Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 29.10.2025 14:12:40 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет в 6 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-3 Способен принимать решения в области профессиональной деятельности, применяя нормативную правовую базу, теоретические основы и опыт производства и эксплуатации транспорта	ОПК-3.2 Решает задачи планирования и проведения работ по стандартизации, сертификации и метрологии, используя нормативно-правовую базу, современные методы и информационные технологии

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ОПК-3.2 Решает задачи планирования и	Обучающийся знает: Правовые основы метрологии,	Вопросы (1 – 30)
проведения работ по стандартизации,	стандартизации и сертификации в области	
сертификации и метрологии, используя		
нормативно-правовую базу,	работы с ними, способы обработки материалов	
современные методы и	геодезических съёмок.	
информационные технологии	Обучающийся умеет: Определять физико-	Задания (1-29)
	механические характеристики строительных	
	материалов и грунтов; производить и обрабатывать	
	измерения путеизмерительными средствами,	
	производить обработку результатов измерений.	
	Обучающийся владеет: Методами работы с	Задания (1-4)
	современной испытательной и измерительной	
	аппаратурой и геодезическими приборами; методами	
	технического контроля за состоянием строящегося и	
	эксплуатируемого объекта; методами и средствами	
	технических измерений, приемами использования	
	стандартов и других нормативных документов при	
	оценке, контроле качества и сертификации	
	продукции.	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС ПривГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-3.2 Решает задачи	Обучающийся знает: Правовые основы метрологии, стандартизации и сертификации
планирования и проведения	в области строительства; измерительные приборы и правила работы с ними, способы
работ по стандартизации,	обработки материалов геодезических съёмок.
сертификации и метрологии,	
используя нормативно-	
правовую базу, современные	
методы и информационные	
технологии	
T	

Примеры вопросов/заданий

- 1. Шкала физической величины, которая используется при определении твердости материала называется шкалой...
 - 1. наименований
 - 2. отношений
 - 3. интервалов
 - 4. порядка
- 2. Физическая величина, входящая в систему величин и условно принятая независимой от других величин этой системы называется
 - 1. единицей измерения
 - 2. производной
 - 3. основной
 - 4. аддитивной
- 3. метод измерения, при котором на прибор разность измеряемой величины известного размера воспроизводимого мерой называется методом
 - 1. дифференциальным
 - 2. непосредственной оценки
 - 3. замещения
 - 4. совпадения
- 4. если на проборе указан класс точности 0,5 то это означает что погрешность всех приборов данного типа выражается
 - 1. в приведенной форме (отношение абсолютной погрешности к результирующему значению в процентах)

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 2. значением случайной составляющей погрешности Δ_{cn}
- 3. в относительной форме
- 4. в абсолютной форме
- 5. для оценки погрешности измерений в более удобной форме с описанием закона распределения случайных погрешностей является выражение
 - $_{1.}$ числовыми характеристиками M_X и D_X
 - 2. таблицей
 - 3. графиком
 - 4. функцией распределения
- 6. Сила сжатия пружины измеряется динамометром указатель которого без нагрузки показывает +1 H с приложением нагрузки 75 H CKO показаний динамометра $\sigma_F = 2$ H, случайная составляющая погрешности измерения с доверительной вероятностью P=0.95 ($t_D=1.96$) будет равна
 - 1. 3,92
 - 2. 3
 - 3. 1
 - 4. 2
- 7. При многократном измерении диаметра отверстия получено значение отклонений от настроенного на 0 прибора в мкм +1 0 +2 +3 +1 CKO результата измерений будет равно
 - 1. $\sqrt{\frac{5}{3}}$
 - 2. 1
 - 3. $\sqrt{2}$
 - 4. $\sqrt{10}$
- 8. На реальную погрешность СИ определяют суммированием возможных источников ее появления если
 - 1. измерения сложные
 - 2. методические и субъективные погрешности измерения на порядок меньше инструментальных
 - 3. измерения простые многократные
 - 4. нет информации о составляющих погрешности измерения
- 9. Сфера государственного регулирования единства измерений не распространяется на ...
 - 1. единицы величин
 - 2. эталоны единицы величин
 - 3. СИ подвергаемые калибровке

- 4. стандартные образцы средств измерений к которым установлены обязательные требования
- 10. Создание и ведение федерального информационного фонда по обеспечению единства измерений и предоставления содержащихся в нем документов и сведения является задачей
 - 1. федерального органа исполнительной власти
 - 2. всесоюзной патентно-технической библиотеки
 - 3. государственных научных метрологических институтов
 - 4. государственных региональны центров метрологии
- 11. Документально оформленная в установленном порядке решения о признании соответветствия типа СИ метрологическим техническим требованиям на основании результатов испытаний СИ в целях утверждения типа является...
 - 1. калибровкой
 - 2. передачей единицы величины
 - 3. утверждение типа средств измерений
 - 4. поверкой
- 12. Государственный метрологический надзор не распространяется на деятельность юридических лиц и индивидуальных предпринимателей осуществляющих
 - 1. расфасовку товаров
 - 2. ввоз на территорию РФ СИ предназначенных для применения в сфере государственного обеспечения единства измерений
 - 3. продажу стандартных образцов предназначенных для применения в сфере государственного обеспечения единства измерений
 - 4. измерения не относящиеся к сфере государственного регулирования обеспечения единства измерений
- 13. В соответствии со статьей 11 Закона РФ «О техническом регулировании» целью стандартизации является...
 - 1. добровольное применение стандартов
 - 2. максимальный учет при разработке стандартов законных интересов заинтересованных лиц
 - 3. создание систем классификации кодирования и технико-экономической и социальной информации
 - 4. обеспечение для единообразного применения стандартов
- 14. Система предпочтительных чисел построена на основе
 - 1. рядов чисел геометрической прогрессии
 - 2. экспериментальных исследований
 - 3. инженерных расчетов
 - 4. четных чисел

- 15. Минимально необходимое но достаточное число видов типоразмеров изделий сборочных единиц и деталей обладающих высоким уровнем качества полной взаимозаменяемостью устанавливаются при
 - 1. агрегатировании
 - 2. типизации конструкции изделий
 - 3. симплификации
 - 4. унификации
- 16. Целью деятельности международной организации по стандартизации ИСО является
 - 1. содействие развитию стандартизации на международном уровне
 - 2. поощрение создания новых стандартов для промышленности
 - 3. оказание эффективного содействия ВТО
 - 4. снижение общих временных затрат
- 17. Свойство физического объекта общее в качественном отношении для многих объектов, но индивидуальное для каждого из них в количественном отношении называется
 - 1. взаимозаменяемостью
 - 2. измерительным преобразователем
 - 3. физической величиной
 - 4. качеством продукции
- 18. Энергия определяется по формуле $E = mc^2$, где m масса, с- скорость света. Укажите размерность энергии
 - 1. L^2MT^{-2}
 - 2. L^2MT^2
 - $3. LM^2T$
 - 4. L^2MT
 - 19. По способу получения информации измерения разделяют на
 - 1. абсолютное и относительное
 - 2. совместные и совокупные
 - 3. однократные и многократные
 - 4. статические и динамические
 - 20. СИ, предназначенное для воспроизведения величины заданного размера, называют...
 - 1. вещественной мерой
 - 2. государственным первичным эталоном единиц величин
 - 3. измерительным прибором

- 4. компаратором
- 21. По условиям проведения измерений погрешности разделяют на...
- 1. основные и дополнительные
- 2. абсолютные и относительные
- 3. объективные и субъективные
- 4. систематические и случайные
- 22. Величина доверительного интервала погрешности измерений не зависит от...
- 1. заданной доверительной вероятности
- 2. закона распределения погрешности измерения
- 3. величины постоянной систематической погрешности
- 4. СКО погрешности измерений
- 23. При многократных измерениях с n<20 по выражению $\frac{x_i \bar{x}}{s_x}$ определяют значения для определения...
- 1. значение критерия согласия Пирсона
- 2. коэффициента t_p в выражении доверительного интервала
- 3. грубых погрешностей измерения
- 4. среднего СКО погрешности измерения
- 24. В основу выбора СИ при контроле параметров по точности положен принцип...
- 1. погрешность измерения должна быть сопоставима с возможным отклонением
- 2. контролируемого параметра
- 3. выбор СИ с наименьшей возможно достижимой погрешностью
- 4. наличие СИ на предприятии
- 5. пренебрежимо малого влияния погрешности измерения на результат измерения
- 25. Сфера государственного регулирования обеспечения единства измерений не распространяется на...
- 1. эталоны единиц величин
- 2. стандартные образцы и СИ к которым установлены обязательные требования
- 3. СИ, подвергаемые калибровке
- 4. единицы величин
- 26. Осуществление государственного метрологического надзора и координация деятельности по его осуществлению является задачей...
- 1. федеральных органов исполнительной власти
- 2. государственных региональных центров метрологии
- 3. метрологических служб юридических лиц

- 4. государственных научных метрологических центров
- 27. Совокупность операций, устанавливающих соотношение между единицами величин, воспроизводимых эталонами единиц величин одного уровня точности и в одинаковых условиях, называется ...
- 1. сличением эталонов единиц величин
- 2. поверкой СИ
- 3. калибровкой СИ
- 4. измерением величины
- 28. Должностное лицо, осуществляющее государственный метрологический надзор не обязано...
- 1. запрещать применение поверенных СИ
- 2. запрещать выпуск из производства СИ неутвержденных типов, предназначенных для применения в сфере государственного регулирования единства измерений
- 3. наносить на средства измерений знак непригодности в случаях когда СИ не соответствует обязательным требованиям
- 4. давать обязательные к выполнению предписания и устанавливать сроки устранения нарушений обязательных требований
- 29. В соответствии с законом РФ «О техническом регулировании» одним из принципов стандартизации является...
- 1. повышение уровня безопасности жизни и здоровья животных и растений
- 2. обеспечения взаимозаменяемости технических средств
- 3. недопустимость создания препятствий производству и обращению продукции выполнению работ и оказанию услуг в большей степени, чем это минимально необходимо для выполнения целей
- 4. повышение уровня безопасности жизни и здоровья граждан
- 30. Одной из целей унификации является...
- 1. сбор, систематизация и анализ данных по объектам
- 2. повышения эффективности производства и использования изделий
- 3. разработка новых унифицированных составных элементов в модернизируемых или вновь создаваемых изделиях
- 4. использование ранее спроектированных и освоенных в производстве составных частей в новых изделиях.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
лостижения компетениии	

ОПК-3.2 Решает задачи планирования и проведения работ по стандартизации, сертификации и метрологии, используя нормативно-правовую базу, современные методы и информационные технологии

Обучающийся умеет: Определять физико-механические характеристики строительных материалов и грунтов; производить и обрабатывать измерения путеизмерительными средствами, производить обработку результатов измерений.

Примеры заданий

Задача 1

Тема: Обработка результатов однократных измерений

Амперметр, имеющий класс точности 1,0 и предел измерения 5 А, измерит ток 3,5 А с относительной погрешностью не более %.

Задача 2

Тема: Обработка результатов многократных измерений

Определите, является ли результат измерения расстояния между осями здания (м) грубой погрешностью: 18,125; 18,120; 18,128; 18,121; 18,119; 18,147.

Задача 3

Тема: Обработка результатов многократных измерений

Определите, является ли результат измерения расстояния между осями здания (м) грубой погрешностью: $18,125;\ 18,120;\ 18,128;\ 18,121;\ 18,119;\ 18,150;\ 18,118;\ 18,117;\ 18,129;\ 18,130;\ 18,122;\ 18,124.$ Уровень значимости q=0,01.

Задача 4

Тема: Обработка результатов однократных измерений

Амперметр, имеющий предел измерения 10 A, при измерении тока 7 A с погрешностью не более 1,2% должен иметь класс точности ...

Залача 5

Тема: Обработка результатов многократных измерений

Результат обработки многократных измерений мощности W = 350,458 Вт и Δ = 0,613 Вт после округления примет вид ...

Задача 6

Тема: Обработка результатов однократных измерений

Если при поверке амперметра с пределом измерения 5 А в точках 1, 2, 3, 4, 5 А получили соответственно следующие показания образцового прибора: 0,95; 2,07; 3,05; 4,08; 4,95, то класс точности амперметра равен ...

Задача 7

Тема: Выбор средств измерений по точности

В наличии имеются четыре вольтметра. Первый вольтметр класса точности 0.5 с пределом измерения 250 В; второй — класса точности 1.0 с пределом измерения 1000 В; третий — класса точности 4.0 с пределом измерения 300 В; четвертый — класса точности 0.8/0.6 с поддиапазонами измерения 50,500,1000 В. Для измерения напряжения 200 В с погрешностью не более 2% подойдут вольтметры ...

Задача 8

Тема: Обработка результатов однократных измерений

Если при измерении электрического тока амперметром класса точности 1,5 с диапазоном измерения от 0 до 10 А температура окружающего воздуха составляет 10°С, то предельная допускаемая абсолютная погрешность будет равна А.

Задача 9

Тема: Обработка результатов однократных измерений

Если при измерении электрического напряжения цифровым вольтметром получили значение 245,86 В, а погрешность составила $\pm 3,75$ В, то согласно правилам округления результат измерения должен быть представлен в виде ...

Залача 10

Тема: Выбор средств измерений по точности

Для измерения тока 7 A с погрешностью не более 1,2% следует выбрать амперметр с пределом измерения 10 A класса точности $K = \dots$

Залача 11

Тема: Обработка результатов однократных измерений

Миллиамперметр при измерении силы тока показал значение 12,35 мA с погрешность $\pm 0,115$ мA.

Согласно правилам округления, результат измерения должен быть представлен в виде ...

Залача 12

Тема: Обработка результатов многократных измерений

Если при проведении 16-ти измерений электрического сопротивления омметром класса точности 0,5 с диапазоном измерения от 0 до 1000 Ом среднеквадратическая погрешность результата единичных измерений S составила \pm 40 Ом, то погрешность измерения для доверительной вероятности 0,95 будет равна Ом.

Задача 13

Тема: Обработка результатов однократных измерений

Омметр, имеющий предел измерения 1000 Ом, при измерении сопротивления 500 Ом с погрешностью не более 5% должен иметь класс точности ...

Задача 14

Тема: Обработка результатов однократных измерений

Наибольшая возможная разница показаний при измерении напряжения вольтметрами класса точности 1,0 и 0,5 и пределами измерения 150 В и 300 В соответственно равна ...

Задача 15

Тема: Обработка результатов многократных измерений

Если при проведении 8 измерений напряжения получены результаты: 267, 265, 269, 259, 270, 268, 263, 275 В, то среднеквадратическая погрешность результата единичных измерений в ряду измерений будет равна ____ В.

Залача 16

Тема: Выбор средств измерений по точности

Для измерения тока использованы четыре прибора, имеющие следующие характеристики: первый — класса точности 0,1 с пределом измерения 15 мА; второй — класса точности 0,1 с пределом измерения 100 мА; третий — класса точности 0,5 с пределом измерения 15 мА; четвертый — класса точности 0,5 с пределом измерения 30 мА. Наибольшую точность измерения тока 10 мА обеспечит миллиамперметр

Задача 17

Тема: Обработка результатов однократных измерений

Если при измерении электрического напряжения вольтметром класса точности 1,5 с диапазоном измерения от 0 до 100B прибор показал 75B, а погрешность градуировки шкалы составляет + 2B, то результат измерения должен быть представлен в виде ...

Залача 18

Тема: Выбор средств измерений по точности

Класс точности магнитоэлектрического миллиамперметра с конечным значением шкалы $I_{\kappa}=0.5$ мА для измерения тока $I=0.1\ldots0.5$ мА с относительной погрешностью измерения тока δ_I , не превышающей 1%, равен ...

Задача 19

Тема: Обработка результатов однократных измерений

Для измерения тока 10 мА использованы два прибора, имеющие пределы измерения 15 мА и 100 мА, класс точности 0,1. Абсолютные погрешности миллиамперметров будут равны мА.
Тема: Обработка результатов многократных измерений Если при проведении 9-ти измерений электрического тока амперметром класса точности 1,0 с диапазоном измерения от 0 до 10 A среднеквадратическая погрешность результата единичных измерений S составила \pm 0,03A, то погрешность измерения для доверительной вероятности 0,95 будет равна A. Задача 20
Тема: Обработка результатов однократных измерений При измерении силы тока двумя амперметрами класса точности — 1,0 и 1,5 и пределами измерения — 5 А и 10 А соответственно наибольшая возможная разница показаний равна А. Задача 21
Тема: Обработка результатов однократных измерений Если при измерении мощности ваттметром класса точности 1,0 с диапазоном измерения от 0 до 500 Вт показание прибора равно 245 Вт, погрешность градуировки шкалы составляет + 4 Вт, а температура окружающего воздуха 15°C, а то результат измерения должен быть представлен в виде Задача 22
Тема: Выбор средств измерений по точности Если при поверке вольтметра с пределом измерения 500 В в точках 100, 200, 300, 400, 500 В получили соответственно следующие показания образцового прибора: 99,4; 200,7; 301,5; 400,8; 499,95, то класс точности вольтметра равен Задача 23
Тема: Общие сведения о средствах измерений (СИ) Если при измерении электрического напряжения используется вольтметр класса точности 1,5 с диапазоном измерения от 0 до 250 вольт, то допустимая основная погрешность измерения составит В. Задача 24
Тема: Обработка результатов однократных измерений Омметр, имеющий предел измерения 1000 Ом, при измерении сопротивления 500 Ом с погрешностью не более 5% должен иметь класс точности Задача 25
Тема: Обработка результатов однократных измерений При измерении напряжения $U=310~\mathrm{B}$ вольтметром класса точности $0,4/0,2$ с пределом измерения $450~\mathrm{B}$ относительная погрешность будет равна %. Задача $26~\mathrm{C}$
Тема: Обработка результатов однократных измерений Если при измерении мощности 170 Вт ваттметром с пределом измерения 300 Вт получили показания образцового прибора 171,21, то класс точности ваттметра равен Задача 27
Тема: Обработка результатов однократных измерений Наибольшая возможная разница показаний при измерении напряжения вольтметрами класса точности 1,0 и 0,5 и пределами измерения 150 В и 300 В соответственно равна Задача 28
Тема: Обработка результатов многократных измерений

Проведены 11 равноточных измерений мощности. Результаты следующие: 130,2; 130,3; 130,2; 130,3; 130,2; 129,6; 129,8; 129,9; 130,1; 129,9; 129,3 Вт. Результаты измерений распределены нормально, дисперсия неизвестна. Оцените доверительный интервал истинного значения для вероятности 0,99. Задача 29

Тема: Выбор средств измерений по точности

Если предстоит измерить напряжение 220~B с гарантированной погрешностью, не превышающей \pm 2%, то для этой цели должен подойти вольтметр с диапазоном измерения от 0 до 250~B класса точности ...

ОПК-3.2 Решает задачи планирования и проведения работ по стандартизации, сертификации и метрологии, используя нормативно-правовую базу, современные методы и информационные технологии

Обучающийся владеет: Методами работы с современной испытательной и измерительной аппаратурой и геодезическими приборами; методами технического контроля за состоянием строящегося и эксплуатируемого объекта; методами и средствами технических измерений, приемами использования стандартов и других нормативных документов при оценке, контроле качества и сертификации продукции.

Примеры заданий

Задание 1

Выполнить расчет поправок линейных измерений в строительстве

Таблица 1

Исходные данные к заданию №1

Первая цифра шифра	Фактическая длина рулетки $l_{\phi a \kappa m}$, мм	Номинальная длина рулетки <i>l</i> , мм	Вторая цифра шифра	Температура в процессе измерений <i>t</i> , градус	Температура ком- парирования рулетки t_o , градус	Отклонения концов рулетки от створа линии <i>a</i> , см
1	20003	20000	1	23	20	3.00
2	20006	20000	2	24	21	3.50
3	19994	20000	3	25	22	3.00
4	20007	20000	4	26	20	2.00
5	19993	20000	5	20	25	2.50
6	20002	20000	6	21	28	3.50
7	19999	20000	7	22	27	6.50
8	20008	20000	8	23	25	6.00
9, 0	20012	20000	9, 0	24	28	5.50

Таблица 2

Исходные данные к заданию №1

Третья цифра шифра	Проектная длина линий <i>L_{np}</i> , мм	Длина линии по результатам измерений <i>L</i> _{изм} , мм	Разность высот концов рулетки <i>h</i> , м	Относительная погрешность измерения <i>Т</i>	Предельная относительная погрешность измерений T_{np}
1	200000	200080	1.00	10000	3300
2	300000	300100	1.22	11000	3500
3	400000	400299	1.41	12000	4000
4	500000	500070	1.63	13000	4500
5	200000	200120	0.86	14000	5000
6	300000	300010	0.92	15000	6000
7	400000	400150	1.32	5000	1500

8	500000	500300	1.99	6000	2000
9. 0	200000	200020	1.21	7000	2500

Все разбивочные или съемочные работы, выполняемые на строительных площадках, складываются из совокупности измерительных операций, сводящихся в итоге к измерению или построению длины линии, отдельного угла, превышения и других геометрических элементов. Оси сооружений выносят в натуру в основном путем непосредственных измерений с использованием стальных рулеток. Процесс измерения заключается в последовательном откладывании расстояний рулеткой между начальной и конечной точками измерительной линии. Для линейных измерений с относительной погрешностью менее 1/10000 рекомендуется использовать компарирование рулетки типа РК-50 или ПВ-30 с отклонением от нормальной длины не более 3 мм. Для перенесения прямой линии с проекта в натуру необходимо знать длину линии и ее направление, а также положение в натуре ее начала и требуемую точность измерений.

Пример решения:

Вариант №4

Послед-	Фактическая	Номинальная	Пред-	Температура в	Температура ком-	Отклонения
RRH	длина	длина	послед-	процессе	парирования	концов
цифра	рулетки	рулетки	ККН	измерений	рулетки	рулетки от
логина	$l_{\phi a \kappa m}$, мм	l , mm	цифра	<i>t</i> , градус	t_o ,градус	створа линии
			шифра			а, см
4	20007	20000	1	23	20	3,00

Послед-	Проектная длина	Длина линии по	Разность	Относительная	Предельная
RRH	линий	результатам	высот концов	погрешность	относительная
цифра	$L_{np,MM}$	измерений	рулетки	измерения T	погрешность
логина		$L_{u_{3M}}$, MM	<i>h</i> , м		измерений T_{np}
4	500000	500070	0,63	13000	4500

По исходным данным, определяем:

1) Поправку на компарирование $\delta_{\kappa o m}$ рулетки определяем по формуле(1)

$$\delta_{KOM} = l_{dakm} - l = 20007 - 20000 = 7 \text{ MM};$$

2) Поправку на укладку рулетки в створе линии δ_{cme} по формуле (2)

$$\delta_{cme} = 2 a^2/l = 2*30^2/20000 = 0.09 \text{ MM};$$

3) Поправку на разность высот концов рулетки δ_{npee} по формуле (4)

$$\delta_{npeg} = h^2/2l = 630^2/2*20000=9,92 \text{ MM}$$

4) Поправку на разность температур рулетки при компарировании и измерении δ _{mем} по формуле (8);

$$\delta_{mem} = \alpha l(t - t_0) = 0.0000125*20000*(23-20)=0.75 \text{ MM};$$

5) Поправку на неодинаковое натяжение рулетки $\delta_{\textit{нат}}$ по формуле (10)

$$\delta_{nam} = \frac{\Delta Nl}{AE} = \frac{5*20000}{2*20000} = 2,5$$
MM;

6) Поправку на измерение $\delta_{\it omc}$ по формуле (11)

$$\delta_{omc} = S/3 = 10/3 = 3.3 \text{ MM};$$

7) Систематическую погрешность измерения по формуле (13)

$$\delta_{cuc} = n(|\delta_{\kappa_{OM}}| - \delta_{npeg} + |\delta_{mem}|) = 25*(|7| - 9.92 + |0.75|) = -54.25$$
mm

8) Случайную погрешность измерения по формуле (14)

$$\delta_{crvy} = \sqrt{n(\delta_{cms} + \delta_{uam} + \delta_{omc})} = \sqrt{25*(0.09 + 2.5 + 3.3)} = 12,13 \text{ MM};$$

9) суммарная поправка по формуле (15)

$$\delta = \delta_{cuc} + \delta_{cnvq} = -54,25 + 12,13 = -42,12 \text{ MM};$$

10) Фактическую длину линии по формуле (16)

$$L = L_{u3M} + \delta = 500070-42,12=500027,88 \text{ MM};$$

11) Погрешность измерения по формуле (17)

$$\Delta = L_{np} - L = 500000 - 500027,88 = -27,88 \text{mm};$$

12)Оценим погрешность измерения. Погрешность в измерении линии при разбивочных работах равна

 $\left| \frac{\Delta}{n} \right| \le 5$ мм=27,88/25=1,11 мм, т.е не превышает величину 5мм на длину одной уложенной 20 метровой ленты, следовательно измерения произведены верно.

Задание 2

Необходимо оценить точность измерений, выполненных методом бокового нивелирования двойными наблюдениями при производстве исполнительной съемки. Контролировалось отклонение от разбивочных осей низа восьми смонтированных колонн промышленного здания. Произведено восемь пар наблюдений при двукратной установке теодолита. Результаты наблюдений по вариантам расчета приведены в табл. 2.

Таблица 2 измерений

Исходные данные для определения точности

Третья				Pe	зульта	ты на	аблюд	ений :	при ус	станов	вке тео	доли	га в			
цифра				точ	ке 1							точ	ке 2			
шифра	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
0	2	5	6	2	5	3	6	7	3	4	5	3	4	2	5	8
1	-3	-3	-7	-5	-1	-5	-6	-2	-5	-1	-11	-2	0	-3	-4	-3
2	2	2	4	6	4	5	3	5	5	0	7	3	7	2	5	1

3	3	4	-2	-8	7	-7	6	4	6	1	-1	-9	3	-4	3	6
4	2	3	4	8	7	5	2	3	6	0	7	6	11	3	0	4
5	5	-3	-1	4	3	4	3	4	3	-1	-3	6	7	0	4	6
6	-5	2	5	3	-5	-3	-8	4	-3	0	8	1	-7	1	-11	3
7	5	7	8	7	6	7	8	7	6	11	5	9	8	5	4	8
8	10	5	8	9	-10	2	6	-2	12	3	6	8	-9	4	8	-1
9	4	6	1	4	2	6	5	4	7	3	2	3	5	3	4	5

При двойных наблюдениях близких по значению линейных размеров среднюю квадратическую и остаточную систематическую погрешность результата измерения определяют в следующем порядке.

1. Определяется разность d_i в каждой паре наблюдений:

$$d_{i} = x_{i1} - x_{i2} \tag{4}$$

где x_{j1} , x_{j2} – результаты первого и второго наблюдений.

Результаты расчета сводятся в табл.3.

 Таблица 3

 Пример наблюдений и последовательность обработки результатов

№ пар	Резу	льтат				
наблюдений	_	одения				
	в точке		$d_j = x_{j1} - x_{j2}$	d^{2}_{j}	$d'_{i} = d_{i} - \delta X_{m,met}$	$(d_j')^2$
	1	2	j ji j2		j j m,mei	
1	-5	-7	2	4	1.6	2.56
2	3	0	3	9	2.6	6.76
3	-7	-6	-1	1	-1.4	1.96
4	0	2	-2	4	-2.4	5.76
5	4	6	-2	4	-2.4	5.76
6	7	8	-1	1	-1.4	1.96
7	-8	-10	2	4	1.6	2.56
8	2	0	2	4	1.6	2.56
			3	31	0	29.9

2. Вычисляется остаточная систематическая погрешность наблюдений:

$$\delta X_{m,met} = \frac{\sum_{j=1}^{M'} d_j}{M'} \tag{5}$$

где $\sum_{j=1}^{M'} d_j$ – сумма по графе 4 в табл.3; $M' = \frac{M}{2}$ – число пар наблюдений.

3. Определяется значимость систематической погрешности измерений:

$$\left| \sum_{j=1}^{M'} d_j \right| \le 0.25 \sum_{j=1}^{M'} |d_j|, \tag{6}$$

4. Определяется разность в каждой паре наблюдений:

$$d_i' = d_i - \delta X_{m,met}. \tag{7}$$

5. Выполняется проверка правильности вычислений:

$$\sum_{j=1}^{M'} d'_{j} = \sum_{j=1}^{M'} d_{j} - \delta X_{m,met} M'$$
 (8)

$$\sum_{j=1}^{M'} {d'_j}^2 = \sum_{j=1}^{M'} {d_j}^2 - \frac{\left[\sum_{j=1}^{M'} {d_j}\right]^2}{M'}$$
 (9)

6. Определяется средняя квадратическая погрешность измерений по формуле

$$S_{X,met} = \sqrt{\frac{\sum_{j=1}^{M'} d_j^{\prime 2}}{4(M'-1)}}$$
 (10)

- 7. Определяется действительная погрешность измерений при M = 16 и доверительной вероятности 0.99, t = 2.8 (табл. 1) по формуле (2).
- 8. Определяется предельная погрешность измерения при допуске совмещения ориентиров при установке колонн ΔX =24 мм по ГОСТ 21779-82

$$k \Delta X = 0.2 \cdot 24 = 4.8 \text{ MM}$$

9. Проверяется соблюдение требуемого условия:

$$\delta X_{Smet} < 4.8$$
 MM.

Вывод: действительная точность измерений соответствует или не соответствует требуемой.

Задание 3

В предложенной совокупности конструкторских документов выделить текстовые конструкторские документы и чертежи.

- 2. Используя ГОСТ 2.111–2013, определить объекты контроля в конструкторской документации.
- 3. Определить стандарты, устанавливающие требования к объектам контроля.
- 4. Выявить пункты (разделы) стандартов, которые устанавливают требования к проверяемым документам и объектам проверки.
- 5. Результат проделанной работы оформить в виде табл. 1.

Таблица 1

Объекты проверки при нормоконтроле документации и стандарты, устанавливающие требования к ним

	•	
Проверяемые документы	Объект проверки при нормоконтроле	Номер и наименование стан- дарта, пункт стандарта, со- держащий требования к объ- екту проверки
Конструкторские	Правильность выполне-	ГОСТ 2.104-2006. Основные
документы всех	ния основной надписи	надписи
видов	и дополнительных граф	

Задание 4

В соответствии с выбранным по варианту обследуемым параметром следует описать в соответствии с указанными нормативными документами методику проведения обследования и характеристики применяемых средств измерения.

Методики и средства обследования строительных конструкций, зданий и сооружений

истодики и с	редства ооследования строител	івных конструкции, здани -	и и сооружении	
№ п/п	Обследуемые параметры	Нормативные документы (методы), регламен- тирующие методы об- следований	Средства для проведения обследования	
1	2	3	4	
	Обмерн	ые обследования		
1	Линейные измерения в	ГОСТ 26433.0-85, ГОСТ		
	плане, по ширине (толщине)	26433.1-89, ГОСТ	Стальные линейки, метры,	
	и высоте конструкций	26433.2-94	рулетки, дальномеры	
2	Угловые измерения	То же	Обыкновенные и пре-	
	1		цизионные теодолиты	
			ТБ-1, ТТ-5, ОТШ,	
			ТОМ,ОТ-2 и др. Уг-	
3	Определение вертикальных	То же	Обыкновенные и пре-	
	перемещений		цизионные оптические	
			нивелиры НЗ, и др.	
			Гидроуровни НТШ и др.	
4	Проверка вертикальности	То же	Приборы вертикального	
	конструкций и зданий		визирования ОЦП,	
			ПОВП. Лазерные	
			приборы ПИЛ-1, ЛЗЦ-1.	
			Лазерный теодолит ЛТ-	
			75. Проволочные и	
			нитяные отвесы	
	Обследование агрессивности окружающей среды			
5	Коррозионная активность	ГОСТ 8.134-98, ГОСТ	Химический анализ	
	грунта	12071-84, ГОСТ 5180-84	грунта. Приборы МС-07,	
			MC-08	

	V		1			
6	Химический состав и концентрация агрессивных жидкостей на поверхности конструкций	ГОСТ 28574-90, ГОСТ 12071-84, СНиП 2.03.11- 85	Химический анализ в лабораторных условиях			
7	Химический состав и концентрация агрессивных газов	ГОСТ 12.1.014-84*, ГОСТ 12.1.005-88, ГОСТ 12.1.016-79*	Газоанализаторы ¹ фотоэлектрические, фотометрические, ионизационные, ШИ-5.			
	Обследование внутренней среды зданий и сооружений					
8	Газовый состав воздуха в помещениях	ГОСТ 12.1.014-84*, ГОСТ 12.1.005-88, ГОСТ 12.1.016-79*, ССБТ	Индикаторные трубки и газоанализаторы УГ-2, ПГА-ДУ, ПГА-К, ВПХР и др.			
9	Влажность и температура в помещениях, в том числе чердачных	То же	Психрометр Ассмана, гигрограф М-32, волосяной гигрограф. Термометры, термограф			
10	Скорость движения воздуха в чердачных и подвальных помещениях	То же	Термоанемометры АСО-3, ЭА-2М. Крыльчатый анемометр ручной «Метро- прибор»			
	Обследование ст	роительных конструкций				
11	Толщина защитных покрытий (герметик в швах, штукатурка, лакокрасочные, огнезащитные)	ΓΟCT 25945-87, ΓΟCT 15140-78	Толщиномеры ИТП-1, ИТП-200, МТА-2, МТ-2, ИТП-5, ЭМКП-4. ИДИ-3; сплошно- меры ЛКД-1,			
12	Адгезия защитных покрытий (герметик, штукатурка и облицовочные плиты, лакокрасочные,	ΓΟCT 25945-87, ΓΟCT 15140-78, ΓΟCT 22904- 93, ΓΟCT 24992-81, ΓΟCT 28574-90	Адгезиометры ЛНИИ АКХ, ГПНВ-5, ГПНС-4			
13	Ширина и глубина раскрытия трещин, толщина защитного слоя бетона	ΓΟCT 22904-93, ΓΟCT 17625-83. ΓΟCT 29167- 91, ΓΟCT 8829-94	Приборы ИМИ, ИЗС, ИЗС-2, ИСМ, ИПА, ИТП- 1, МИП-10, МТ- 20H, УЗП-62. АМ-64, ДУК-20,			
14	Прогибы строительных конструкций	ГОСТ 26433.2-84	Обыкновенные и прецизионные нивелиры НЗ, НВ-1, НТ. НА и др.; теодолиты ТТ-4, ТОМ,			
15	Коррозия стальных кон- струкций	ГОСТ 9.908-85, ГОСТ 9.905-82, ГОСТ 8.134-74	Микроскопы, металло- графические шлифы; измерительные инст- рументы— штанген-			
16	Коррозия бетонных, ка- менных и кирпичных конструкций	ΓΟCT 27677-88, ΓΟCT 28574-90, ΓΟCT 9. 905- 82, ΓΟCT 8.134-74	Микроскопы; измерительные инструменты — штангенциркули, линейки, щупы, тол-			

17	Биоповреждения древесины	ΓΟCT 20022.0-93, ΓΟCT 9.905-82, ΓΟCT 18610-82	
18	Расположение арматуры и закладных деталей	ГОСТ 22904-93, ГОСТ 17625-83	Приборы ИЗС, ИЗС-2, ИМП, ИСМ и др.; бетатроны — МИБ-4, ПМБ-6; измерительные
19	Качество сварных швов металлоконструкций и арматуры	ΓΟCT 23858-79, Γ OCT 30062-93	Дефектоскопы — магнитографические, гаммаграфические, ультразвуковые; приборы
20	Морозостойкость бетона и каменной кладки	ГОСТ 702 5-91, ГОСТ 26150-84, ГОСТ 10060.0- 95. ГОСТ 10060.4-95	Испытание образцов в лаборатории

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Перечень вопросов к зачету:

- 1. Основные этапы развития метрологии и стандартизации.
- 2. Роль измерений в научных исследованиях, производстве и в системе управлении качеством строительства и эксплуатации сооружений.
- 3. Метрология наука об измерениях.
- 4. Виды, методы и средства измерений.
- 5. Международные метрологические организации.
- 6. Метрологическая служба, ее структура и функции.
- 7. Теоретические основы метрологии.
- 8. Меры, измерительные приборы и преобразователи.
- 9. Электроизмерительные установки, информационно-измерительные системы.
- 10. Обработка результатов измерений.
- 11. Погрешности, источники погрешностей, суммирование погрешностей.
- 12. Формы представления результатов измерений.
- 13. Государственная система стандартизации (ГСС), основные положения и задачи.
- 14. Международная организация по стандартизации (ИСО).
- 15. Стандартизация процесс установления и применения стандартов.
- 16. Правовые основы стандартизации.
- 17. Метрологическая служба ОАО «РЖД», основные задачи.
- 18. Система метрологической службы ОАО «РЖД».
- 19. Организация и порядок проведения проверки средств измерения.
- 20. ГОСТы и нормативно-технические документы, регламентирующие поверку средств измерений.
- 21. Основные положения организации и порядка проведения проверки на железнодорожном транспорте.
- 22. Проверка средств измерений.
- 23. Ремонт средств измерений.
- 24. Списание средств измерений.

- 25. Сертификация.
- 26. Цели и объекты сертификации.
- 27. Качество продукции.
- 28. Квалиметрия.
- 29. Система показателей качества.
- 30. Контроль качества и управление качеством.
- 31. Измерения ширины рельсовой колеи, взаимного положения рельсовых нитей по уровню и ординат переводной кривой на стрелочном переводе.
- 32. Оптические приборы.
- 33. Измерение величин просадок и сдвижек пути оптическим прибором.
- 34. Значение метрологии, стандартизации и сертификации в путевом хозяйстве.
- 35. Средства измерений, применяемых, в путевом хозяйстве.
- 36. Путеизмерительные тележки
- 37. Приборы для контроля усилий затяжки болтовых соединений.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60~% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных

проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.