Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:57:55

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Автоматика и телемеханика на перегонах

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.05 Системы обеспечения движения поездов

(код и наименование)

Направленность (профиль)/специализация

Автоматики и телемеханика на железнодорожном транспорте

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: 3 a vem - 7 cemecmp, $9 \kappa 3 a men - 8 cemecmp$, $\kappa y p coso ii n p o e k m - 8 cemecmp$.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-1: Способен выполнять работы по проектированию, монтажу, техническому обслуживанию, ремонту, реконструкции и модернизации оборудования, устройств и систем ЖАТ	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
		(семестр 7,8)
ПК-1.3: Применяет знания устройств,	Обучающийся знает: устройство и принцип действия	Вопросы (№1-№20)
принципов действия, технических	устройств перегонных систем автоматики и	Задания (№1-№15)
характеристик и схемных решений при	телемеханики	Вопросы к
проектировании и обслуживании		курсовой работе
устройств и систем ЖАТ		(№1-№17)
	Обучающийся умеет: измерять и анализировать	Задания (№1 - №3)
	параметры приборов и устройств перегонных систем	Задание к курсовой
	автоматики и телемеханики.	работе
	Обучающийся владеет: методами анализа работы	Задания (№1 - №3)
	устройств перегонных систем автоматики и	Задание к курсовой
	телемеханики.	работе
ПК-1.4: Выполняет работы по	Обучающийся знает: типы и виды регламентных	Вопросы (№21 -
техническому обслуживанию, ремонту	работ и правила их проведения при обслуживании	№40)
и реконструкции оборудования,	технических средств перегонных систем автоматики	Задания (№16 -
устройств и систем ЖАТ	и телемеханики.	№30)
	Обучающийся умеет: работать с технической	Задания (№4 - №6)
	документацией, используемой при техническом	
	обслуживании устройств перегонных систем	
	автоматики и телемеханик	
	Обучающийся владеет: навыками выполнения работ	Задания (№4 - №6)
	по техническому обслуживанию, ремонту и	
	реконструкции перегонных систем автоматики и	
	телемеханики.	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (курсовая работа) проводится в форме защиты курсового проекта на основе собеседования.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-1.3: Применяет знания	Обучающийся знает: устройство и принцип действия устройств перегонных систем
устройств, принципов действия,	автоматики и телемеханики
технических характеристик и	
схемных решений при	
проектировании и	
обслуживании устройств и	
систем ЖАТ	

Примеры вопросов/заданий:

- 1. В нормальном режиме путевое реле (при непрерывном питании) или его повторитель (при импульсном питании):
- а) работает в импульсном режиме;
- б) постоянно включено;
- в) постоянно выключено;
- г) может быть, как включено, так и выключено в зависимости от сопротивления поездного шунта.
- 2. Коэффициент чувствительности должен быть:
- а) больше 1;
- б) меньше 1;
- в) равно 1;
- г) больше или равно 1.
- 3. Укажите тип реле, применяемого в рельсовой цепи постоянного тока:
- а) АНВШ;
- б) ПЛЗ;
- в) АНШ;
- г) ИВГ.
- 4. Какая несущая частота используется в ТРЦ-3 ?:
- а) 25 Гц;
- б) 325 Гц;
- в) 580 Гц;
- г) 5555 Гц.
- 5. Укажите назначение путевых генераторов ГПЗ-8,9,11 и ГПЗ-11, 14, 15?
- а) формирование амплитудно-моделированных сигналов питания рельсовый цепей;
- б) прием сигналов из рельсовых цепей;
- в) формирование частотно-моделированных сигналов питания рельсовых цепей.
- г) защищают путевые приемники от помех.
- 6. Укажите тип путевого реле тональной рельсовой цепи?
- а) АНВШ;
- б) ДСШ;
- в) ИВГ;
- г) НМВШ.
- 7. Какая ситуация является опасным отказом в рельсовой цепи?
- а) занятость рельсовой цепи при отсутствии поезда;
- б) контроль свободной рельсовой цепи при ее фактической занятости;
- в) занятость рельсовой цепи при освобождении поездом;
- г) занятость рельсовой цепи при нахождении на ней поезда.
- 8. Выберите контрольный режим работы рельсовой цепи (РЦ)?
- а) РЦ свободна, путевое реле включено, рельсовая линия исправна;
- б) РЦ занята, путевое реле выключено, рельсовая линия исправна;
- в) РЦ свободна, путевое реле включено, по рельсовым нитям передаются кодовые сигналы;
- г) РЦ свободна, путевое реле выключено, рельсовые нити неисправны.
- 9. Какие виды автоблокировки не применяются при электрической тяге поездов?
- а) числовая кодовая;
- б) импульсно-проводная;
- в) автоблокировка с тональными рельсовыми цепями;
- г) автоблокировка на базе системы счета осей.
- 10. Укажите назначение путевых приемников:
- а) пропуск тягового тока;
- б) кодирование рельсовой цепи;
- в) прием сигнального тока определенной частоты;
- г) защита от кратковременной потери шунта.

- 11. Автоматическая локомотивная сигнализация применяется с целью:
- 1) обеспечения автоматического движения поездов по показаниям путевых светофоров;
- 2) повышения пропускной способности железнодорожных линий за счет уменьшения интервалов попутного следования между поездами;
- 3) расширения функциональных возможностей автоблокировки;
- 4) обеспечения безошибочного восприятия машинистами показаний путевых светофоров в любых условия следования поезлов.
- 12. Среди существующих систем автоматической локомотивной сигнализации НЕТ:
- 1) АЛС точечного типа;
- 2) АЛС непрерывного типа;
- 3) АЛС однопутного типа;
- 4) многозначные АЛС.
- 13. Что принимают локомотивные устройства АЛСН?
- а) тяговый ток;
- б) сигнальный ток;
- в) кодовые последовательности.
- 14. С какой целью производится размещение аппаратуры АБТЦ на двух станциях?
- а) для экономии устройств защиты и согласования;
- б) для экономии аппаратуры ТРЦ;
- в) для экономии расхода кабеля;
- г) для улучшения шунтового эффекта ТРЦ.
- 15. АЛС точечного типа применяется на:
- 1) участках, оборудованных автоблокировкой;
- 2) участках, оборудованных полуавтоблокировкой;
- 3) участках, где движение поездов осуществляется только по показаниям локомотивных светофоров;
- 4) участках, не оборудованных путевой блокировкой.

ПК-1.4: Выполняет работы по техническому обслуживанию, ремонту и реконструкции оборудования, устройств и систем ЖАТ

Обучающийся знает: типы и виды регламентных работ и правила их проведения при обслуживании технических средств перегонных систем автоматики и телемеханики.

Примеры вопросов/заданий:

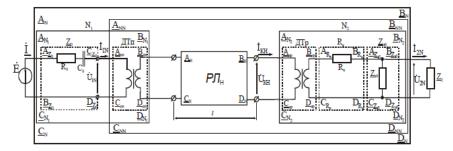
- 1.Укажите функции, выполняемые рельсовыми цепями (РЦ) в системах железнодорожной автоматики и телемеханики (ЖАТ)?
- а) определяют длину и вес поезда;
- б) контролируют свободность/занятость участков пути;
- в) фиксируют направление движения поезда;
- г) контролируют электрическую целость рельсовых линий;
- д) служат в качестве канала передачи данных с пути на локомотив.
- 2. Укажите назначение стыковых соединителей как элементов конструкции рельсовых цепей
- а) стабилизируют электрические параметры;
- б) повышают механическую прочность рельсовых цепей;
- в) обеспечивают протекание сигнального тока при изломе рельсов.
- 3.Укажите устройство, осуществляющее пропуск тягового тока в обход изолирующих стыков на участках с электрической тягой (в двухниточных рельсовых цепях)
- а) дроссель-трансформатор;
- б) стыковой соединитель;
- в) тросовые соединители.
- 4. Контролируемый участок пути свободен и РЦ исправна это...
- а) нормальный режим;
- б) шунтовой режим;
- в) контрольный режим;
- г) режим короткого замыкания РЛ;
- д) режим АЛС.
- 5. Контролируемый участок пути занят и РЦ исправна это...
- а) нормальный режим;
- б) шунтовой режим;
- в) контрольный режим;
- г) режим короткого замыкания РЛ;
- д) режим АЛС.
- 6.В РЦ произошел полный излом рельса это...
- а) нормальный режим;
- б) шунтовой режим;
- в) контрольный режим;
- г) режим короткого замыкания РЛ;
- д) режим АЛС.
- 7. Контролируемый участок пути занят, РЦ исправна, нормируется сигнальный ток в рельсах это...

- а) нормальный режим;
- б) шунтовой режим;
- в) контрольный режим;
- г) режим короткого замыкания РЛ;
- д) режим АЛС.
- 8.Контролируемый участок пути занят, РЦ исправна, нормируются параметры путевого передатчика это...
- а) нормальный режим;
- б) шунтовой режим;
- в) контрольный режим;
- г) режим короткого замыкания РЛ;
- д) режим АЛС.
- 9. В нормальном режиме путевое реле (при непрерывном питании) или его повторитель (при импульсном питании)
- а) работает в импульсном режиме;
- б) постоянно включено;
- в) постоянно выключено.
- 10.В шунтовом режиме путевое реле (при непрерывном питании) или его повторитель (при импульсном питании)
- а) работает в импульсном режиме;
- б) постоянно включено;
- в) постоянно выключено.
- 11.В контрольном режиме путевое реле (при непрерывном питании) или его повторитель (при импульсном питании)
- а) работает в импульсном режиме;
- б) постоянно включено;
- в) постоянно выключено.
- 12. Максимальная длина рельсовой цепи для станции?
- а) 1500 м;
- б) 2600 м;
- в) 1000 м.
- 13. Максимальная длина рельсовой цепи для перегона?
- а) 1500 м;
- б) 2600 м;
- в) 1000 м.
- 14. Какими параметрами (критериями) определяются условия выполнения нормального режима РЦ?
- а) фактический уровень сигнала на входе приемника при неблагоприятных условиях передачи энергии по РЦ должен быть менее его минимальных рабочих значений;
- б) фактический уровень сигнала на входе приемника при неблагоприятных условиях передачи энергии по РЦ должен быть более его минимальных рабочих значений;
- 15. Коэффициент перегрузки Кпер приемника (реле) для нормального режима должен быть
- а) больше 1;
- б) меньше 1;
- в) равен 1;
- г) больше или равен 1.

2.2 Типовые задания для оценки навыкового образовательного результата

Код и наименование	Образовательный результат	
индикатора достижения		
компетенции		
ПК-1.4: Выполняет работы по	Обучающийся умеет: измерять и анализировать параметры приборов и устройств	
техническому обслуживанию,	перегонных систем автоматики и телемеханики.	
ремонту и реконструкции		
оборудования, устройств и		
систем ЖАТ		

Примеры заданий:


- 1. Определите мощность, потребляемую занятой рельсовой цепью при заданных параметрах.
- 2. Определите напряжение и ток в начале рельсовой линии при заданных значениях коэффициентов рельсового четырехполюсника, напряжения и тока в конце рельсовой линии.
- 3. Определите коэффициент режима автоматической локомотивной сигнализации при заданных значениях фактического минимального тока в рельсовой линии при наложении шунта на релейном конце рельсовой линии при самых неблагоприятных условиях и нормативного тока автоматической локомотивной сигнализации, при котором локомотивный приёмник работает устойчиво. После вычисления сделайте вывод о достаточности кодового сигнала для надежного действия локомотивного приемника.

ПК-1.3: Применяет знания	Обучающийся владеет: методами анализа работы устройств перегонных систем
устройств, принципов	автоматики и телемеханики.

действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ

- 1. Определить численные значения матрицы $[A]^0_N$ при длине рельсовой линии 2,6 км, $f_{\rm cr} = 50$ Гц.
- 2. Определить численные значения матрицы $[A]^0_S$ при длине распределенного участка с шунтом $l_{\rm m}=1,5$ км, $f_{\rm cr}=25$ Γ ц.
- 3. Определить матрицу передаточного сопротивления рельсовой цепи в шунтовом режиме в соответствии со схемой:

$$Z_{no}^{S} = \frac{U_{2S}}{I_{1S}}$$

ПК-1.3: Применяет знания устройств, принципов действия, технических характеристик и схемных решений при проектировании и обслуживании устройств и систем ЖАТ

Обучающийся умеет: работать с технической документацией, используемой при техническом обслуживании устройств перегонных систем автоматики и телемеханик

- 4. Определить длину предельно допустимого сближения попутно следующих поездов на перегоне Lпр, если известны значения длины блок-участка lбу, длины защитного участка lзу, пути, проходимого поездов за время срабатывания приборов lсп и путь, проходимый поездов за время восприятия сигнала машинистом lв в соответствии с Инструкцией по сигнализации на железных дорогах Российской Федерации..
- 5. Определите значения напряжения на приемном конце рельсовой цепи с учетом потерь в дроссельтрансформаторе при заданных параметрах Aпр, Uпр, Bnp, Iдр.p.
- 6. Определите значения тока на приемном конце рельсовой цепи с учетом потерь в дроссель-трансформаторе при заданных параметрах *С*пр, *U*пр, *Dnp*, *I*др.р.
- ПК-1.4: Выполняет работы по техническому обслуживанию, ремонту и реконструкции оборудования, устройств и систем ЖАТ

Обучающийся владеет: навыками выполнения работ по техническому обслуживанию, ремонту и реконструкции перегонных систем автоматики и телемеханики.

- 4. Провести анализ работы рельсовой цепи в нормальном режиме при заданных значениях модуля и аргумента удельного сопротивления РЛ Zpл, коэффициента поверхностной утечки P, модуля и аргумента постоянной земляного тракта E, нормативной величины сигнального тока АЛС Iлн, относительной ординате месторасположения нормативного шунта p, длины рельсовой цепи lpл: минимальной lpл min и максимальной lpл max при шаге дискретизации Δlpл, удельного сопротивлении изоляции PЛ Zu: минимального Zu min и максимального Zu max при шаге дискретизации ΔZu.
- 5. Провести анализ работы рельсовой цепи в шунтовом режиме при заданных значениях модуля и аргумента удельного сопротивления РЛ Zpл, коэффициента поверхностной утечки P, модуля и аргумента постоянной земляного тракта E, нормативной величины сигнального тока AЛС Iлн, относительной ординате месторасположения нормативного шунта p, длины рельсовой цепи lpл: минимальной lpл min и максимальной lpл max при шаге дискретизации Δ lpл, удельного сопротивлении изоляции PЛ Zu: минимального Zu min и максимального Zu max при шаге дискретизации Δ Zu.
- 6. Провести анализ работы рельсовой цепи в контрольном режиме при заданных значениях модуля и аргумента удельного сопротивления РЛ Zpл, коэффициента поверхностной утечки P, модуля и аргумента постоянной земляного тракта E, нормативной величины сигнального тока АЛС Iлн, относительной ординате месторасположения нормативного шунта p, длины рельсовой цепи lpл: минимальной lpл min и максимальной lpл max при шаге дискретизации Δlpл, удельного сопротивлении изоляции PЛ Zu: минимального Zu min и максимального Zu max при шаге дискретизации ΔZu.

Задание к курсовому проекту:

Задание содержит:

- 1. Характеристику участка железной дороги:
- количество путей на перегоне 2;
- направление движения двухсторонее;
- род тяги электрическая постоянного тока.
- 2. Тип автоблокировки числовая кодовая АБ-ЧК.
- 3. Длину рельсовой цепи $l_{pл}$: 1800 м.
- минимальную $l_{\rm pn}\,{}_{min};\,1000\,$ м.
- максимальную $l_{p_{\pi} max}$; 2600 м.
- шаг дискретизации $\Delta l_{\rm pn}$. 10 м.
- 4. Удельное сопротивление изоляции РЛ $Z_{\rm u}$: 1 Ом·км.
- минимальное $Z_{\text{и min}}$; 0,1 Ом·км.
- максимальное $Z_{\text{и max}}$; 10 Ом·км.
- шаг дискретизации ΔZ_{H} . 0,1 Ом·км.

По исходным данным необходимо выбрать одну из широко применяемых на железных дорогах России РЦ и произвести ее анализ и «синтез» с целью определения оптимальных параметров РЛ и элементов РЦ.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1) Понятие и способы интервального регулирования движения поездов
- 2) Сигнализация и сигнальные устройства
- 3) Методы и средства определения положения поездов на участке железной дороги
- 4) Классификация и назначение систем ИРДП
- 5) Требования Правил технической эксплуатации железных дорог Российской Федерации к системам ИРДП и принципы их реализации
 - 6) Принципы построения и работы систем ИРДП, элементная база
- 7) Каналы передачи информации в системах ИРДП (физические воздушные и кабельные линии, рельсовые линии; оптические; радиоканалы; спутниковая навигация)
 - 8) Сигнализация в системах ИРДП
- 9) Проводная автоблокировка: принципы построения, путевой план перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 10) Числовая кодовая автоблокировка (АБ-ЧК): принципы построения, путевой план перегона, кабельная сеть перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 11) Автоблокировка с тональными рельсовыми цепями и централизованным размещением аппаратуры (АБТЦ): принципы построения, путевой план перегона, кабельная сеть перегона; алгоритмы работы на двухпутных и однопутных участках; принципиальные схемы для двухпутных и однопутных участков; реализация защиты от опасных отказов
- 12) Системы автоблокировки с децентрализованным размещением аппаратуры (АБ-ЧКЕ, АБ-Е, КЭБ)
- 13) Системы автоблокировки с централизованным размещением аппаратуры (АБТЦ-М, АБТЦ-ЕМ))
- 14) Принципы построения схем смены направления движения на однопутных и двухпутных участках
 - 15) Четырехпроводная схема смены направления с защитой от опасных отказов
- 16) Понятие и способы авторегулировки. Принципы и методы контроля скорости движения поезда. Принципы и методы контроля бдительности машиниста
 - 17) Автоматическая локомотивная сигнализация непрерывного типа (АЛСН)
- 18) Автоматическая локомотивная сигнализация как самостоятельное средство сигнализации (АЛСО)
 - 19) Система автоматического управления торможением поезда (САУТ-ЦМ)
 - 20) Комплексные локомотивные устройства безопасности (КЛУБ)
 - 21) Виды сигнализации на железнодорожных переездах для организации движения поездов

- 22) Смысл классификации железнодорожных переездов обусловленных Правилами технической эксплуатации на железных дорогах РФ
 - 23) Понятие светофорной сигнализации
- 24) Понятие светофора и принципы построения светофорных головок светофоров, применяемых на железных дорогах $P\Phi$
 - 25) Признаки классификации автоматической локомотивной сигнализации?
 - 26) Понятие и режимы работы рельсовой цепи
 - 27) Критерии определения области номинальной работы рельсовой цепи
 - 28) Понятие точечного путевого датчика и его классификация
 - 29) Основы построения электро-магнитных точечных путевых датчиков
- 30)Система счета осей в современных системах полуавтоматической и автоматической блокировок
 - 31) Понятие нормали рельсовых цепей и получение информации в них
- 32)Основные справочники по аппаратуре систем интервального регулирования движения поездов
 - 33) Назначение сигнальных установок в системах автоблокировки
- 34) Элементы и устройства на электрических принципиальных схемах сигнальных установках числовой кодовой автоблокировки построенной на релейной элементной базе
- 35) Элементы и устройства электропитания в современных системах автоблокировки на перегонах
- 36) Зависимость пропускной способности участков железной дороги от применения диспетчерского контроля
 - 37) Назначение заграждающих устройств на железнодорожных переездах
- 38) Алгоритм работы заграждающих устройств на железнодорожных переездах при реализации заграждающего режима
 - 39) Понятие индуктивно-рельсовой линии и виды помех в ней
 - 40) Критерии помехоустойчивости каналов с индуктивно-рельсовыми линиями

Перечень вопросов для подготовки к защите курсового проекта

- 1. Поясните, что такое режим работы рельсовых цепей и перечислите основные из них?
- 2. Какие режимы работы рельсовой цепи необходимо сравнивать между собой, прежде чем приступить к определению области номинальной работы рельсовой цепи?
- 3. Посредством каких критериев определяется область номинальной работы рельсовой цепи?
- 4. Какие выводы должен сделать специалист после установления границ области номинальной работы рельсовой цепи?
- 5. Что дает применение двухнитевых ламп с точки зрения безопасности движения, с точки зрения бесперебойности движения?
- 6. Можно ли кодовую рельсовую цепь применить в системе электрической централизации?
- 7. Обосновать необходимость применения фильтра в составе 3БФ, если учесть, что тяговый ток постоянный.
- 8. Должно ли обязательно отпустить свой якорь путевое реле при наложении шунта величиной 0,08 Ом?
- 9. Что такое чувствительность путевого приемника и как она регулируется в данном устройстве?
- 10. Перечислите основные преимущества ПП ТРЦ в сравнении с путевыми приемниками РЦ предыдущих поколений и типов.
- 11. Почему реле ПТР не участвует в работе дешифратора при посылке кодового сигнала 3?
- 12. Что изменится в работе дешифратора при обрыве обмотки реле ВР?
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 - 90% от общего объёма заданных вопросов;

- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по курсовому проекту

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.