Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 22.10.2025 18:00:49 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Математическое моделирование

(наименование дисциплины (модуля)

Направление подготовки / специальность

27.03.01 Стандартизация и метрология

(код и наименование)

Направленность (профиль)/специализация

«Метрология и метрологическое обеспечение»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен (5 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-3: Способен осуществлять надзор и контроль за состоянием и эксплуатацией оборудования, выявлять резервы, определять причины существующих недостатков и неисправностей в его работе, принимать меры по их устранению и повышению эффективности использования	ПК-3.2: Читает и составляет техническую документацию, проводит метрологическую экспертизу и нормоконтроль технической документации, анализирует метрологическое обеспечение производства, анализирует качество работы оборудования, определяет причины отказов и показатели надежности измерительной техники

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы(семестр4)
ПК-3.2: Читает и составляет техническую документацию,	Обучающийся знает: стандартные пакеты	Вопросы (№ 1 - № 10)
проводит метрологическую	Обучающийся умеет: использовать	Задания (№ 1-№ 3)
экспертизу и нормоконтроль	стандартные пакеты	
технической документации,	Обучающийся владеет: навыками по	Задания (№ 4- №6)
анализирует метрологическое	использованию стандартных пакетов	
обеспечение производства,		
анализирует качество работы		
оборудования, определяет		
причины отказов и показатели		
надежности измерительной		
техники		

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
компетенции	
ПК-3.2: Читает и составляет	Обучающийся знает: стандартные пакеты
техническую	
документацию, проводит	
метрологическую	
экспертизу и нормоконтроль	
технической документации,	
анализирует	
метрологическое	
обеспечение производства,	
анализирует качество	
работы оборудования,	
определяет причины отказов	
и показатели надежности	
измерительной техники	
1.76	

- 1. Математическая модель- это...
- а) математическое представление связей и отношений исследуемой системы
- б) математические уравнения, описывающие динамику системы
- в) математические обозначения, используемые в постановке задачи
- г) математический метод исследования поведения системы
- 2. Математическая модель используется в основном для ...
- а) применения системы
- б) управления системой
- в) изучения системы
- г) всего перечисленного выше
- 3. Любая математическая модель должна (в рамках рассматриваемых гипотез моделирования) быть абсолютно ...
- а) точной
- б) адекватной
- в) идеальной
- г) совершенной
- 4. Компьютерная модель -это...
- а) компьютер + программа + технология моделирования (их использования)
- б) компьютер + программа
- в) компьютер + MS Office
- г) пакет решения математических задач
- 5. Компьютерный эксперимент это ...
- а) обработка результатов вычислений на компьютере
- б) эксперимент с помощью компьютера или на компьютере

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- в) построение таблиц и графиков в MS Office
- г) любое использование любого математического пакета
- 6. Принципы работы электрического влагометра:
- а) по величине электропроводности влажного вещества;
- б) по величине диэлектрической проницаемости;
- в) по величине диэлектрических потерь;
- г) все перечисленные.
- 7. Для измерения линейных или угловых перемещений могут использоваться:
- а) реостатные преобразователи;
- б) индуктивные и трансформаторные преобразователи;
- в) емкостные преобразователи;
- г) преобразователи всех перечисленных типов.
- 8. Для непосредственного измерения силы могут использоваться:
- а) магнитоупругие датчики;
- б) пьезоэлектрические датчики;
- в) датчики всех перечисленных типов;
- г) ни один из перечисленных типов.
- 9. Для измерения уровня жидкости могут использоваться:
- а) уравнемеры с поплавком постоянного погружения;
- б) уравнемеры, основанные на использовании физических свойств жидкости;
- в) все перечисленные типы;
- г) ни один из перечисленных типов.
- 10. Для измерения давления могут использоваться:
- а) жидкостные манометры;
- б) пружинные манометры;
- в) манометры всех перечисленных типов;
- г) ни один из перечисленных типов.

2.2 Типовые задания для оценки навыкового образовательного результата

ПК-3.2: Читает и составляет	Обучающийся умеет: использовать стандартные пакеты
техническую	
документацию, проводит	
метрологическую	
экспертизу и нормоконтроль	
технической документации,	
анализирует	
метрологическое	
обеспечение производства,	
анализирует качество	
работы оборудования,	
определяет причины отказов	
и показатели надежности	
измерительной техники	
Задание 1. При проведении из	мерительного эксперимента получены следующие значения величины:

Задание 1. При проведении измерительного эксперимента получены следующие значения величины: 11,65; 11,41; 11,57; 11,60; 11,50; 11,55; 11,58; 11,58; 11,61; 11,63. Требуется проанализировать полученные результаты наблюдений в целях выявления грубых погрешностей, используя критерий Диксона.

Задание 2. В процессе контроля были получены следующие результаты измерительных наблюдений за одним из показателей качества: 9,47; 9,49; 9,40; 9,61; 9,39; 9,41; 9,43; 9,49; 9,46; 9,42. Используя критерий Романовского выявить наличие промахов.

Задание 3. Некоторую физическую величину измерили двумя независимыми способами. По первому способу получили результаты:38.20,38.00,37.66; по второму — 37.70,37.65,37.55. Значимо ли различаются результаты данных измерений?

ПК-3.2: Читает и составляет техническую документацию, проводит метрологическую экспертизу и нормоконтроль технической документации, анализирует метрологическое обеспечение производства, анализирует качество работы оборудования, определяет причины отказов и показатели надежности измерительной техники

Обучающийся владеет: навыками по использованию стандартных пакетов

Задание 4. При измерении некоторой величины были получены следующие результаты: 1.31, 1.45,1.42,1.32, 1.30. Опорное значение этой величины X оп = 1,47. Определить стандартное отклонение S, точность измерений \mathcal{C} 0.95 (\mathcal{A} ,%) и сделать вывод о наличии систематической ошибки в использовании данного метода измерения.

Задание 5. Определить, существует ли значимое различие между выборочной средней величиной при определении НКПРП пыли обращающейся в производстве, если при отборе проб следующие результаты: 2.10, 2.12, 2.13, 2.15, 2.15 и средней генеральной совокупностью (для n=80) m=2.15 г/м3. Задание 6. При определении коэффициента теплопроводности $^{\lambda}$ газобетона были получены результаты: $8.0 \times 10-4$ Вт/моС и $8.4 \times 10-4$ Вт/моС. Чему равна точность изменения (ep и D) коэффициента теплопроводности? Сколько параллельных измерений необходимо провести для достижения относительной точности 5%? Оправдано ли будет применение этого способа измерения для достижения такой точности?

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Получение и решение систем линейных уравнений с помощью встроеных функций системы Mathcad.
- 2. Определение параметрической чувствительности мостовой схемы постоянного тока.
- 3. Моделирование установившегося режима в линейной системе при гармоническом входном воздействии.
- 4. Анализ частотных характеристик аналоговых электронных устройств.
- 5. Расчет нормального и шунтового режимов рельсовой цепи переменного тока.
- 6. Анализ динамических характеристик измерительных преобразователей спектральным методом.
- 7. Анализ спектра сигнала АЛСН с помощью встроенных функций системы Mathcad.
- 8. Основные динамические характеристики измерительных приборов и систем.
- 9. Математические модели задачи анализа переходного процесса в линейных электрических цепях при типовых входных воздействиях.
- 10. Получение математического описания задач электродинамики в виде системы обыкновенных дифференциальных уравнений.
- 11. Использование преобразования Лапласа для расчета динамических характеристик средств измерений.
- 12. Анализ переходного процесса численным методом с помощью встроеных функций системы Mathcad.
- 13. Прямое и обратное преобразование Фурье. Спектр периодических сигналов.
- 14. Получение и решение систем нелинейных алгебраических уравнений с помощью встроенных функций системы Mathcad. Решение прикладных оптимизационных задач.
- 15. Математическое моделирование статических характеристик полупроводниковых приборов.
- 16. Анализ однополупериодного выпрямителя на полупроводниковых диодах.
- 17. Формулировка краевых задач математической физики. Моделирование волновых процессов распространения сигналов в проводных и беспроводных каналах.
- 18. Моделирование стационарных физических полей.
- 19. Обзор аналитических и численных методов решения краевых задач.
- 20. Расчет электростатического поля в двумерной области методом конечных разностей.
- 21. Расчет первичных и вторичных параметров двухпроводной линии.
- 22. Расчет задерки и искажений импульсных сигналов в линии.
- 23. Получение математической модели системы массового обслуживания с очередями и с ожиданием.
- 24. Моделирование систем массового обслуживания с помощью математического пакета Mathcad.
- 25. Расчет характеристик систем массового обслуживания методом статистического моделирования.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Экзамен по дисциплине проводится в устной форме. Экзаменационные билеты должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно бытьопределено с учетом количества студентов в экзаменуемых группах плюс пять билетов дополнительно. К экзамену допускаются обучающиеся, выполнившие следующие требования: выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу по билету обучающемуся дается 45 минут.

Экзаменационный билет состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведение тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение, формулу, точку на механической характеристике или саму графическую зависимость. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный так и ошибочный ответ.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных

ситуаций, где могут быть использованы электрические цепи или электрические машины со схемами управления. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) — получают студенты с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы -89-70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69 - 40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧ

Оценку «зачтено» — получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «незачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических машин и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических машин, правильно выполнившие все необходимые измерения и дополнительные расчеты при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «незачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических машин, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических машин, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЭКЗАМЕНУ

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно**/**не** зачтено» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.