Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 15:44:32 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электронные преобразователи для высокоскоростного транспорта (наименование дисциплины(модуля) Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог (код и наименование) Направленность (профиль)/специализация Высокоскоростной наземный транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (8 семестр), экзамен, КР (9 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-6. Способен разбираться в конструкции, принципах действия и закономерностях работы электрического и электронного оборудования высокоскоростного транспорта	ПК-6.4. Выполняет расчет и проектирование элементов электронных преобразовательных устройств для высокоскоростного подвижного состава ПК-6.5. Анализирует электромагнитные процессы в электронных преобразователях высокоскоростного подвижного состава

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
TIV 6.4 Device regard received to	Обучающийся знает: параметры и характеристики основных блоков электронных преобразователей ВТ	Вопросы (1 – 20)
ПК-6.4. Выполняет расчет и проектирование элементов электронных преобразовательных устройств для высокоскоростного подвижного состава	Обучающийся умеет: сравнивать параметры и характеристики основных блоков электронных преобразователей ВТ	Задания (1 – 5)
	Обучающийся владеет: основными положениями по проектированию электронных преобразователей BT	Задания (6 – 10)
	Обучающийся знает: методы анализа электромагнитных процессов в электронных преобразователях ВТ	Вопросы (21 – 40)
ПК-6.5. Анализирует электромагнитные процессы в электронных преобразователях высокоскоростного подвижного состава	Обучающийся умеет: выбирать и применять методики расчета для проектируемых блоков электронных преобразователей ВТ	Задания (11 – 15)
	Обучающийся владеет: навыками вычисления параметров и характеристик проектируемых электронных преобразователей ВТ	Задания (16 – 20)

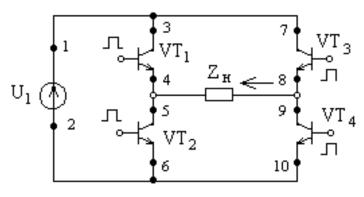
Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

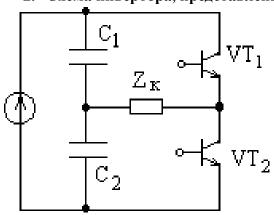
- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций


2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

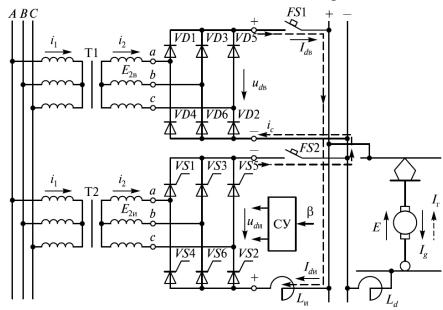
Проверяемый образовательный результат:

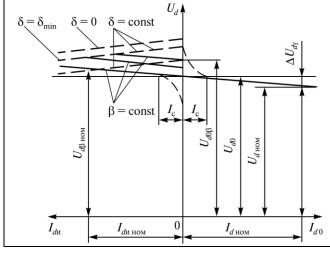
ПК-6.4. Выполня	т расчет и	Обучающийся знает: параметры и характеристики основных блоков электронных
проектирование	элементов	преобразователей ВТ
электронных		
преобразовательны	х устройств	
для высо	оскоростного	
подвижного состав	l	


Примеры вопросов/заданий

1. Укажите путь тока источника U1 в направлении указанном стрелкой на рисунке.

- a) 1, 3, 4, 5, 6, 2
- б) 1,3, 4, 9, 10, 2
- в) 1, 7, 8, 9, 10, 2
- г) 2, 6, 5, 8, 7, 1
- д) 1, 7, 8, 5, 6, 2


2. Схема инвертора, представленная на рисунке называется

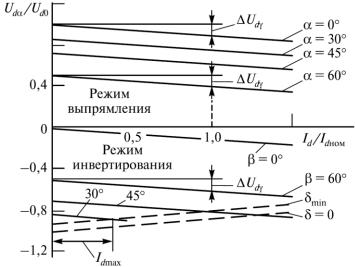

- а) с самовозбуждением, с насыщающимся трансформатором
- б) с внешним управлением, однотактная, с прямым включением выпрямительного диода
- в) с внешним управлением, однотактная, с обратным включением выпрямительного диода
- г) с внешним управлением, двухтактная мостовая
- д) с внешним управлением, двухтактная, полумостовая

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 3. Какой вид обратной связи имеет место в автономном инверторе напряжения с самовозбуждением?
- а) положительная по току
- б) положительная по напряжению
- в) отрицательная по напряжению
- г) отрицательная по току
 - 4. Как называется схема включения выпрямителя и инвертора на тяговой подстанции?

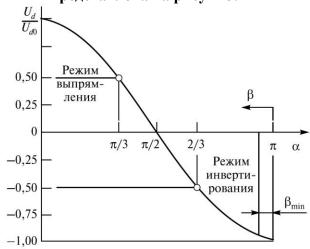
- а) Последовательная
- б) Смешанная
- в) Параллельная
- г) Независимая
 - 5. В схеме параллельного включения выпрямителя и инвертора угол опережения β устанавливается таким образом, чтобы выполнялось следующее равенство (где $E_{2\mu}$, $E_{2\mu}$ эффективные значения фазных напряжений холостого хода соответственно инвертора и выпрямителя):
- a) $\cos \beta = E_{2\hat{A}} / E_{2\hat{E}}$
- 6) $\cos \beta = E_{2\hat{E}} / E_{2\hat{A}}$
- в) $\cos \beta = E_{2\hat{A}}E_{2\hat{E}}$
- $\Gamma) \cos \beta = E_{2\hat{A}} + E_{2\hat{E}}$
 - 6. Какие характеристики параллельного включения выпрямителя и инвертора представлены на рисунке?

- а) Ограничительные
- б) Мощностные
- в) Внешние
- г) Регулировочные

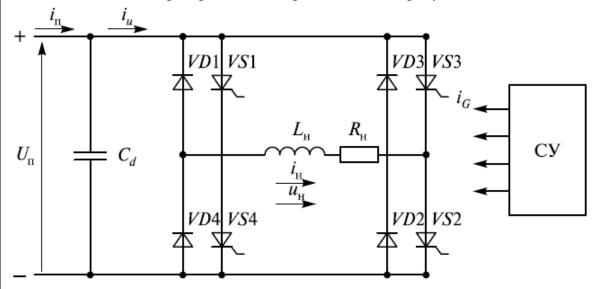

7. Что такое послекоммутационный угол инвертора?

- а) это интервал в течение которого к тиристору, выходящему из состояния высокой проводимости, прикладывается обратное напряжение, необходимое для восстановления его запирающих свойств
- б) это интервал в течение которого происходит коммутация
- в) это интервал по истечении которого силовой полупроводниковый прибор открывается
- г) это интервал по истечении которого силовой полупроводниковый прибор закрывается

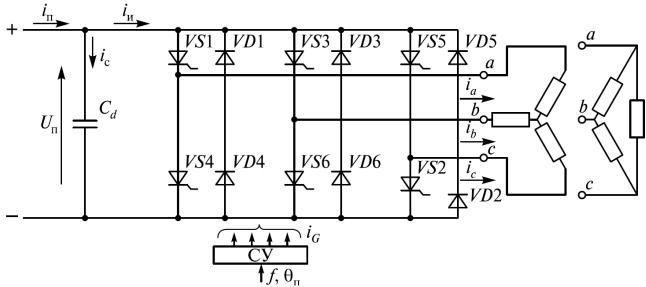
8. К чему проводит опрокидывание инвертора?


- а) к короткому замыканию трансформатора
- б) к короткому замыканию тягового двигателя
- в) к потере напряжения в питающей сети
- г) к короткому замыканию трансформатора и тягового двигателя, с невозможной последующей коммутацией силовых полупроводниковых приборов

9. Какие обобщенные характеристики выпрямительно-инверторного преобразователя представлена на рисунке?


- а) Мощностная
- б) Ограничительная
- в) Внешняя
- г) Регулировочная

10. Какая обобщенная характеристика выпрямительно-инверторного преобразователя представлена на рисунке?

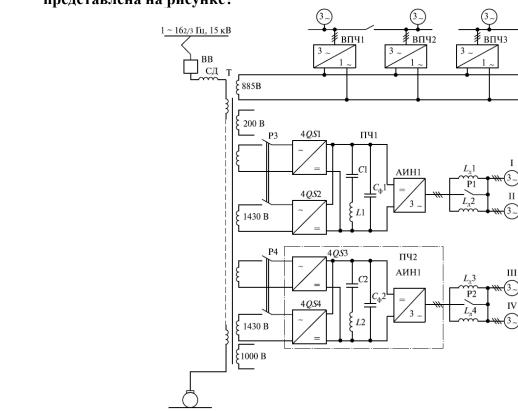

- а) Мощностная
- б) Ограничительная
- в) Внешняя
- г) Регулировочная
 - 11. Преобразователи постоянного тока в переменный однофазный или многофазный ток, коммутация тока в которых осуществляется независимо от процессов во внешних электрических цепях благодаря наличию дополнительных коммутирующих устройств внутри самого преобразователя это
- а) Компенсаторы реактивной мощности
- б) Преобразователи частоты
- в) Инверторы ведомые сетью
- г) Автономные инверторы

12. Схема какого преобразователя представлена на рисунке?

- а) Однофазного мостового инвертора напряжения
- б) Однофазного мостового инвертора тока
- в) Частотно-импульсного преобразователя
- г) Широтно-импульсного преобразователя

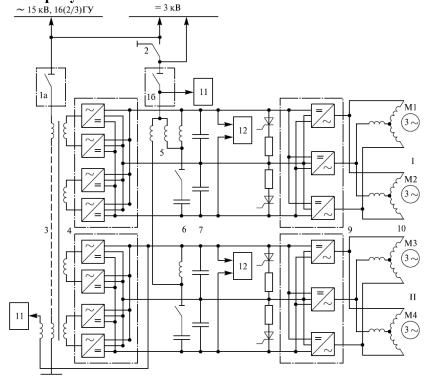
13. Схема какого преобразователя представлена на рисунке?

- а) Трехфазного мостового инвертора напряжения
- б) Трехфазного мостового инвертора напряжения тока
- в) Однофазного мостового инвертора напряжения
- г) Однофазного мостового инвертора тока


14. Схема какого типа состава с автономными инверторами и асинхронными двигателями представлена на рисунке?

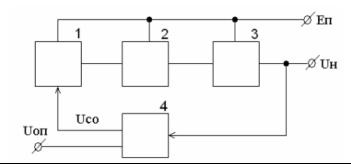
 ΓB — главный выключатель; T — тяговый трансформатор ОЦР5600/25 (мощностью 5600 кВА, 1/2=2060 В; ft=2400 А); ВИУ-2х1200 — выпрямительно-инверторная установка (преобразователь частоты с промежуточным контуром постоянного тока); AVH1—AVH4 — автономные инверторы напряжения (мощностью 1200 кВт, $U_1=0\div1450$ В, $f_1=0,5\div140$ Γ Ц, $U_d=0\div1870$ В); I. II. III. IV — асинхронные тяговые двигатели (АТД) НБ602 (Р=1200 кВт, $U_{\varphi}=750$ В, $I_{\varphi}=680$ А, $\cos=0,835$, $f_{1\text{ном}}=94$ Γ Ц, $f_{1\text{ном}}=1$ Γ Ц, M=8250 Нм, $\eta=0,94$, $\mu=4.4$, m=3900 кг, n=1410 об/мин, 2p=8); CP1, CP2 — сглаживающие реакторы РС32 ($L_H=4$ м Γ , $I_H=1850$ А); $\mathcal{L}C$ — датчик скорости; $f_{\text{рот}}$, f_2 , f_1 — соответственно частоты вращения ротора, тока в роторе, тока в статоре; CV— схема управления; KM — контроллер машиниста; K3 — короткозамыкатели; L1, L2 — дроссели; $C\phi 1$, $C\phi 2$ — конденсаторы фильтра; P1-P6 — разъединители; $\mathcal{S}K\Gamma$ — групповой переключатель

- а) секции электровоза ВЛ80А
- б) высокоскоростного поезда ІСЕ
- в) двухсистемного электровоза
- г) секции скоростного поезда Сапсан

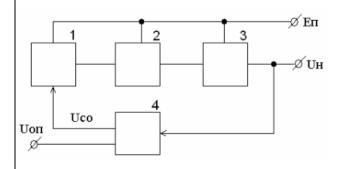

15. Схема какого типа состава с автономными инверторами и асинхронными двигателями представлена на рисунке?

BB — высоковольтный выключатель; T — тяговый трансформатор; $\Pi H1$. $\Pi H2$ — преобразователь частоты; $C\Pi$ — сглаживающий дроссель; PI-P4 — разъединители; AQSI-AQS4 — четырехквадрантные преобразователи; CI, C2, $C_{\phi 1}$, $C_{\phi 2}$ — конденсаторы фильтра; LI, L2 — дроссели; AUH1, AUH2 — автономные инверторы напряжения; $LL_{\partial I}$ - $L_{\partial 4}$ — дроссели тяговых двигателей; I-IV — асинхронные тяговые двигатели; $B\Pi H1$ - $B\Pi H3$ — преобразователи частоты вспомогательных потребителей электровоза

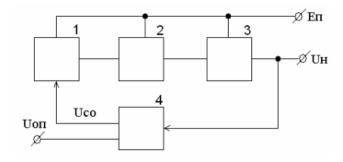
- а) секции электровоза ВЛ80А
- б) высокоскоростного поезда ІСЕ
- в) двухсистемного электровоза
- г) секции скоростного поезда Сапсан


16. Схема какого типа состава с автономными инверторами и асинхронными двигателями представлена на рисунке?

1a, 16 — главные выключатели для работы на переменном и постоянном токе; 2 — системный переключатель; 3 — тяговый (преобразовательный) трансформатор; 4 — четырехквадрантный преобразователь; 5 — входной дроссель; 6 — резонансный контур; 7 — конденсаторы фильтра; 8 — тормозные резисторы; 9 — автономные инверторы напряжения с ШИМ; 10 — АТД М1-М4; 11 — система отопления поезда; 12 — автономный инвертор бортовой сети


- а) секции электровоза ВЛ80А
- б) высокоскоростного поезда ІСЕ
- в) двухсистемного электровоза
- г) секции скоростного поезда Сапсан

17. В структурной схеме импульсного компенсационного источника электропитания блок 1 является ...


- а) схемой сравнения
- б) источником эталонного напряжения
- в) модулятором
- г) делителем напряжения

18. В структурной схеме импульсного компенсационного источника электропитания блок 2 является

схемой сравнения источником эталонного напряжения модулятором делителем напряжения усилителем импульсов регулирующим элементом

19. В структурной схеме импульсного компенсационного источника электропитания блок 3 является

- а) схемой сравнения
- б) источником эталонного напряжения
- в) модулятором
- г) регулирующим элементом
- д) усилителем импульсов

20. Управляющее устройство предназначено для формирования ... в силовых полупроводниковых элементах преобразователя

- а) импульсов включения
- б) импульсов выключения
- в) импульсов переключения
- г) импульсов коммутации

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.4. Выполняет расчет и	Обучающийся умеет: сравнивать параметры и характеристики основных блоков
проектирование элементов	электронных преобразователей ВТ
электронных	
преобразовательных устройств	
для высокоскоростного	
подвижного состава	

Примеры вопросов/заданий

Задание 1

Определить количество последовательно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: амплитудное значение напряжения U_m =3000 B, класс СПП - 10.

Задание 2

Определить количество последовательно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: амплитудное значение напряжения U_m =3600 B, класс СПП - 15.

Задание 3

Определить количество последовательно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: амплитудное значение напряжения U_m =4200 B, класс СПП - 20.

Залание 4

Определить количество последовательно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: амплитудное значение напряжения U_m =5000 B, класс СПП - 25.

Задание 5

Определить количество последовательно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: амплитудное значение напряжения U_m =6500 B, класс СПП - 30.

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.4. Выполняет расчет и	Обучающийся владеет: основными положениями по проектированию электронных
проектирование элементов	преобразователей ВТ
электронных	
преобразовательных устройств	
для высокоскоростного	
подвижного состава	

Примеры вопросов/заданий

Задание 6

Определить количество параллельно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: ток нагрузки I=2000 A, предельный ток 750 A.

Задание 7

Определить количество параллельно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: ток нагрузки I=1800 A, предельный ток 700 A.

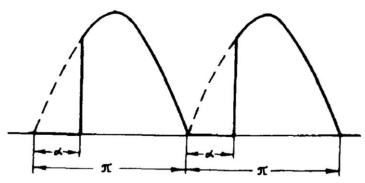
Задание 8

Определить количество параллельно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: ток нагрузки I=1600 A, предельный ток 650 A.

Задание 9

Определить количество параллельно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: ток нагрузки I=1700 A, предельный ток 675 A.

Задание 10

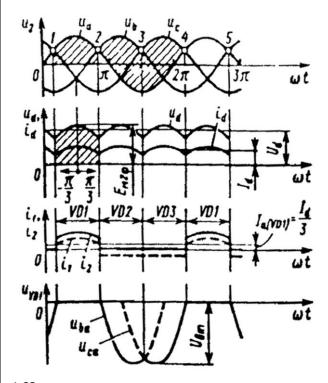

Определить количество параллельно включенных силовых преобразовательных приборов (СПП) в плече выпрямителя (однофазная мостовая схема выпрямления). Если известны следующие данные: ток нагрузки I=1900 A, предельный ток 725 A.

ПК-6.5.	Анализирует
электромагнитные	процессы в
электронных прео	бразователях
высокоскоростного	подвижного
состава	

Обучающийся знает: методы анализа электромагнитных процессов в электронных преобразователях BT

Примеры вопросов/заданий

21. Какой схеме выпрямителя соответствует диаграмма выпрямленного напряжения, изображенная на рисунке?



- а) Однофазной нулевой схеме выпрямления
- б) Однофазному мостовому управляемому выпрямителю
- в) Трехфазному мостовому выпрямителю
- г) Трехфазной нулевой схеме выпрямления

22. Какой причиной не обусловлено падение напряжения выпрямителя в режиме холостого хода?

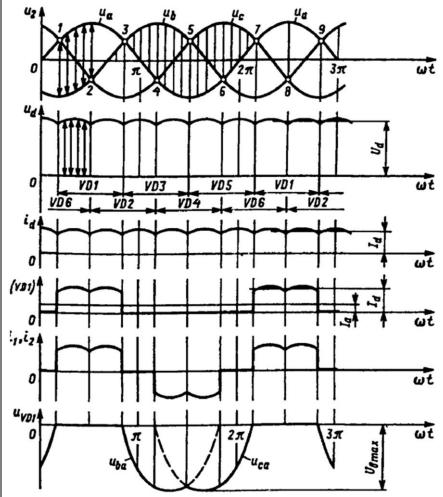
- а) процессом коммутации
- б) наличием активных элементов схемы
- в) типом нагрузки
- г) типом силовых полупроводниковых приборов

23. Какому типу выпрямителя соответствуют диаграммы напряжений и токов, изображенные на рисунке?

- а) Нулевая трехпульсовая схема выпрямителя
- б) Однофазному мостовому управляемому выпрямителю
- в) Однофазному мостовому неуправляемому выпрямителю
- г) Трехфазному мостовому неуправляемому выпрямителю

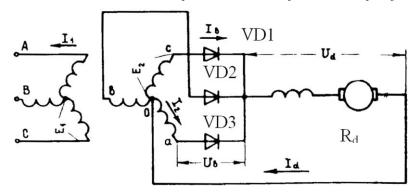
24. Какой выпрямитель содержит в своем составе трехфазный двухобмоточный преобразовательный трансформатор (схема Ларионова)?

- а) Нулевая трехпульсовая схема
- б) Нулевая шестипульсовая схема
- в) Нулевая шестипульсовая схема с уравнительным реактором
- г) Двенадцатипульсовая схема
- д) Мостовая шестипульсовая схема

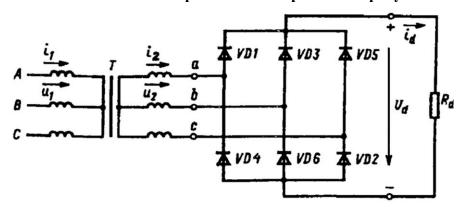

25. Какая из схем трехфазных выпрямителей позволяет повысить качество выпрямленного напряжения за счет лучшего использования трансформатора?

- а) Двенадцатипульсовая
- б) Шестипульсовая
- в) Трехпульсовая

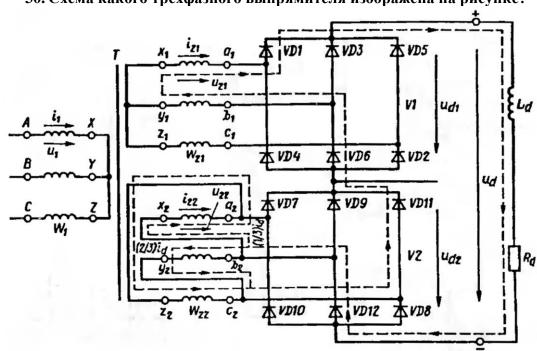
26. Что называется коэффициентом активной мощности выпрямителя?


- а) отношение реактивной мощности к полной
- б) отношение активной мощности к полной
- в) отношение активной мощности к реактивной
- г) отношение реактивной мощности к ативной

27. Какому типу выпрямителя соответствуют диаграммы напряжений и токов, изображенные на рисунке?


- а) Однофазному мостовому управляемому выпрямителю
- б) Однофазному мостовому неуправляемому выпрямителю
- в) Трехфазному мостовому шестипульсовому неуправляемому выпрямителю
- г) Трехфазному мостовому управляемому выпрямителю

28. Схема какого выпрямителя изображена на рисунке?


- а) Однофазная нулевая схема выпрямления
- б) Однофазный мостовой выпрямитель
- в) Трехфазный мостовой выпрямитель
- г) Трехфазная нулевая схема выпрямления

29. Схема какого выпрямителя изображена на рисунке?

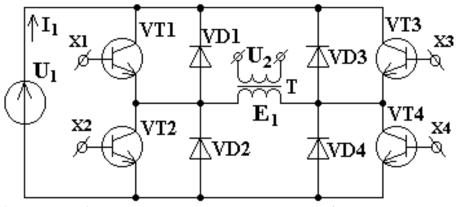
- а) Трехфазный мостовой выпрямитель
- б) Трехфазная нулевая схема выпрямления
- в) Однофазная нулевая схема выпрямления
- г) Однофазный мостовой выпрямитель

30. Схема какого трехфазного выпрямителя изображена на рисунке?

- а) Шестипульсового
- б) Двенадцатипульсового
- в) Трехпульсового

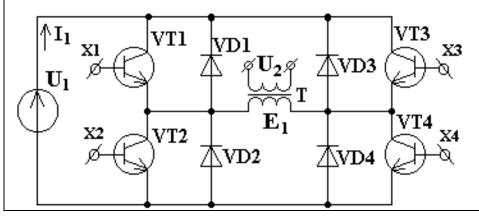
31. Процесс перехода тока от одной ветви схемы преобразователя к другой в результате чего меняется контур электрического тока называется

- а) инжекция
- б) экстракция
- в) коммутация
- г) диффузия

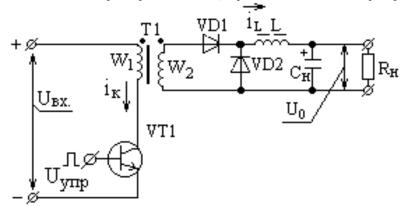

32. Импульсное регулирование напряжения осуществляется преобразователями следующего типа

- а) постоянно-постоянного тока
- б) переменно-переменного тока
- в) переменно-постоянного тока
- г) постоянно-переменного тока

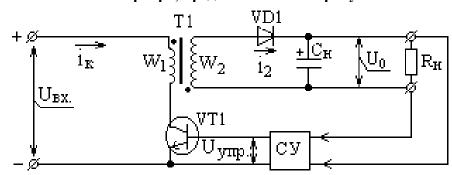
33. Какой способ импульсного регулирования не используется?


- а) широтно-импульсный
- б) частотно-имульсный
- в) комбинированный
- г) пилообразный

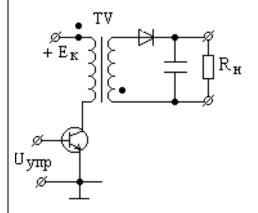
34. Схема инвертора, представленная на рисунке называется


- а) с самовозбуждением, с насыщающимся трансформатором
- б) с внешним управлением, однотактная, с прямым включением выпрямительного диода
- в) с внешним управлением, однотактная, с обратным включением выпрямительного диода
- г) с внешним управлением, двухтактная мостовая
- д) с внешним управлением, двухтактная полумостовая

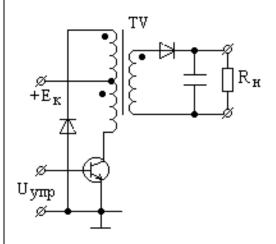
35. В схеме инвертора, представленной на рисунке транзисторы VT1, VT4 (VT2, VT3) при симметричном алгоритме управления работают


- а) синхронно (в фазе)
- б) в противофазе
- в) один всегда открыт, а у второго изменяется длительность сигнала управления
- г) режим и длительность произвольные

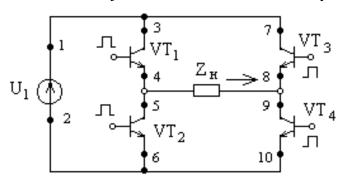
36. Схема преобразователя, представленная на рисунке называется


- а) с самовозбуждением, с насыщающимся трансформатором
- б) с внешним управлением, однотактная, с прямым включением выпрямительного диода
- в) с внешним управлением, однотактная, с обратным включением выпрямительного диода
- г) с внешним управлением, двухтактная мостовая
- д) с внешним управлением, двухтактная полумостовая

37. Схема инвертора, представленная на рисунке называется



- а) с самовозбуждением, с насыщающимся трансформатором
- б) с внешним управлением, однотактная, с прямым включением выпрямительного диода
- в) с внешним управлением, однотактная, с обратным включением выпрямительного диода
- г) с внешним управлением, двухтактная мостовая
- д) с внешним управлением, двухтактная полумостовая


38. Какие перепады индукции имеют место в сердечнике трансформатора в схеме однотактного преобразователя с независимым возбуждением:

- a) Bm
- б) 2Bm
- в) 2Bm Br
- Γ) Bm Br
 - 39. Какие перепады индукции имеют место в сердечнике трансформатора в схеме однотактного преобразователя с независимым возбуждением:

- a) Bm
- б) 2Bm
- в) 2Bm Br
- г) Bm Br
 - 40. Укажите путь тока источника U1 в направлении указанном стрелкой на рисунке.

- a) 1, 3, 4, 5, 6, 2
- б) 1,3, 4, 9, 10, 2
- в) 1, 7, 8, 9, 10, 2
- г) 2, 6, 5, 8, 7, 1
- л) 1, 7, 8, 5, 6, 2

A) 1, 1, 0, 0, 0, 0	
Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.5. Анализирует	Обучающийся умеет: выбирать и применять методики расчета для проектируемых
электромагнитные процессы в	блоков электронных преобразователей ВТ
электронных преобразователях	
высокоскоростного подвижного	
состава	

Примеры вопросов/заданий

Задание 31

Определить среднее значение выпрямленного (выходного) напряжения для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что действующее значение напряжения вторичной обмотки составляет 2500 В.

Задание 32

Определить среднее значение выпрямленного (выходного) напряжения для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что действующее значение напряжения вторичной обмотки составляет 2750 В.

Задание 33

Определить среднее значение выпрямленного (выходного) напряжения для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что действующее значение напряжения вторичной обмотки составляет 3000 В.

Задание 34

Определить среднее значение выпрямленного (выходного) напряжения для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что действующее значение напряжения вторичной обмотки составляет 3500 В.

Задание 35

Определить среднее значение выпрямленного (выходного) напряжения для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что действующее значение напряжения вторичной обмотки составляет 4000 В.

jesiobini, ito generaliomee s	jesiobini, ito generajiomee sha lenne nanpiikennii broph mon comorkii ecerabiiler 1000 b.	
Код и наименование индикатора	Образовательный результат	
достижения компетенции		
ПК-6.5. Анализирует	Обучающийся владеет: навыками вычисления параметров и характеристик	
электромагнитные процессы в	проектируемых электронных преобразователей ВТ	
электронных преобразователях		
высокоскоростного подвижного		
состава		

Примеры вопросов/заданий

Задание 36

Определить коэффициент использования мощности вторичной обмотки питающего трансформатора для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что известны следующие данные сопротивление нагрузки 16 Ом, коэффициент трансформации 18, амплитудное значение напряжения первичной обмотки трансформатора 22кВ.

Задание 37

Определить коэффициент использования мощности вторичной обмотки питающего трансформатора для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что известны следующие данные сопротивление нагрузки 14 Ом, коэффициент трансформации 20, амплитудное значение напряжения первичной обмотки трансформатора 23кВ.

Задание 38

Определить коэффициент использования мощности вторичной обмотки питающего трансформатора для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что известны следующие данные сопротивление нагрузки 12 Ом, коэффициент трансформации 22, амплитудное значение напряжения первичной обмотки трансформатора 24кВ.

Задание 39

Определить коэффициент использования мощности вторичной обмотки питающего трансформатора для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что известны следующие данные сопротивление нагрузки 15 Ом, коэффициент трансформации 24, амплитудное значение напряжения первичной обмотки трансформатора 23,5кВ.

Задание 40

Определить коэффициент использования мощности вторичной обмотки питающего трансформатора для следующих схем выпрямления: однофазной мостовой, трехфазной с нулевым выводом и трехфазной мостовой. При условии, что известны следующие данные сопротивление нагрузки 17 Ом, коэффициент трансформации 26, амплитудное значение напряжения первичной обмотки трансформатора 22,5кВ.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Контрольные вопросы к промежуточной аттестации (зачету)

- 1. История развития силовой электроники ВТ
- 2. Сущность и работа р-п перехода.
- 3. Полупроводниковые материалы и их свойства.
- 4. Классификация силовых полупроводниковых приборов (СПП), их обозначения на электрических схемах
- 5. Коммутационные процессы, протекающие в полупроводниковых приборах
- 6. Диоды: классификация, конструкция, характеристики.
- 7. Тиристоры: классификация, конструкция, характеристики.
- 8. Транзисторы: классификация, конструкция, характеристики.
- 9. Биполярный транзистор, работа биполярного транзистора
- 10. Униполярные транзисторы, работа и характеристики
- 11. Последовательное и параллельное соединение полупроводниковых приборов
- 12. Отличительные особенности СПП различных фирм-производителей, применяемых на ВТ
- 13. Электронные преобразователи: классификация, конструкция, основы функционирования
- 14. Методы анализа электромагнитных процессов в электронных преобразователях ВТ
- 15. Выпрямители: классификация, конструкция, характеристики.
- 16. Нулевые и мостовые схемы выпрямления
- 17. Соотношения между токами и напряжениями в различных схемах выпрямления
- 18. Внешние характеристики выпрямителей
- 19. Регулировочные характеристики выпрямителей
- 20. Двухпульсовая нулевая и мостовая схемы выпрямления. Основные соотношения токов и напряжений.
- 21. Шестипульсовая схема выпрямления, работа и основные параметры
- 22. Двенадцатипульсовая схема выпрямления. Особенности работы
- 23. Инверторы, принцип работы и основные схемы. Особенности применения инверторов на ВТ
- 24. Коммутация тока в зависимом инверторе.
- 25. Обеспечение устойчивой работы зависимого инвертора. Ограничительная характеристика.

Контрольные вопросы к промежуточной аттестации (экзамену)

- 1. Неуправляемые полупроводниковые приборы
- 2. Управляемые полупроводниковые приборы и их характеристики
- 3. Управляемые полупроводниковые приборы, угол регулирования
- 4. Вольтамперные характеристики СПП
- 5. Условия запирания тиристора, угол управления
- 6. Статический режим усиления транзистора. Рабочая точка.
- 7. Работа транзисторов в ключевом режиме. Элементы импульсных схем на транзисторах
- 8. Перспективные СПП возможности применения на ВТ
- 9. Влияние индуктивности цепи выпрямленного тока
- 10. Пульсации в схемах выпрямителей, способы борьбы с ними
- 11. Коэффициент мощности и полезного действия выпрямителей
- 12. Коэффициент мощности инвертора. Способы его повышения.
- 13. Характеристики инвертора.
- 14. Автономные инверторы. Назначение. Принцип действия.
- 15. Регулирование частоты и уровня напряжения автономных инверторов при питании бесколлекторных тяговых электродвигателей ВТ
- 16. Однофазный автономный инвертор напряжения
- 17. Однофазные инверторы тока, принцип работы
- 18. Многофазный инвертор напряжения
- 19. Многофазный инвертор тока, принцип работы и основные характеристики
- 20. Принцип действия однотактного транзисторного инвертора с прямым включением выпрямительного диода (с внешним управлением).

- 21. Принцип действия однотактного транзисторного инвертора с обратным включением выпрямительного диода (с внешним управлением).
- 22. Принцип действия мостового транзисторного инвертора напряжения с внешним управлением.
- 23. Принцип действия полумостового транзисторного инвертора напряжения с внешним управлением.
- 24. Принцип действия транзисторного инвертора напряжения со средней точкой трансформатора.
- 25. Система управления транзисторных инверторов напряжения.
- 26. Принцип действия тиристорного инвертора.
- 27. Преобразователи частоты, принцип работы, формирование выходных величин
- 28. Непосредственные преобразователи частоты
- 29. Способы импульсного регулирования напряжения, принцип работы
- 30. Принудительная коммутация в импульсных преобразователях
- 31. Принципиальная схема импульсного регулирования напряжения в режиме тяги
- 32. Принципиальная схема импульсного регулирования напряжения в режиме электрического торможения
- 33. Виды и причины отказов вентилей и статических преобразователей.
- 35. Способы повышения эксплуатационной надежности электронных преобразователей ВТ
- 36. Особенности взаимодействия электромеханической системы ВТ с асинхронным тяговым приводом
- 37. Особенности взаимодействия электромеханической системы ВТ с синхронным тяговым приводом
- 38. Структурные варианты компоновки принципиальных силовых схем ВТ постоянного тока
- 39. Структурные варианты компоновки принципиальных силовых схем ВТ переменного тока
- 40. Структурные варианты компоновки принципиальных силовых схем ВТ двойного питания
- 41. Особенности управления электронными преобразователями ВТ в режиме тяги
- 42. Особенности управления электронными преобразователями ВТ в режиме электрического торможения
- 43. Особенности принципиальной силовой схемы электропоезда «Сапсан» (односистемный вариант)
- 44. Особенности принципиальной силовой схемы электропоезда «Сапсан» (двухсистемный вариант)
- 45. Особенности принципиальной силовой схемы электропоезда «Ласточка»
- 46. Системы управления электронными преобразователями ВТ
- 47. Методы управления, реализуемые в системах управления электронными преобразователями ВТ
- 48. Четырехквадрантный преобразователь: принцип действия, упрощенная схема, алгоритм функционирования
- 49. Особенности взаимодействия принципиальной силовой схемы ВТ, содержащего в своем составе четырехквадрантный преобразователь, с питающей сетью
- 50. Принципы математического моделирования элементов электромеханической системы
- 51. Состояние и перспективы развития электронной техники и преобразователей ВТ

2.4 Курсовая работа

Тема курсовой работы: «Проектирование преобразователя собственных нужд».

Типовые исходные данные для выполнения курсовой работы:

- 1. Номинальное напряжение вспомогательных машин
- 2. Мощность двигателя мотор-компрессора и мотор-вентилятора
- 3. Коэффициент падения напряжения из-за коммутации силовых полупроводниковых приборов (СПП)
- 4. Ток цепей собственных нужд
- 5. Коэффициент пульсаций тока в цепях мотор-компрессора и мотор-вентилятора

Вопросы, подлежащие решению

- 1. Основные преимущества схемы питания вспомогательных цепей
- 2. Схема питания вспомогательных цепей и описание ее работы
- 3. Расчет вторичных цепей
- 4. Выбор СПП автономного инвертора
- 5. Расчет входного фильтра
- 6. Функциональная схема управления инвертором

Типовые вопросы для подготовки обучающихся к защите курсовой работы:

- 1. Перечислить виды и схемы однофазных преобразователей и принципы, лежащие в основе их работы.
- 2. Перечислить виды и схемы трехфазных преобразователей и принципы, лежащие в основе их работы.
- 2. Чем определяется и от чего зависит продолжительность коммутационных процессов?
- 3. Чему равно напряжение в период коммутации и объясните почему так происходит?
- 4. Какова форма тока в силовых полупроводниковых приборах (СПП) преобразователя?
- 5. Какова форма обратного напряжения на СПП преобразователя?
- 6. Чему равна максимальная величина обратного напряжения на СПП?
- 7. Какова форма выпрямленного напряжения?
- 8. Чему равняется амплитудное значение выпрямленного напряжения?
- 9. От чего зависит среднее значение выпрямленного напряжения?
- 10. Чем определяется и от чего зависит степень пульсации выпрямленного тока?

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60~% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по защите курсовой работы

«Отлично» – ставится за курсовую работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**» – ставится за курсовую работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно» — ставится за курсовую работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**» – ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Критерии формирования оценок по зачету

«Зачтено» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Не зачтено**» — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по экзамену

«Отлично» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – обучающийся допустил существенные ошибки.

«Неудовлетворительно» — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.