найти предел $\lim_{x\to -1} \frac{3x^2 + 9x + 6}{2x^2 2}$
- 24. Найти производную функции $y = 5^{tg^3 4x}$.
- 25. Найти производную функции $U=x^2+3xy^2$ в точке $\mathbf{M}(1;1)$ в направлении единичного вектора $\overset{-}{e}$ (0;1)

26. Найдите неопределенный интеграл
$$I = \int \frac{2x^3 - x^6 + 2}{x} dx$$

- 27. Указать вид частного решения уравнения $y'' 2y' = 6 + 12x 24x^2$.
- 28. Для Л.Н.Д.У. подобрать структуру частного решения $y^*: 10y'' + 20y' = e^{-2x} \cdot x^2$.
- 29. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{2^n x^n}{n^2 + 1}$.
- 30. Найти разложение в степенной ряд по степеням x решения дифференциального уравнения (записать три первых, отличных от нуля, члена этого разложения) $y' = xy + e^y$, если y(0) = 0.
- 31. Из генеральной совокупности извлечена выборка объема n=20.

xi	3	4	6	9
ni	2	4	7	7


Найти несмещенную оценку математического ожидания.

- 32. На склад поступает 40% деталей с первого завода и 60% деталей со второго завода. Вероятность изготовления брака для первого и второго завода соответственно равны 0,01 и 0, 04. Найти вероятность того, что наудачу поступившая на склад деталь окажется бракованной.
- 33. Для случайной величины X, распределенной по нормальному закону, найден доверительный интервал (12,46; 13,56) для оценки неизвестного математического ожидания. Определить точность оценки.

ОПК-3 Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач ОПК-3.1 Применяет методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности

Обучающийся владеет: навыками применения основных законов естественнонаучных дисциплин в профессиональной деятельности.

34. Для электрической схемы составить и решить на основании законов Кирхгофа систему уравнений для расчета токов при заданных активных сопротивлениях $R_1=22,5~{\rm Om},~R_2=18~{\rm Om},~R_3=15~{\it Om}$ и электродвижущих силах $E_1=15~{\it B},~E_2=30~{\it B}.$

- 35. В цепи электрического тока электрический заряд меняется с течением времени по закону q=q(t). Вычислить силу тока в момент времени t=5c, если q=sin(2t-10).
- 36. Комплексные напряжение и ток пассивного двухполюсника имеют U=80+60i B и I=24-7i A. Вычислить комплексное сопротивление.
- 37. Решить дифференциальное уравнение $I^{"}+\frac{R}{L}I^{'}+\frac{1}{LC}I=0$, описывающее явление течения тока, протекающее в электрической цепи, с сопротивлением R, самоиндукцией L, ёмкостью C, если внешняя электродвижущая сила постоянна (или вовсе отсутствует). Найти зависимость тока от времени I=I(t), если R=4, L=2, C=0,5.
- 36. Вероятность безотказной работы элемента распределена по показательному закону

 $f(t) = 0.02 \cdot e^{-0.02t}$ (t > 0). Найти вероятность того, что элемент проработает безотказно в течение 50 ч.

- 2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации
- 1. Матрицы, их виды.
- 2. Действия над матрицами.
- 3. Определители второго и третьего порядка, их вычисление.
- 4. Свойства определителей.
- 5. Определитель n-го порядка, его вычисление.
- 6. Невырожденные матрицы. Обратная матрица.
- 7. Ранг матрицы.
- 8. Системы линейных уравнений. Теорема Кронекера-Капелли.
- 9. Метод Крамера решения систем линейных уравнений.
- 10. Метод обратной матрицы.
- 11. Метод Гаусса решения систем линейных уравнений.
- 12. Однородные системы линейных уравнений.
- 13. Векторы, линейные операции над векторами.
- 14. Координаты вектора. Модуль вектора. Направляющие косинусы.
- 15. Линейное (векторное) пространство. Базис. Размерность пространства.
- 16. Линейно зависимая и линейно независимая система векторов. Разложение вектора по базису.
- 17. Действия с векторами в координатной форме.
- 18. Скалярное произведение и его свойства.
- 19. Вычисление скалярного произведения.
- 20. Угол между векторами. Условие ортогональности.
- 21. Векторное произведение и его свойства.
- 22. Вычисление векторного произведения.
- 23. Приложения векторного произведения. Условие коллинеарности.
- 24. Смешанное произведение, его геометрический смысл.
- 25. Свойства смешанного произведения.
- 26. Выражение смешанного произведения через координаты.
- 27. Некоторые приложения смешанного произведения.
- 28. Системы координат на плоскости (декартовая, полярная). Преобразование координат из одной системы в другую.
- 29. Деление отрезка в данном отношении. Деление отрезка пополам.
- 30. Уравнения прямой на плоскости.
- 31. Угол между прямыми. Условие параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- 32. Кривые второго порядка. Общее уравнение кривой второго порядка. Окружность.
- 33. Эллипс.
- 34. Гипербола.
- 35. Парабола.
- 36. Понятие об уравнении поверхности и линии в пространстве.
- 37. Уравнения плоскости в пространстве.
- 38. Расстояние от точки до плоскости. Угол между плоскостями. Условие параллельности и перпендикулярности плоскостей.
- 39. Уравнения прямой в пространстве.
- 40. Угол между прямыми. Условие параллельности и перпендикулярности.
- 41. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости.
- 42. Поверхности второго порядка.
- 43. Комплексные числа их геометрическое истолкование. Модуль, аргумент комплексного числа.
- 44. Алгебраическая, тригонометрическая, показательная формы представления комплексного числа.
- 45. Алгебраические действия с комплексными числами. Корень n-ой степени из комплексного числа. Формула Муавра.
- 46. Множества. Операции над множествами.

- 47. Действительные числа, их свойства.
- 48. Понятие функции. График функции. Способы задания функций.
- 49. Основные характеристики функции (четность, нечетность, монотонность, ограниченность, периодичность).
- 50. Основные элементарные функции и их графики.
- 51. Числовая последовательность. Предел числовой последовательности.
- 52. Предел функции в точке, при $x \to \infty$. Бесконечно большая функция.
- 53. Односторонние пределы.
- 54. Бесконечно малая функция. Свойства бесконечно малых.
- 55. Основные теоремы о пределах.
- 56. Первый и второй замечательные пределы.
- 57. Эквивалентные бесконечно малые функции.
- 58. Непрерывность функции в точке, на интервале.
- 59. Точки разрыва функции и их классификация.
- 60. Свойства функций, непрерывных на отрезке.
- 61. Определение производной.
- 62. Механический и геометрический смысл производной.
- 63. Уравнение касательной и нормали к кривой.
- 64. Правила вычисления производной.
- 65. Производная сложной и обратной функций.
- 66. Таблица производных элементарных функций.
- 67. Логарифмическое дифференцирование.
- 68. Производные высших порядков.
- 69. Неявно заданная функция и ее производная.
- 70. Функция, заданная параметрически, ее производная.
- 71. Понятие дифференциала функции, его геометрический смысл.
- 72. Применение дифференциала к приближенным вычислениям.
- 73. Теоремы о дифференцируемых функциях (Ролля, Коши, Лагранжа).
- 74. Правило Лопиталя.
- 75. Возрастание и убывание функций. Необходимое и достаточное условия.
- 76. Максимум и минимум функций, их необходимые и достаточные условия.
- 77. Наибольшее и наименьшее значения функции на отрезке.
- 78. Выпуклость, вогнутость графика функции. Точки перегиба.
- 79. Асимптоты графика функции.
- 80. Формула Тейлора для функции одной переменной. Формула Маклорена
- 81. Функции нескольких переменных. Область определения и область значений функции. Способы задания функции.
- 82. Предел функции и её непрерывность.
- 83. Частные приращения и частные производные первого порядка и их геометрический смысл.
- 84. Частные производные высших порядков.
- 85. Дифференцируемость и полный дифференциал функции.
- 86. Применение полного дифференциала к приближенным вычислениям.
- 87. Дифференциалы высших порядков.
- 88. Производная от сложной функции. Полная производная. Инвариантность формы первого дифференциала.
- 89. Дифференцирование неявной функции.
- 90. Касательная плоскость и нормаль к поверхности.
- 91. Экстремумы функции нескольких переменных. Необходимые и достаточные условия существования экстремума для функции двух переменных.
- 92. Условный экстремум.
- 93. Наибольшее и наименьшее значение функции в замкнутой области.
- 94. Производная функции по направлению и градиент функции. Геометрический смысл градиента.
- 95. Метод наименьших квадратов.
- 96. Первообразная. Неопределенный интеграл и его свойства.
- 97. Основная таблица интегралов.
- 98. Замена переменной при интегрировании.

- 99. Интегрирование по частям неопределенного интеграла.
- 100. Интегрирование дробно-рациональных функций.
- 101. Интегрирование иррациональных выражений.
- 102. Интегрирование тригонометрических функций.
- 103. Определенный интеграл, его геометрический и физический смысл.
- 104. Свойства определенного интеграла.
- 105. Формула Ньютона-Лейбница.
- 106. Замена переменной и интегрирование по частям в определенном интеграле.
- 107. Приближенное вычисление определенного интеграла.
- 108. Несобственные интегралы по конечному и бесконечному промежутку.
- 109. Применения определенных интегралов.
- 110. Дифференциальные уравнения. Общие понятия и определения.
- 111. Уравнения первого порядка. Частное и общее решение. Задача Коши.
- 112. Уравнения с разделяющимися переменными.
- 113. Однородные уравнения и приводимые к однородным.
- 114. Линейные уравнения первого порядка. Уравнения Бернулли.
- 115.Д.У. в полных дифференциалах.
- 116. Уравнение высших порядков. Задача Коши.
- 117. Уравнения, допускающие понижения порядка.
- 118. Однородные линейные уравнения п-го порядка. Общие свойства решений.
- 119. Определитель Вронского. Фундаментальная система решений. Структура общего решения.
- 120.Однородные линейные уравнения с постоянными коэффициентами. Характеристическое уравнение. Нахождение общего решения.
- 121. Неоднородные линейные ДУ с постоянными коэффициентами. Метод вариации произвольных постоянных.
- 122. Метод неопределенных коэффициентов для ДУ со специальной правой частью.
- 123. Системы дифференциальных уравнений. Методы исключений и характеристического уравнения.
- 124. Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости ряда.
- 125. Числовые ряды с положительными членами. Теоремы сравнения. Признаки сходимости Даламбера, Коши, интегральный.
- 126. Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Знакочередующиеся ряды. Теорема Лейбница.
- 127. Функциональные ряды, область сходимости. Теорема о почленном интегрировании и почленном дифференцировании функциональных рядов.
- 128. Степенные ряды. Теорема Абеля. Радиус сходимости. Основные свойства степенных рядов.
- 129. Применение степенных рядов для вычисления определенных интегралов, пределов, и для решения дифференциальных уравнений.
- 130. Тригонометрический ряд Фурье.
- 131. Разложение в тригонометрический ряд Фурье четных и нечетных периодических функций с периодом 2 π и 2l.
- 132. Разложение в ряд Фурье функции, заданной на отрезк Предмет теории вероятностей. Случайные события, их классификация.
- 133. Действия над событиями.
- 134. Классическое определение вероятности. Ее свойства.
- 135.Относительная частота события, ее свойства. Статистическое определение вероятности.
- 136. Геометрическое определение вероятности, ее свойства.
- 137. Элементы комбинаторики.
- 138. Теоремы сложения вероятностей. Противоположные события.
- 139. Условная вероятность. Теоремы умножения вероятностей. Независимость событий.
- 140. Формула полной вероятности и формула Байеса.
- 141. Схема повторения испытаний. Формула Бернулли.
- 142. Предельные теоремы в схеме Бернулли: Пуассона, локальная и интегральная Муавра-Лапласа.
- 143. Понятие случайной величины. Дискретная и непрерывная случайные величины.
- 144. Закон распределения дискретной случайной величины. Многоугольник распределения.
- 145. Функция распределения случайной величины и ее свойства.
- 146. Плотность распределения случайной величины и ее свойства.

- 147. Математическое ожидание случайной величины, свойства.
- 148. Дисперсия случайной величины, свойства. Среднее квадратическое отклонение.
- 149. Мода, медиана, моменты случайных величин.
- 150. Законы распределения дискретной случайной величины.
- 151. Законы распределения непрерывной случайной величины.
- 152. Предмет математической статистики, ее задачи.
- 153. Генеральная и выборочная совокупность.
- 154. Статистическое распределение выборки (вариационный, интервальный ряд).
- 155. Графическое представление распределений (полигон, гистограмма).
- 156. Эмпирическая функция распределения, ее свойства.
- 157. Числовые характеристики статистического распределения.
- 158. Точечные оценки математического ожидания и дисперсии.
- 159. Доверительные интервалы для математического ожидания нормального распределения
- 160. Статистическая гипотеза. Критерий Пирсона
- 161. Корреляционно-регрессионный анализ. Понятие о корреляции случайных величин.
- 162. Коэффициент корреляции.
- 163. Линейные уравнения парной регрессии.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

«Зачтено»» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено»» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по экзамену

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.