Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 14:28:56 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение 1 к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Математическое моделирование систем и процессов

(наименование дисциплины(модуля)

Образовательная программа

Локомотивы

(наименование)

Направление подготовки / специальность 23.05.03 Подвижной состав железных дорог

(код и наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (5 семестр / 3 курс), экзамен (6 семестр / 3 курс).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-1 Способен решать инженерные	ОПК-1.4 Применяет цифровые инструменты для
задачи в профессиональной	математического анализа и моделирования в процессе
деятельности с использованием методов	решения инженерных задач в профессиональной
естественных наук, математического	деятельности
анализа и моделирования	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование	Результаты обучения по дисциплине	Оценочные		
индикатора достижения		материалы		
компетенции		(семестры_ <u>5, 6</u>)		
ОПК-1.4 Применяет	Обучающийся знает: методы математического	Вопросы (№1 -		
цифровые инструменты	моделирования, методы теоретического и	№ 10)		
для математического	экспериментального исследования;			
анализа и моделирования	математические и статистические методы для			
в процессе решения	оценки и анализа показателей безопасности и			
инженерных задач в	надежности подвижного состава; методы			
профессиональной	математического моделирования, реализуемые с			
деятельности	помощью стандартных пакетов			
	автоматизированного проектирования и			
	исследований.			
	Обучающийся умеет: применять методы	Задания (№1 -		
	математического моделирования, методы	№ 3)		
	теоретического и экспериментального			
	исследования; использовать математические и			
	статистические методы для оценки и анализа			
	показателей безопасности и надежности			
	подвижного состава; выполнять математическое			
	моделирование процессов и сложных систем на			
	базе стандартных пакетов автоматизированного			
	проектирования и исследований.			

Обучающийся владеет: способностью прим	иенять		(№1 -
методы математического моделирования, м	етоды	№ 3)	
теоретического и экспериментал	тьного		
исследования; способностью исполь	зовать		
математические и статистические методы	ы для		
оценки и анализа показателей безопасно	сти и		
надежности подвижного состава; способн	остью		
выполнять математическое моделиро	вание		
процессов и сложных систем на базе станда	ртных		
пакетов автоматизированного проектировани	я.		

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС ПривГУПС.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС ПривГУПС.
- 2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций
 - 2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Код и наименование	Образовательный результат								
индикатора достижения									
компетенции									
ОПК-1.4 Применяет	Обучающийся знает: методы математического моделирования, методы								
цифровые инструменты	теоретического и экспериментального исследования; математические и								
для математического	статистические методы для оценки и анализа показателей								
анализа и моделирования в	безопасности и надежности подвижного состава; методы								
процессе решения	математического моделирования, реализуемые с помощью								
инженерных задач в	стандартных пакетов автоматизированного проектирования и								
профессиональной	исследований.								
деятельности									

Примеры вопросов для оценки сформированности компетенции в части «знать»

Вопрос 1: В чем сущность системного подхода при моделировании сложных систем?

- А) сложная система делится на элементы по конструктивным признакам, каждый элемент описывается уравнениями, влияние взаимодействующих элементов заменяется реакциями Б) каждый элемент сложной системы рассматривается отдельно, заменяясь набором стержней,
- пластин, опор и нагружаясь силами, моментами и реакциями опор
- В) сложная система разбивается на отдельные части; для каждой части строится элемент модели; при объединении элементов образуется модель
- Г) формулируется главная цель моделирования сложной системы, исходя из которой при постоянной коррекции с помощью обратных связей 1-го и 2-го рода строятся элементы модели, которые объединяются в математическую модель сложной системы, модель постоянно самосовершенствуется

Вопрос 2: В чем заключается метод "черного ящика" в моделировании реальных объектов или процессов?

- А) в построении физической модели объекта или процесса, помещающейся в черный ящик стандартных размеров
- Б) в отражении свойств реального объекта или процесса с помощью полуэмпирических уравнений, частично отражающих физическую природу объекта или процесса
- В) реальный объект или процесс заменяется математической моделью, состоящей из набора уравнений, никак не отражающих физическую природу объекта или процесса, но позволяющую точно рассчитывать требуемые характеристики
- Г) в отражении свойств реального объекта или процесса с помощью аналитических выражений, точно отражающих физическую природу объекта или процесса

Вопрос 3: Для решения каких задач применяются сетевые модели (сетевые графики)?

- А) для решения прочностных задач методом конечных элементов
- Б) для решения задачи минимизации числа экспериментов при исследовании физической модели
- В) для решения логистической задачи нахождения оптимального маршрута доставки груза; для определения максимальной по продолжительности цепочки технологических операций среди множества последовательно-параллельных цепочек операций
- Г) для переноса файла изображения при разбиении изображения сеткой, копировании отдельных ячеек сетки, переносе их и последующем соединении в новом файле

Вопрос 4: В чем назначение теории планирования эксперимента?

- А) в проведении опытов над моделью для установления влияния нескольких факторов на интересующую характеристику по оптимальному плану с целью минимизации числа опытов
- Б) в перспективном планировании экспериментов на несколько лет вперед
- В) в проведении машинного эксперимента над математической моделью по заданному плану с целью гарантированного нахождения всех экстремумов интересующей характеристики
- Γ) в исследовании физической модели объекта по специальному плану, зависящему от свойств объекта

Вопрос 5: Каким образом случайная величина моделируется с помощью ЭВМ?

- А) область определения случайной величины разбивается с помощью ЭВМ на элементарные области, в каждой области случайная величина аппроксимируется произвольными уравнениями по методу наименьших квадратов
- Б) область определения случайной величины разбивается с помощью ЭВМ на отдельные части; для

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-1.4 Применяет цифровые	Обучающийся умеет: применять методы математического
инструменты для математического	моделирования, методы теоретического и экспериментального
анализа и моделирования в процессе	исследования; использовать математические и статистические
решения инженерных задач в	методы для оценки и анализа показателей безопасности и
профессиональной деятельности	надежности подвижного состава; выполнять математическое
	моделирование процессов и сложных систем на базе
	стандартных пакетов автоматизированного проектирования и
	исследований.
	Обучающийся владеет: способностью применять методы
	математического моделирования, методы теоретического и
	экспериментального исследования; способностью
	использовать математические и статистические методы для
	оценки и анализа показателей безопасности и надежности
	подвижного состава; способностью выполнять
	математическое моделирование процессов и сложных систем
	на базе стандартных пакетов автоматизированного
	проектирования.

Примеры комплексных заданий для оценки сформированности компетенции в части «уметь» и «владеть»

Задание 1. Составить алгоритм построения сетевого графика технологического процесса ремонта единицы подвижного состава

Задание 2. Составить алгоритм построения дерева отказов (ползун на поверхности катания колесной пары) и определения вероятности верхнего нежелательного события

Задание 3. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по определению напряженно-деформированного состояния в исследовании статической прочности

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (зачету)

- 1. Понятие о системном подходе при моделировании объектов
- 2. Классический подход при моделировании объектов
- 3. Классификация методов моделирования.
- 4. Понятие об имитационном моделировании.
- 5. Понятие об аналоговом моделировании объектов
- 6. Нахождение определенного интеграла численными методами.
- 7. Решение уравнений численными методами (метод итераций, метод дихотомии)
- 8. Нахождение экстремума функции численными методами (метод Ньютона, метод координатного спуска)
- 9. Метод Симпсона при численном интегрировании
- 10. Метод трапеций при численном интегрировании
- 11. Метод прямоугольников при численном интегрировании
- 12. Решение уравнений методом дихотомии (деления отрезка пополам)
- 13. Нахождение экстремума функции методом координатного спуска
- 14. Определение критического пути с помощью сетевого графика

- 15. Нахождение резервов времени при сетевом планировании работ
- 16. Понятие об оптимизационных задачах.
- 17. Методы нахождения экстремума.
- 18. Назначение теории планирования эксперимента
- 19. Основные понятия теории планирования эксперимента.
- 20. Построение оптимального плана эксперимента.
- 21. Назначение функции регрессии в теории планирования эксперимента.
- 22. Модель технического обслуживания подвижного состава
- 23. Модель работы ремонтного депо
- 24. Моделирование системы «рельсовый экипаж среда»
- 25. Методы определения оптимальной периодичности плановых ремонтов.
- 26. Понятие о сетевом планировании работ.
- 27. Корреляционный анализ зависимости между объектами и процессами.
- 28. Применение кластерного анализа к оценке технического состояния объектов.
- 29. Моделирование процесса процессов помощью системы визуального аналогового программирования СААМ.
- 30. Привести примеры задач в профессиональной деятельности ремонта и технического обслуживания подвижного состава железных дорог, которые можно решать с помощью программ аналогового визуального программирования
- 31. Привести примеры оптимизационных задач в профессиональной деятельности ремонта и технического обслуживания подвижного состава железных дорог

2.4. Перечень заданий для подготовки обучающихся к промежуточной аттестации (зачету)

- 1. Составить алгоритм построения модели надежности вагона в эксплуатации с целью определения оптимальной длины гарантийного участка, дать названия элементам алгоритма
- **2.** Составить алгоритм построения модели надежности локомотива в эксплуатации с целью определения оптимальной длины плеча, дать названия элементам алгоритма
- **3.** Составить алгоритм построения сетевого графика технологического процесса деповского ремонта вагона и определения резервов времени
- **4.** Составить алгоритм построения сетевого графика технологического процесса ремонта локомотива и определения резервов времени
- **5.** Составить алгоритм построения модели деповского ремонта вагона с целью определения предельной годовой программы ремонта
- **6.** Составить алгоритм поиска оптимального соотношения исходных параметров (факторов) для обеспечения экстремума функции отклика с помощью теории планирования эксперимента
- 7. Составить алгоритм расчетного нахождения оптимального соотношения исходных параметров (факторов) для обеспечения экстремума функции отклика с помощью метода координатного спуска
- 8. Составить алгоритм построения модели системы технического обслуживания грузовых вагонов с целью определения оптимальной периодичности плановых ремонтов
- 9. Составить алгоритм построения модели системы технического обслуживания локомотива с целью определения оптимальной периодичности плановых видов технического обслуживания
- 10. Составить математическую модель вихревого энергоразделителя с помощью инструментов программы СААМ
- 11. Составить математическую модель цистерны для вязких жидкостей с теплоизолирующим кожухом с помощью инструментов программы СААМ
- 12. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по определению коэффициента запаса усталости, предварительно составив алгоритм исследования усталостной прочности
- 13. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по проведению теплового исследования

2.5. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (экзамену)

- 1. Нахождение математического ожидания и дисперсии случайных величин
- 2. Каким образом случайная величина моделируется с помощью ЭВМ?

- 3. Назначение функции RND при статистическом моделировании
- 4. В чем цель создания 3-D моделей сложных технических объектов?
- 5. Какие существуют программы автоматизированного проектирования?
- 6. В чем разница между «легкой», «средней» и «тяжелой» САПР при создании 3-D моделей сложных технических объектов?
- 7. В чем цель исследования 3-D моделей технических объектов на статическую прочность?
- 8. В чем цель исследования 3-D моделей технических объектов на усталостную прочность?
- 9. В чем назначение метода конечных элементов?
- 10. В каких задачах используется метод конечных элементов?
- 11. В каких случаях применяется метод статистического моделирования?
- 12. Понятие о методе Монте-Карло.
- 13. В чем цель тепловых исследований 3-D моделей сложных технических объектов?
- 14. Что является граничными условиями метода конечных элементов в тепловых исследованиях?
- 15. Какие возможности моделирования теплопередачи имеются в SolidWorks Simulation?
- 16. Какие возможности расчета статической прочности узлов и деталей имеются в SolidWorks Simulation?
- 17. Какие возможности расчета усталостной прочности узлов и деталей имеются в SolidWorks Simulation?
- 18. Понятие о методе дерева отказов.
- 19. Как влияют на событие связанные с ним нижерасположенные события, связанные между собой логической связью «И»?
- 20. Как влияют на событие связанные с ним нижерасположенные события, связанные между собой логической связью «ИЛИ»?
- 21. Основные понятия теории массового обслуживания
- 22. Разомкнутая и замкнутая СМО.
- 23. СМО с ограниченной очередью.
- 24. Для определения чего используется метод χ^2 (хи-квадрат)?
- 25. В чем состоит проблема разработки сложных технических объектов?
- 26. Какие возможности предоставляет платформа 3-D EXPERIENCE в разработке сложных технических объектов?
- 27. Какие возможности в оптимальном проектировании подвижного состава предоставляет САПР?
- 28. Какие возможности в оптимизации тепловых процессов при эксплуатации подвижного состава предоставляет SolidWorks Simulation?
- 29. Моделирование конструкций узлов подвижного состава
- 30. Применение статистического моделирования количества отцепов вагонов по конкретной неисправности для прогнозирования ресурсов ремонта
- 31. Использование дерева отказов для оценки эффективности расходования средств на устранение конкретной причины отказа узла вагона
- 32. Использование расчета системы массового обслуживания для оптимизации процессов технического обслуживания и ремонта подвижного состава

2.6. Перечень заданий для подготовки обучающихся к промежуточной аттестации (экзамену)

- 1. Составить алгоритм построения дерева отказов (ползун на поверхности катания колесной пары) и определения вероятности верхнего нежелательного события
- 2. Составить алгоритм построения дерева отказов (обрыв автосцепки) и определения вероятности верхнего нежелательного события
- 3. Показать возможности программы EXEL по определению статистических характеристик произвольного набора численных значений
- 4. Показать возможности программы MathCAD по определению статистических характеристик произвольного набора численных значений
- 5. Показать возможности программы MathCAD по статистическому моделированию случайной величины на основе произвольного набора численных значений
- 6. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по определению массы объекта и координат цент ра тяжести

- 7. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по определению напряженно-деформированного состояния в исследовании статической прочности
- 8. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по определению коэффициента запаса усталости, предварительно составив алгоритм исследования усталостной прочности
- 9. Показать на примере 3-D модели любого технического объекта возможности программы SolidWorks по проведению теплового исследования
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий для текущего контроля

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100–90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89–75% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы 74–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Расчетно-графическая работа

Тема расчетно-графической работы: «Сетевая модель технологического процесса ремонта подвижного состава».

Выполняя контрольную работу согласно заданному варианту, студенты должны дать описание построения сетевого графика технологических операций ремонта единицы подвижного состава и провести расчет следующих параметров:

- 1) определить цепочку критического пути, представленную в кодах операций;
- 2) величину критического пути в часах;
- 3) величину раннего начала, раннего окончания, позднего начала и позднего окончания каждой операции;
 - 4) величины полного и свободного резервов времени.
- В выводах по работе следует дать обоснованные рекомендации по переводу исполнителя, обладающего максимальным свободным резервом времени на «ручные» операции критического пути.

Типовые задания к расчетно-графической работе

- 1. Варианты заданий для сетевой модели деповского ремонта универсального полувагона.
- В таблице приведено среднее время выполнения технологических операций ремонта универсального полувагона в часах

-	Варианты													
ИИ	1	2	3	4	5	6	7	8	9	10	11	12	13	14
№ операции														
1	0.2	0.3	0.1	0.3	0.2	0.1	0.2	0.3	0.1	0.2	0.3	0.2	0.1	0.3
2	0.5	0.6	0.7	0.6	0.5	0.7	0.6	0.5	0.6	0.7	0.5	0.6	0.7	0.6
3	0.8	0.7	0.9	0.8	0.7	0.9	0.8	0.7	0.8	0.9	0.7	0.8	0.8	0.7
4	0.4	0.5	0.6	0.5	0.7	0.4	0.6	0.5	0.7	0.4	0.5	0.6	0.7	0.4
5	0.8	0.9	0.7	0.9	0.8	0.7	0.8	0.9	0.8	0.7	0.8	0.9	0.8	0.7
6	0.6	0.5	0.7	0.6	0.7	0.5	0.6	0.5	0.6	0.7	0.6	0.5	0.6	0.5
7	0.3	0.4	0.5	0.4	0.3	0.4	0.5	0.4	0.3	0.4	0.3	0.4	0.5	0.4
8	1.3	1.1	1.2	1.3	1.0	1.2	1.1	1.2	1.3	1.1	1.2	1.0	1.1	1.2
9	1.3	1.4	1.2	1.5	1.4	1.3	1.2	1.5	1.2	1.3	1.4	1.2	1.5	1.3
10	2	1.8	1.9	1.5	1.6	1.7	1.9	1.8	2.0	1.9	1.8	1.7	1.6	1.5
11	0.1	0.2	0.3	0.1	0.2	0.3	0.1	0.2	0.3	0.1	0.2	0.3	0.2	0.1
12	0.7	0.6	0.8	0.6	0.7	0.8	0.6	0.7	0.6	0.8	0.6	0.7	0.8	0.7
13	0.6	0.7	0.5	0.6	0.7	0.5	0.6	0.5	0.6	0.7	0.6	0.5	0.6	0.7
14	0.6	0.5	0.7	0.5	0.6	0.5	0.7	0.5	0.6	0.5	0.7	0.5	0.6	0.7
15	1.2	1.1	1.0	1.1	1.2	1.2	1.1	1.0	1.1	1.2	1.0	1.1	1.2	1.1
16	1.4	1.3	1.2	1.4	1.3	1.2	1.3	1.4	1.3	1.2	1.3	1.4	1.2	1.3
17	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6
18	0.5	0.7	0.6	0.5	0.6	0.7	0.5	0.6	0.7	0.6	0.7	0.5	0.6	0.5
19	0.8	0.7	0.9	0.8	0.7	0.8	0.9	0.8	0.7	0.8	0.9	0.8	0.7	0.8

Для «ручных» операций (не механизированных и автоматизированных) значение продолжительности работ моделируется по методу Монте-Карло для нормального закона распределения случайной величины, причем, среднеквадратичное отклонение принимается равным 25% от средней продолжительности работы. Решение ведется в среде Just BASIC v2.0.

Контрольные вопросы к защите расчетно-графической работы

- 1. Показать в программе: как вводится время выполнения технологических операций деповского ремонта подвижного состава.
- 2. Показать в программе: как определяются технологические простои и критический путь.
- 3. Составить в виде блок-схемы алгоритм построения сетевого графика технологического процесса деповского ремонта подвижного состава.
- 4. Показать в программе: как были определены «фиктивные» операции на сетевом графике технологического процесса деповского ремонта полувагона.
- 5. Какими математическими методами рассчитывается сетевой график? Показать в программе алгоритм этих методов.
- 6. Дать определение «критического пути», показать в программе алгоритм его нахождения.

Критерии формирования оценок по выполнению расчетно-графической работы

«Отлично/зачтено» — ставится за работу, выполненную полностью без ошибок и недочетов в соответствии с заданием, выданным для выполнения расчетно-графической работы. Обучающийся полностью владеет информацией, представленной в расчетно-графической работе, терминологией, нормативными документами. Способен провести анализ полученных результатов при выполнении расчетно-графической работы.

«Хорошо/зачтено» — ставится за работу, выполненную в соответствии с заданием, выданным для выполнения расчетно-графической работы, без существенных ошибок, но с недочетами. Обучающийся владеет основной информацией, представленной в расчетно-графической работе, терминологией, нормативными документами. При проведении анализа полученных результатов расчетно-графической работы допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» — ставится за работу, выполненную в соответствии с заданием, выданным для выполнения расчетно-графической работы, с существенными ошибками, но не

приведшими к неправильным выводам. Обучающийся владеет большей частью информации, представленной в расчетно-графической работе, терминологией, нормативными документами. При проведении анализа полученных результатов расчетно-графической работы допустил существенные ошибки.

«Неудовлетворительно/не зачтено» — ставится за работу, выполненную не в соответствии с заданием, или выполненную в соответствии с заданием, но с грубыми ошибками, повлиявшими на правильность выводов. Обучающийся не владеет информацией, представленной в расчетнографической работе, терминологией, нормативными документами. При проведении анализа полученных результатов расчетно-графической работы допустил грубые ошибки.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы дисциплины: его базовых понятий, определений, основных проблем и методов их решения; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил грубых ошибок при ответе, достаточно последовательно излагает материал, допуская только незначительные неточности и нарушения последовательности изложения.

«Не зачтено» - выставляется, если обучающийся демонстрирует фрагментарные знания основных разделов изучаемой дисциплины; у обучающегося слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала; отсутствуют необходимые умения и навыки; допущены грубые ошибки и незнание терминологии; неспособность отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.