Документ подписан простой электронной подписью Информация о владельце: ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 09:15:10 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Механическая часть электроподвижного состава

(наименование дисциплины(модуля)

Направление подготовки / специальность

23.05.05 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация

Электрический транспорт железных дорог

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (6 семестр), экзамен (7 семестр), курсовая работа (7 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-2. Способен разрабатывать и оценивать конструкторские решения для механического оборудования электроподвижного состава	ПК-2.3: Разбирается в устройстве, принципах действия и режимах работы основного механического оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел ПК-2.4: Способен применять методы расчета и оценки прочности оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ПК-2.3: Разбирается в устройстве, принципах действия и режимах работы основного механического оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел	Обучающийся знает: устройство механической части ЭПС, составляющих узлов, принципа их работы и взаимодействия в общей конструкции ЭПС; теорию работы рессорного подвешивания при движении по рельсовому пути; требования ПТЭ; современные направления совершенствования конструкции	Вопросы: (1 – 7)
	Обучающийся умеет: проводить анализ механической части ЭПС как сложной механической системы, определять вид и характер связей её элементов	Задания: (1–3)
	Обучающийся владеет: методами диагностики и анализа причин возникновения неисправностей и разработки проектов модернизации отдельных узлов ЭПС в соответствии с требованиями по обслуживанию и ремонту	Задания (7 – 9)
ПК-2.4: Способен применять методы расчета и оценки прочности оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел	Обучающийся знает: методы расчета на прочность при действии статических и динамических нагрузок; особенности нагружения и показатели оценки качества работы узлов механической части электроподвижного состава	Вопросы: (8-12)
	Обучающийся умеет: выполнять расчёты деталей и узлов механической части электроподвижного состава в соответствии с критериями надежности и безопасности	Задания: (4-6)
	Обучающийся владеет: навыками проведения поверочных расчётов на прочность и опытом выявления причин возникновения неисправностей элементов механической части электроподвижного состава	Задания (10-12)

Промежуточная аттестация (зачет, экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение и/или размещение заданий в ЭИОС университета.

Промежуточная аттестация (курсовая работа) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

принципах действия и режимах работы узлов, принципа их работы и взаимодействия в общей конструкции ЭПС;	Код и наименование индикатора	Образовательный результат
принципах действия и режимах работы узлов, принципа их работы и взаимодействия в общей конструкции ЭПС; основного механического оборудования электроподвижного состава на основе знаний законов статики и динамики	достижения компетенции	
	принципах действия и режимах работы основного механического оборудования электроподвижного состава на основе знаний законов статики и динамики	Обучающийся знает: устройство механической части ЭПС, составляющих узлов, принципа их работы и взаимодействия в общей конструкции ЭПС; теорию работы рессорного подвешивания при движении по рельсовому пути; требования ПТЭ; современные направления совершенствования конструкции

Примеры вопросов

1. Что означает понятие «независимая рессора»?

Выберите один ответ:

- а. система сбалансированного рессорное подвешивание
- система балансиров рессорного подвешивания
- с. рессора буксовой ступени рессорного подвешивания
- d. винтовая пружина первой ступени рессорного подвешивания
- е. комплект пневморессор второй ступени рессорного подвешивания

2. Классификация колесных пар по конструкции колёсного центра?

- а. литые и катаные
- b. спицевые, дисковые и цельнокатаные
- с. спицевые, катаные и цельнокатаные
- d. литые, катаные и цельнокатаные

3. Перечислите составляющие элементы колёсной пары грузовых электровозов.

е. два движущих колеса и редуктор

f.ось, два движущих колеса и тяговая муфта

- g. ось, два движущих колеса и два зубчатых колеса
- h. два движущих колёса, ось, два подшипника

4. К какому типу относится автосцепное устройство СА-3?

- і. жёсткое.
- ј. нежёсткое.
- k. полужёсткое.
- 1. мягкое.

5. Какие отклонения корпуса автосцепки сглаживает центрирующий прибор?

- т. вертикальные
- п. Продольные
- о. боковые
- р. угловые.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

6. К какому типу относится поглощающий аппарат Ш-1-ТМ?

- q. гидрогазовый
- r. пружиннофрикционный
- s.резиновый
- t. эластомерный.

7. Какие усилия воспринимают и уменьшают поглощающие аппараты автосцепных устройств?

- и. сжимающие
- v. растягивающие
- w. крутящие
- х. изгибающие.

Код и наименование индикатора достижения компетенции	Образовательный результат
ПК-2.4: Способен применять методы расчета и оценки прочности оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел	Обучающийся знает: методы расчета на прочность при действии статических и динамических нагрузок; особенности нагружения и показатели оценки качества работы узлов механической части электроподвижного состава

Примеры вопросов

8. Оценка какой прочности рамы тележки электровоза выполняется в курсовой работе?

Выберите один ответ.

- а. Статической, динамической и усталостной.
- b. Статической и динамической.
- с. Статической, динамической, ударной и усталостной.
- d. Статической, ударной и усталостной.

9. Укажите показатели, характеризующие в полной мере качество механической части ЭПС.

Выберите один ответ:

- а. показатели назначения и безопасности
- габаритные ограничения подвижного состава и габарит приближения строений
- с. показатели динамического качества
- d. показатели надёжности
- е. комплекс общих показателей и специфических показателей динамического качества

10. При расчёте жёсткости резиновой пружины, какая величина деформации учитывается?

Выберите один ответ:

- а. менее 30%
- b. 10-15%
- с. более 30%
- d. более 20%
- e. 600%

11. При расчёте какой силы требуется коэффициент сцепления колеса с рельсом?

Выберите один ответ.

- а. Весовая нагрузка рамы тележки.
- Ыентробежная сила
- с. Сила тяги.
- d. Кососимметричная нагрузка рамы тележки

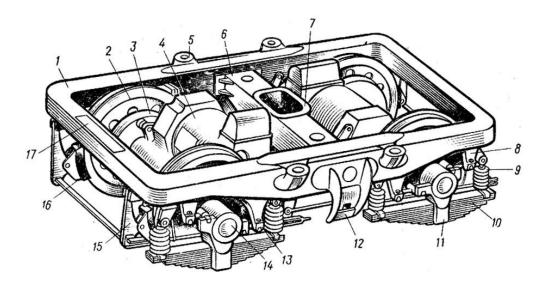
12. Какая расчётная схема выбирается при расчёте устойчивости кузова, балок, опор ЭПС по формуле Эйлера?

Выберите один ответ:

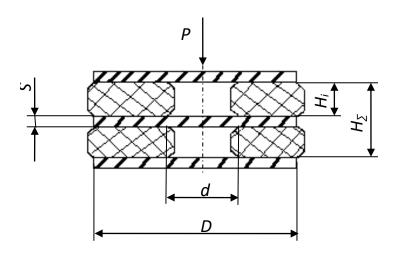
а. Упругий короб.

- b. Упругопластический стержень.
- с. Упругий стержень.
- d. Упругопластический короб.

2.2 Типовые задания для оценки навыкового образовательного результата


Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-2.3: Разбирается в устройстве,	Обучающийся умеет: проводить анализ механической части ЭПС как сложной
принципах действия и режимах работы	механической системы, определять вид и характер связей её элементов
основного механического оборудования	
электроподвижного состава на основе	
знаний законов статики и динамики	
твердых тел	

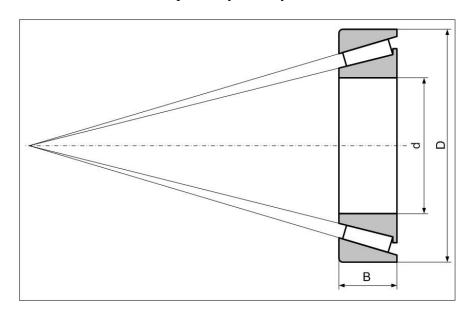

Примеры заданий

Задание 1

Произвести расчёт жёсткости системы буксового рессорного подвешивания тележки ЭПС: Винт. пр. - D=160мм; d=42мм; n=4вт; G=7,5· 10^4 МПа; Лист. ресс. - h=16мм; b=120мм; a=164мм; L=1400мм; mk=3шт; n=7шт; E= $21\cdot10^4$ МПа.

Задание 2 Произвести расчёт жёсткости системы эластичных пружин: D=240мм; d=100мм; H=100мм; E=2,3М Π а; H=15%.

Задание 3


Выполнить расчёт силы сопротивления фрикционного дискового гасителя колебаний. Исходные данные: жёсткость нажимной пружины $\mathrm{\mathcal{K}_{h.np}.=425kH/m};$ величина её затяжки $h_3=25\mathrm{mm};$ коэффициент трения $k_{\mathrm{rp.}}=0.08.$

Код и наименование индикатора достижения компетенции	Образовательный результат
ПК-2.4: Способен применять методы расчета и оценки прочности оборудования электроподвижного состава на основе знаний законов статики и динамики твердых тел	Обучающийся умеет: выполнять расчёты деталей и узлов механической части электроподвижного состава в соответствии с критериями надежности и безопасности

Примеры заданий

Задание 4

Определить величину и процент снижения уровня радиальной нагрузки на ось колёсной пары в буксовом узле с кассетным подшипником при следующих условиях:

 Π ст = 80кH; D = 200 мм; d = 120 мм; L = 280мм.

Задание 5

Рассчитать и построить силовую нагрузочную характеристику одноступенчатого поглощающего аппарата, при значениях жёсткости и начальной затяжке пружин: C=2,6кN/мм; $X_o=10$ мм; $X_{max}=30$ мм.

Залание 6

Рассчитать срок службы подшипника по износу, если допустимый линейный износ [Δh]= 0,1мм; износ приработки Δh п =0,0002мм; коэффициент износа ku=2·10-5мм 2 /H, удельное давление p=4H/мм2, скорость скольжения v=1м/c, а эмпирические коэффициенты m=n=1.

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-2.3: Разбирается в устройстве,	Обучающийся владеет: методами диагностики и анализа причин
принципах действия и режимах работы	возникновения неисправностей и разработки проектов модернизации
основного механического оборудования	отдельных узлов ЭПС в соответствии с требованиями по обслуживанию и
электроподвижного состава на основе	ремонту
знаний законов статики и динамики	
твердых тел	

Примеры заданий

Задание 7

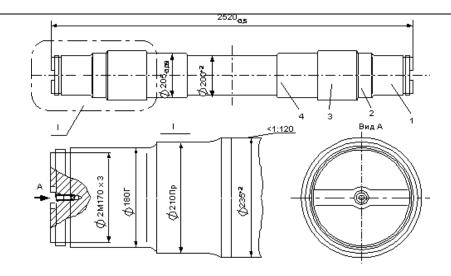
Выполнить расчёт силы сопротивления торсионной пружины. Исходные данные: жёсткость торсионного стержня Жт=120 кH/м; длина торсионного стержня l=2м; размер рычага $b_p=0.5\text{m}$; угол закручивания торсионного стержня $\alpha=1^\circ$.

Задание 8

Определить максимальную длину бруса прямоугольного сечения при упругой стадии деформации и критической силе на устойчивость $P_{\kappa p}$ =5кH, E=2·105МПа, I_{min} =44,3мм⁴.

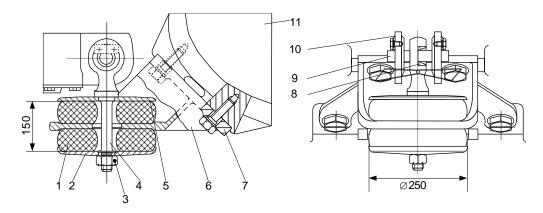
Задание 9

Рассчитать напряжение в раме тележки от динамической вертикальной нагрузки при скорости движения V=100 км/ч, статическом прогибе рессорного подвешивания $f_{c\tau}=120$ мм и напряжении в опасном сечении от весовой нагрузки $\sigma_B=18$ МПа.

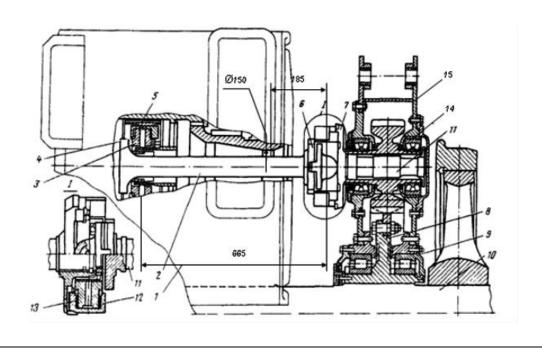

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-2.4: Способен применять	Обучающийся владеет: навыками проведения поверочных расчётов на прочность и
методы расчета и оценки	опытом выявления причин возникновения неисправностей элементов механической
прочности оборудования	части электроподвижного состава
электроподвижного состава на	
основе знаний законов статики и	
динамики твердых тел	

Примеры заданий

Задание 10


Определить допускаемый диаметр подступичной части оси колёсной пары при заданной нагрузке и сделать вывод о её влияния на конструкцию при следующих условиях:

- момент нагрузки на подступичную часть оси колёсной пары составляет M=180кH·м
- геометрические параметры участков оси колёсной пары приведены на рисунке ниже.


Задание 11

Исходные данные: размеры резиновой шайбы D x d x H = (250 x 50 x 70)мм; модуль упругости резины E=4MПа; максимальная нагрузка на подвеску Q=25кH. Определить величину необходимой затяжки резинометаллического блока – амортизатора маятниковой подвески ТЭД для обеспечения выполнения условий долговечности самой подвески и резиновых шайб.

Задание 12 Исходные данные: L=665мм; l=190мм; D=150мм; d=100мм – см. рисунок. Определить максимальный угол закручивания шарниров карданного вала при

Определить максимальный угол закручивания шарниров карданного вала при заданных конструктивных размерах ТЭД. Выполнить оценку выполнения условия долговечности шарниров.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Контрольные вопросы (для проведения зачета):

- 1. История развития железнодорожного транспорта. Механическая часть электроподвижного состава.
- 2. Экипаж рамный и тележечный. База экипажа.
- 3. Классификация механической части электроподвижного состава и общие требования к ней.
- 4. Качество механической части электроподвижного состава.
- 5. Понятие об унификации, взаимозаменяемости и качестве узлов и деталей механической части электроподвижного состава.
- 6. Рамы тележек электроподвижного состава, их назначение и компоновочные схемы. Конструкция рам тележек итехнология их изготовления.
- 7. Что называется базой тележки. На что влияет ее величина. Преимущества и недостатки двухосных и трехосных тележек.
- 8. Основные виды нагрузок, действующие на раму тележки.
- 9. Межтележечные соединения, назначение и устройство.
- 10. Типы кузовов и их классификация.
- 11. Расчет тележек и кузовов на прочность.
- 12. Расчет балок кузовов и тележек на устойчивость.
- 13. Рессорное подвешивание, его назначение. Компоновочные схемы рессорного подвешивания ВТ и его основные элементы.
- 14. Гасители вязкого трения. Конструкция и параметры демпфера, процесс диссипации.
- 15. Гасители сухого трения. Конструкция и параметры демпфера, процесс диссипации.
- 16. Конструкция и характеристики винтовых пружин.
- 17. Независимая рессора точка рессорного подвешивания.
- 18. Конструкция и характеристики торсионов.
- 19. Конструкция и характеристики листовых рессор.
- 20. Резиновые и резинометаллические упругие элементы.
- 21. Конструкция и характеристики пневморессор.
- 22. Классификация связей кузова с тележками.
- 23. Узлы соединения кузова и тележки с жёсткой плоской цилиндрической опорой.
- 24. Роликовые опоры кузова и тележки.
- 25. Поводковое шкворневое соединение кузова с тележкой.
- 26. Узлы соединения кузова и тележки со шкворнями, люлечными устройствами и скользунами.
- 27. Узлы соединения кузова и тележки со шкворнем, пружинным поперечным возвращающим устройством и скользунами.
- 28. Узлы соединения кузова и тележек с многоцелевым использованием пружин система «Флексикойл».
- 29. Узлы соединения кузова и тележки с маятниковыми опорами.
- 30. Расчеты на износ элементов механической части.

Контрольные вопросы (для проведения экзамена):

- 1. Колесные пары электроподвижного состава. Назначение, конструкции и особенности работы.
- 2. Неисправности колесных пар. Осмотр и система освидетельствования.
- 3. Буксовые узлы, их назначение и виды конструкции.
- 4. Буксовые узлы с плоскими направляющими.
- 5. Буксовые узлы с цилиндрическими направляющими.
- 6. Буксовые узлы с шарнирно-поводковым и рычажным механизмом.
- 7. Подшипники буксовых узлов, виды и методы их расчета.
- 8. Автосцепное устройство, назначение, конструкция и механизм действия.
- 9. Центрирующий прибор, назначение, конструкция и механизм действия.
- 10. Поглощающие аппараты автосцепных устройств, их характеристики.
- 11. Автосцепные устройства нового поколения.

- 12. Тяговый привод, его назначение и основные элементы
- 13. Классификация тяговых приводов по динамическим свойствам.
- 14. Критерии оценки динамического совершенства тягового привода.
- 15. Степень защищённости кинематической цепи тягового привода от воздействия динамических моментов.
- 16. Относительные угловые перемещения шарнирных элементов муфт.
- 17. Кинематические схемы тягового привода класса II.
- 18. Кинематические схемы тягового привода класса III.
- 19. Тяговые приводы с замкнутыми кинематическими цепями.
- 20. Силы, действующие на элементы тягового привода класса І.
- 21. Силы, действующие на элементы тягового привода класса II.
- 22. Силы, действующие на элементы тягового привода класса III.
- 23. Условные обобщённые показатели динамического совершенства.
- 24. Безредукторный тяговый привод.
- 25. Виды подвески тягового электродвигателя.
- 26. Особенности тяговой передачи тягового привода класса І.
- 27. Моторно-осевые подшипники, назначение, особенности конструкции и их классификация.
- 28. Опорно-центровой тяговый привод, особенности конструкции.
- 29. Зубчатые тяговые передачи. Назначение, параметры и виды.
- 30. Упругие самоустанавливающиеся зубчатые колеса УСЗК.
- 31. Редукторы, назначение, типы и устройства.
- 32. Несущая конструкция кожуха зубчатой передачи и её применение. Понятие «централь». Необходимость и средства ее сохранения.
 - 33. Особенности конструкций опорно-осевой подвески редукторов.
 - 34. Шарнирно-поводковая муфта поперечной компенсации фирмы «Эрликон».
 - 35. Опорно-рамное подвешивание ТЭД и его разновидности.
 - 36. Резинокордная муфта, ее назначение и устройство.
- 37. Карданная тяговая передача, устройство и принцип действия. Классификация тяговых карданных муфт.
 - 38. Типовая схема и особенности конструкции тягового привода класса III.
 - 39. Тяговые муфты поперечной компенсации.
 - 40. Тяговые муфты продольной компенсации.
 - 41. Групповой тяговый привод, виды исполнения, преимущества и недостатки.
 - 42. Нагрузки элементов тяговых передач приводов классов I, II, III от тягового момента.
 - 43. Способы снижения динамических моментов.
 - 44. Испытание механической части подвижного состава. Цели, виды, оборудование.
 - 45. Шарнирно-поводковая муфта поперечной компенсации фирмы Alsthom.
 - 46. Карданная муфта продольной компенсации Жакмен.
 - 47. Пластинчатая муфта фирмы «Secheron».
 - 48. Уравновешенная шарнирно-поводковая муфта.
 - 49. Сравнение тяговых приводов классов І-ІІІ по динамическим свойствам.
 - 50. Перспективы развития конструкции ВТ.

2.4 Курсовая работа

Тема курсовой работы: «Расчет на прочность рамы тележки современного грузового электровоза».

Типовые исходные данные для выполнения курсовой работы):

База тележки 2а, м.

Нагрузка на ось $2\Pi_{CT}$, кН.

Тип тягового двигателя НБ-514Б

Вес тягового редуктора зубчатого G_{p3} , кН.

Толщина листов боковины рамы:

- стенки b_1 , мм;

полки b₂, мм.

Жесткость:

- стальной винтовой пружины c_6 , кН/м;
- резиновой пружины c_p , кH/M.

Радиус кривой ρ , м.

Возвышение наружного рельса в кривой h, мм.

Вероятности среднеинтервальных скоростей $p_1...p_5$.

Вопросы, подлежащие решению

- 1. Расчетная схема рамы тележки
- 2. Характеристики опасного сечения
- 3. Весовая нагрузка рамы
- 4. Напряжения в опасном сечении рамы тележки от весовой нагрузки
- 5. Допустимая скорость движения электровоза в кривой
- 6. Силы, действующие на раму тележки при движении в кривой
- 7. Напряжения в опасном сечении рамы при движении в кривой
- 8. Силы, действующие на раму тележки при работе двигателей в тяговом режиме
- 9. Напряжения в опасном сечении рамы от системы сил, действующих в тяговом режиме
- 10. Кососимметричная нагрузка рамы тележки
- 11. Напряжения в опасном сечении рамы тележки от вертикальной динамической нагрузки
- 12. Запас прочности в опасном сечении при наиболее неблагоприятных сочетаниях нагрузок
- 13. Напряжение от условной статической нагрузки
- 14. Приведенное амплитудное напряжение расчетного цикла
- 15. Оценка усталостной прочности рамы

Типовые вопросы для подготовки обучающихся к защите курсовой работы:

- 1. Цель курсовой работы, результаты и конечные выводы.
- 2. Какие виды нагрузок, действующих на тележку, рассматриваются и оценка какой прочности выполняется в данной работе?
 - 3. Для чего составляется расчетная схема рамы тележки?
 - 4. Какое сечение рамы тележки подлежит расчетной проверке на прочность и почему?
 - 5. Для чего определяется центр тяжести опасного сечения?
 - 6. В каких точках опасного сечения возникают максимальные напряжения?
 - 7. Из чего складывается весовая нагрузка рамы тележки?
 - 8. Какая часть рамы тележки рассматривается при расчетах и почему?
 - 9. Чем определяется полюсное расстояние?
- 10. В колонках какого ребра боковины рамы тележки суммируются напряжения растяжения от изгиба в вертикальной плоскости и напряжения сжатия от изгиба в горизонтальной плоскости?
 - 11. Когда возникает кососимметрическая нагрузка и что происходит при этом?
 - 12. Как учитывается при расчете на прочность динамическая вертикальная нагрузка?
 - 13. Как определяется запас прочности при наиболее неблагоприятных сочетаниях нагрузок?
- 14. Как влияют условия эксплуатации (план и профиль пути на участке обращения локомотива, весовые нормы поездов) на долговечность рамы тележки?
- 15. Как влияют скоростные режимы эксплуатации на процесс накопления усталостных разрушений?
 - 16. Что такое коэффициент асимметрии циклов нагружения?
 - 17. Какой нагрузочный цикл принимается для расчетов усталостной прочности тележки?
 - 18. Как при расчетах учитывается асимметрия циклов нагружения?

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по защите курсовой работы

«Отлично» – ставится за курсовую работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**» – ставится за курсовую работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно» – ставится за курсовую работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Незачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по экзамену

«Отлично» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – обучающийся допустил существенные ошибки.

«**Неудовлетворительно**» — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.