Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 15:44:32 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Техническая диагностика высокоскоростного транспорта (наименование дисциплины(модуля) Направление подготовки / специальность 23.05.05 Подвижной состав железных дорог (код и наименование) Направленность (профиль)/специализация Высокоскоростной наземный транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Форма промежуточной аттестации: зачет (9 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции				
ПКС-7. Способен проводить и организовывать диагностику оборудования и рассчитывать показатели надежности высокоскоростного транспорта	ПК-7.1. Классифицирует основные методы диагностики и неразрушающего контроля, оперирует используемой в диагностике терминологией ПК-7.2. Систематизирует и анализирует методы: распознавания диагностических признаков; оценки информативности диагностических параметров; прогнозирования остаточного ресурса				

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ПК-7.1 Классифицирует основные	Обучающийся знает: методы диагностики и неразрушающего контроля ВТ	Вопросы (1 – 20)
ПК-7.1. Классифицирует основные методы диагностики и неразрушающего контроля, оперирует используемой в диагностике терминологией	Обучающийся умеет: классифицировать методы диагностики и неразрушающего контроля ВТ	Задания (1 – 5)
	Обучающийся владеет: навыками выбора методов диагностики и неразрушающего контроля для различного типа оборудования ВТ	Задания (6 – 10)
ПК-7.2. Систематизирует и анализирует методы: распознавания	Обучающийся знает: методы анализа контрольно- диагностической информации	Вопросы (21 – 40)
диагностических признаков; оценки информативности диагностических параметров; прогнозирования остаточного ресурса	Обучающийся умеет: проводить оценку информативности диагностических параметров	Задания (11 – 15)
	Обучающийся владеет: навыками прогнозирования остаточного ресурса оборудования ВТ	Задания (16 – 20)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-7.1. Классифицирует	Обучающийся знает: методы диагностики и неразрушающего контроля ВТ
основные методы диагностики и	
неразрушающего контроля,	
оперирует используемой в	
диагностике терминологией	

Примеры вопросов/заданий

1. Что такое техническое состояние объекта диагностирования?

- а) Комплекс характеристик, отражающих функциональные свойства объекта
- б) Совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемая в определенный момент времени признаками, установленными технической документацией на этот объект
- в) Набор технических параметров, полученных в результате диагностирования
- г) Группа параметров, которые будут оцениваться в процессе проведения контроля

2. Чем характеризуется наработка на отказ

- а) среднее значение наработки ремонтируемого изделия между отказами
- б) среднее значение наработки ремонтируемого изделия за месяц
- в) максимальное значение наработки ремонтируемого изделия между отказами
- г) минимальное значение наработки ремонтируемого изделия между отказами

3. Что такое диагностическое устройство?

- а) Совокупность технических средств, реализующих метод диагностирования
- б) Устройство для измерения параметров объекта
- в) Совокупность технических средств для измерения параметров объекта
- г) Комплекс для оценки рабочих характеристик

4. Дайте правильное определение термина "измерение"

- а) процесс выполнения операции контроля
- б) нахождение значения физической величины путем контроля диагностического параметра
- в) нахождение значения физической величины опытным путем с помощью специальных технических средств
- г) нахождение значения физической величины путем контроля структурного параметра

5. Укажите, что является наработкой объекта

- а) количество ремонтов объекта за год
- б) число технических обслуживаний объекта за месяц
- в) продолжительность проведения ремонта или технического обслуживания
- г) продолжительность функционирования объекта или объем выполненной им работы за некоторый промежуток времени.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

6. Что такое остаточный ресурс?

- а) ресурс объекта в соответствии с нормативной документации
- б) наработка объекта диагностирования до предельного изменения его параметра технического состояния, начиная от момента диагностирования.
- в) срок эксплуатации объекта
- г) момент перехода объекта в неработоспособное состояние
- 7. Свойство объекта выполнять заданные функции, сохраняя значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, в течение требуемого промежутка времени или требуемой наработки, называется:
- а) работоспособность
- б) безотказность
- в) надежность
- г) ремонтопригодность

8. Дайте правильное определение термина "работоспособность"

- а) состояние объекта в номинальном режиме
- б) возможность функционирования объекта в аварийном режиме в течение установленного документацией времени
- в) приспособленность изделия к проведению ремонтов и технических обслуживаний
- г) состояние изделия, при котором в данный момент времени его основные (рабочие) параметры находятся в пределах, установленных требованиями технической документации

9. Чем характеризуется такое свойство объекта, как безотказность?

- а) возможностью непрерывно сохранять работоспособность в течение некоторого времени или некоторой наработки
- б) приспособленностью изделия к проведению ремонтов и технических обслуживаний
- в) возможностью функционирования объекта в аварийном режиме в течение установленного документацией времени
- г) минимальными эксплуатационными издержками

10. Что такое диагностический комплекс?

- а) Система, состоящая из множества устройств диагностики, объекта диагностирования и оператора
- б) Система, состоящая из устройства диагностирования, объекта диагностирования, оператора и технологии диагностирования
- в) Система, состоящая из устройств диагностирования и объектов диагностирования
- г) Совокупность устройств и объектов диагностирования

11. Дефекты в изделии из ферромагнитного материала лучше всего выявляются

- а) Капиллярными методами
- б) Радиационными методами
- в) Радиволновыми методами
- г) Всеми перечисленными методами
- д) Магнитными методами

12. Для чего нужна блочно-функциональная декомпозиция объекта диагностирования?

- а) Установление иерархии связей компонентов, а значит, и иерархии диагностических целей и апгоритмов
- б) Ввыбор и разработка, прежде всего, доминирующего физического метода диагностирования
- в) Разработки алгоритма диагностирования
- г) Все перечисленное

13. Какие виды диагностических моделей вам известны?

- а) Графовые
- б) Все перечисленные
- в) Логические
- г) Аналитические

14. Каким должно быть значение структурного или диагностического параметра объекта, при котором дальнейшая эксплуатация становится технически невозможной или экономически невыгодной?

- а) Номинальным
- б) Предельным
- в) Допускаемым
- г) Рабочим

15. Какими видами требований к техническому объекту обеспечивается его контролепригодность?

- а) К конструктивному исполнению
- б) К методам диагностирования
- в) Все перечисленное
- г) К параметрам диагностирования

16. Какой из приведенных терминов определяет факт установления технического состояния объекта на момент предшествующий проведению контроля?

- а) Диагноз
- б) Прогноз
- в) Генез
- г) Контроль

17. Какой критерий регламентирует проведение восстановительных работ в плановопредупредительной системе ремонта?

- а) Фактическое состояние
- б) Фактическая нагрузка
- в) Фактическая наработка
- г) Фактический параметр

18. Повышение контролепригодности объектов диагностирования осуществляется следующими способами:

- а) Введением в конструкцию транспортных средств встроенных измерительных преобразователей
- б) Приспособлением к удобному и простому подключению измерительных преобразователей на период диагностирования и контроля
- в) Все перечисленное
- г) Комплектованием постоянно действующими измерительными преобразователями и вторичными приборами

19. Процесс разработки диагностического обеспечения объекта состоит из следующих последовательно выполняемых операций:

- а) Построение диагностической модели, выбор диагностических параметров, выбор метода диагностирования, построение алгоритма и программы диагностирования
- б) Выбор метода диагностирования, построение алгоритма и программы диагностирования, выбор диагностических параметров, построение диагностической модели
- в) Построение алгоритма и программы диагностирования, выбор диагностических параметров, построение диагностической модели выбор метода диагностирования
- г) Выбор диагностических параметров, выбор метода диагностирования, построение алгоритма и программы диагностирования, построение диагностической модели

20. Диагностированием называется:

- а) Процесс определения технического состояния объекта
- б) Процесс выявления дефектов в узлах и деталях
- в) Заключение о техническом состоянии объекта
- г) Область знаний по определению технического состояния объекта

Код и наименование индикатора	Образовательный результат					
достижения компетенции						
ПК-7.1. Классифицирует	Обучающийся умеет: классифицировать методы диагностики и неразрушающего					
основные методы диагностики и	контроля ВТ					
неразрушающего контроля,						
оперирует используемой в						
диагностике терминологией						

Примеры вопросов/заданий

Задание 1

При выполнении оценки состояния буксового подшипника при помощи виброакустического метода фиксируется два признака: K_I — превышение среднего уровня виброускорения заданного порогового значения и K_2 — превышение амплитуды виброскорости в выделенном диапазоне частот заданного порогового значения. Проявление (не проявление) этих признаков связано либо с недопустимым износом обойм и тел качения подшипника (состояние D_I), либо с разрушением сепараторов подшипников (состояние D_I), либо с нормальным состоянием подшипника (состояние D_I).

В исправном состоянии D_3 признак K_1 наблюдается с вероятностью $P(K_1/D_3)$, а признак K_2 – с вероятностью $P(K_2/D_3)$. В неисправном состоянии D_1 признак K_1 наблюдается с вероятностью $P(K_1/D_1)$, а признак K_2 – с вероятностью $P(K_2/D_1)$. В неисправном состоянии D_2 признак K_1 наблюдается с вероятностью $P(K_1/D_2)$, а признак K_2 – с вероятностью $P(K_2/D_2)$. Вероятность нахождения объектов в исправном состоянии $P(D_3)$, а в неисправном – $P(D_1)$ и $P(D_2)$.

Требуется определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков, если известны вероятности признаков и априорные вероятности состояний:

$$P(K_1/D_1) = 0.25$$

$$P(K_2/D_1) = 0.35$$

$$P(K_1/D_2) = 0.45$$

$$P(K_2/D_2) = 0.24$$

$$P(K_1/D_3) = 0.05$$

$$P(K_2/D_3) = 0.00$$

$$P(D_1) = 0.05$$

$$P(D_2) = 0.05$$

$$P(D_3) = 0.90$$

Задание 2

При выполнении оценки состояния буксового подшипника при помощи виброакустического метода фиксируется два признака: K_I — превышение среднего уровня виброускорения заданного порогового значения и K_2 — превышение амплитуды виброскорости в выделенном диапазоне частот заданного порогового значения. Проявление (не проявление) этих признаков связано либо с недопустимым износом обойм и тел качения подшипника (состояние D_I), либо с разрушением сепараторов подшипников (состояние D_I), либо с нормальным состоянием подшипника (состояние D_I).

В исправном состоянии D_3 признак K_1 наблюдается с вероятностью $P(K_1/D_3)$, а признак K_2 – с вероятностью $P(K_2/D_3)$. В неисправном состоянии D_1 признак K_1 наблюдается с вероятностью $P(K_1/D_1)$, а признак K_2 – с вероятностью $P(K_2/D_1)$. В неисправном состоянии D_2 признак K_1 наблюдается с вероятностью $P(K_1/D_2)$, а признак K_2 – с вероятностью $P(K_2/D_2)$. Вероятность нахождения объектов в исправном состоянии $P(D_3)$, а в неисправном – $P(D_1)$ и $P(D_2)$.

Требуется определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков, если известны Вероятности признаков и априорные вероятности состояний:

$$P(K_{1}/D_{1}) = 0.26$$

$$P(K_{2}/D_{1}) = 0.39$$

$$P(K_{1}/D_{2}) = 0.46$$

$$P(K_{2}/D_{2}) = 0.25$$

$$P(K_{1}/D_{3}) = 0.00$$

$$P(K_{2}/D_{3}) = 0.05$$

$$P(D_{1}) = 0.09$$

$$P(D_{2}) = 0.11$$

$$P(D_{3}) = 0.80$$

При выполнении оценки состояния буксового подшипника при помощи виброакустического метода фиксируется два признака: K_I — превышение среднего уровня виброускорения заданного порогового значения и K_2 — превышение амплитуды виброскорости в выделенном диапазоне частот заданного порогового значения. Проявление (не проявление) этих признаков связано либо с недопустимым износом обойм и тел качения подшипника (состояние D_I), либо с разрушением сепараторов подшипников (состояние D_I), либо с нормальным состоянием подшипника (состояние D_I).

В исправном состоянии D_3 признак K_1 наблюдается с вероятностью $P(K_1/D_3)$, а признак K_2 – с вероятностью $P(K_2/D_3)$. В неисправном состоянии D_1 признак K_1 наблюдается с вероятностью $P(K_1/D_1)$, а признак K_2 – с вероятностью $P(K_2/D_1)$. В неисправном состоянии D_2 признак K_1 наблюдается с вероятностью $P(K_1/D_2)$, а признак K_2 – с вероятностью $P(K_2/D_2)$. Вероятность нахождения объектов в исправном состоянии $P(D_3)$, а в неисправном – $P(D_1)$ и $P(D_2)$.

Требуется определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков, если известны Вероятности признаков и априорные вероятности состояний:

$$P(K_{1}/D_{1}) = 0.27$$

$$P(K_{2}/D_{1}) = 0.37$$

$$P(K_{1}/D_{2}) = 0.47$$

$$P(K_{2}/D_{2}) = 0.26$$

$$P(K_{1}/D_{3}) = 0.06$$

$$P(K_{2}/D_{3}) = 0.00$$

$$P(D_{1}) = 0.06$$

$$P(D_{2}) = 0.14$$

$$P(D_{3}) = 0.80$$

Задание 4

При выполнении оценки состояния буксового подшипника при помощи виброакустического метода фиксируется два признака: K_I — превышение среднего уровня виброускорения заданного порогового значения и K_2 — превышение амплитуды виброскорости в выделенном диапазоне частот заданного порогового значения. Проявление (не проявление) этих признаков связано либо с недопустимым износом обойм и тел качения подшипника (состояние D_I), либо с разрушением сепараторов подшипников (состояние D_I), либо с нормальным состоянием подшипника (состояние D_I).

В исправном состоянии D_3 признак K_1 наблюдается с вероятностью $P(K_1/D_3)$, а признак K_2 – с вероятностью $P(K_2/D_3)$. В неисправном состоянии D_1 признак K_1 наблюдается с вероятностью $P(K_1/D_1)$, а признак K_2 – с вероятностью $P(K_2/D_1)$. В неисправном состоянии D_2 признак K_1 наблюдается с вероятностью $P(K_1/D_2)$, а признак K_2 – с вероятностью $P(K_2/D_2)$. Вероятность нахождения объектов в исправном состоянии $P(D_3)$, а в неисправном – $P(D_1)$ и $P(D_2)$.

Требуется определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков, если известны Вероятности признаков и априорные вероятности состояний:

$$P(K_1/D_1) = 0.28$$

 $P(K_2/D_1) = 0.38$ $P(K_1/D_2) = 0.46$ $P(K_2/D_2) = 0.27$ $P(K_1/D_3) = 0.00$ $P(K_2/D_3) = 0.05$ $P(D_1) = 0.04$ $P(D_2) = 0.14$ $P(D_3) = 0.82$

Задание 5

При выполнении оценки состояния буксового подшипника при помощи виброакустического метода фиксируется два признака: K_I — превышение среднего уровня виброускорения заданного порогового значения и K_2 — превышение амплитуды виброскорости в выделенном диапазоне частот заданного порогового значения. Проявление (не проявление) этих признаков связано либо с недопустимым износом обойм и тел качения подшипника (состояние D_I), либо с разрушением сепараторов подшипников (состояние D_2), либо с нормальным состоянием подшипника (состояние D_3).

В исправном состоянии D_3 признак K_1 наблюдается с вероятностью $P(K_1/D_3)$, а признак K_2 – с вероятностью $P(K_2/D_3)$. В неисправном состоянии D_1 признак K_1 наблюдается с вероятностью $P(K_1/D_1)$, а признак K_2 – с вероятностью $P(K_2/D_1)$. В неисправном состоянии D_2 признак K_1 наблюдается с вероятностью $P(K_1/D_2)$, а признак K_2 – с вероятностью $P(K_2/D_2)$. Вероятность нахождения объектов в исправном состоянии $P(D_3)$, а в неисправном – $P(D_1)$ и $P(D_2)$.

Требуется определить состояние объекта (поставить диагноз) при возможных сочетаниях признаков, если известны Вероятности признаков и априорные вероятности состояний:

$$P(K_1/D_1) = 0.29$$

$$P(K_2/D_1) = 0.36$$

$$P(K_1/D_2) = 0.49$$

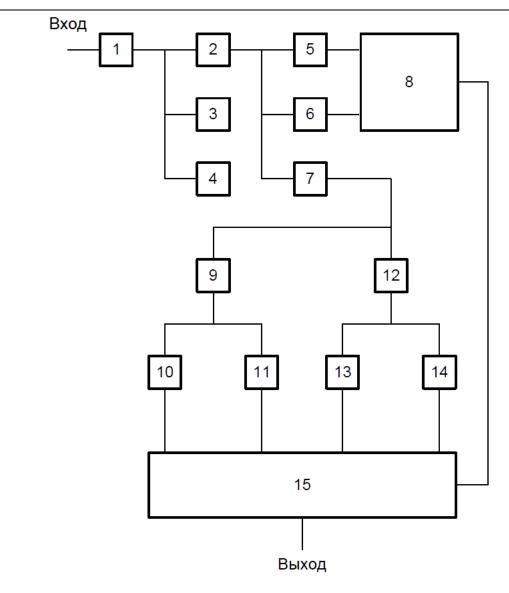
$$P(K_2/D_2) = 0.26$$

$$P(K_1/D_3) = 0.05$$

$$P(K_2/D_3) = 0.00$$

$$P(D_1) = 0.16$$

$$P(D_2) = 0.06$$


$$P(D_3) = 0.79$$

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-7.1. Классифицирует	Обучающийся владеет: навыками выбора методов диагностики и неразрушающего
основные методы диагностики и	контроля для различного типа оборудования ВТ
неразрушающего контроля,	
оперирует используемой в	
диагностике терминологией	

Примеры вопросов/заданий

Задание 6

С помощью системы технической диагностики проверяется цифровая система, структурная схема которой приведена на рисунке. Выходы всех блоков равнодоступны, время их проверки одинаково. Записать коды проверок блоков π_i и коды состояний системы K_i при условии, что несправен блок 6.

С помощью системы технической диагностики проверяется цифровая система, структурная схема которой приведена на рисунке. Выходы всех блоков равнодоступны, время их проверки одинаково. Записать коды проверок блоков π_i и коды состояний системы K_i при условии, что несправен блок 8.

Задание 8

С помощью системы технической диагностики проверяется цифровая система, структурная схема которой приведена на рисунке. Выходы всех блоков равнодоступны, время их проверки одинаково. Записать коды проверок блоков π_i и коды состояний системы K_i при условии, что несправен блок 10.

Задание 9

С помощью системы технической диагностики проверяется цифровая система, структурная схема которой приведена на рисунке. Выходы всех блоков равнодоступны, время их проверки одинаково. Записать коды проверок блоков π_i и коды состояний системы K_i при условии, что несправен блок 12.

Задание 10

С помощью системы технической диагностики проверяется цифровая система, структурная схема которой приведена на рисунке. Выходы всех блоков равнодоступны, время их проверки одинаково. Записать коды проверок блоков π_i и коды состояний системы K_i при условии, что несправен блок 14.

анализирует методы: распознавания диагностических признаков; оценки
1 "
признаков; оценки
информативности
диагностических параметров;
прогнозирования остаточного
ресурса

Примеры вопросов/заданий

21. Какие дефекты можно обнаружить ультразвуковым методом контроля:

- а) Поверхностные;
- б) Подповерхностные;
- в) Глубоко залегающие;
- г) Поверхностные и подповерхностные

22. Какие дефекты можно обнаружить магнитопорошковым методом контроля:

- а) Поверхностные;
- б) Подповерхностные;
- в) Глубоко залегающие;
- г) Поверхностные и подповерхностные

23. Система технического диагностирования не содержит следующий компонент:

- а) Объект диагностирования;
- б) Средства диагностирования;
- в) Метод диагностирования;
- г) Алгоритм диагностирования.

24. Контролепригодность это:

- а) Пригодность к проведению контроля заданными средствами;
- б) Приспособленность к поддержанию и восстановлению работоспособного состояния путём ремонта;
- в) Требования к проведению контроля геометрических параметров;
- г) Пригодность к выполнению модернизации.

25. Ремонтопригодность это:

- а) Пригодность к проведению контроля заданными средствами;
- б) Приспособленность к поддержанию и восстановлению работоспособного состояния путём ремонта;
- в) Пригодность к модернизации;
- г) Возможность замены деталей на аналогичные.

26. Эталон в диагностике это:

- а) Стандартизированный образец изделия;
- б) Подобный по механическим параметрам объект;
- в) Подобный по электрическим параметрам объект;
- г) Подобный по геометрическим параметрам объект.

27. Математическая модель объекта диагностирования это:

- а) Декомпозиция объекта диагностирования;
- б) Набор аналитических зависимостей для диагностических параметров;
- в) Графическое представление ресурсного и диагностического параметров;
- г) Набор правил для проведения контроля при помощи средств диагностики.

28. Какого вида средств технического диагностирования не существует:

- а) Стационарного;
- б) Переносного;
- в) Бортового;
- г) Вспомогательного.

29. Для математического описания граф-моделей используют следующие типы матриц:

- а) Матрицы дуг и матрицы путей;
- б) Матрицы столбцы и симметричные матрицы;
- в) Петлевые матрицы и линейные матрицы;
- г) Нео матрицы и матрицы Сиона.

30. Какого вида алгоритмов диагностирования технического диагностирования не существует:

- а) Безусловный с безусловной остановкой;
- б) Безусловный с условной остановкой;
- в) Условный с условной остановкой;
- г) Условный с безусловной остановкой.

31. Совокупность проверок, позволяющую решать какую-либо из задач диагноза, называют:

- а) Диагностикой;
- б) Алгоритмом;
- в) Тестом;
- г) Техническим заключением.

32. Отметьте несуществующий этап жизненного цикла объекта:

- а) Проектирование;
- б) Сборка (монтаж);
- в) Эксплуатация;
- г) Хранение

33. По назначению тесты делятся на:

- а) Проверяющие и диагностические;
- б) Прямые и обратные;
- в) Минимальные и максимальные;
- г) Длинные и короткие.

34. Для оценки эффективности функционального диагностирования используется специальная характеристика:

- а) Надежность;
- б) Безотказность;
- в) Достоверность
- г) Результативность.

35. Метод, основанный на использовании органов чувств человека называется:

- а) Акустический;
- б) Органолептический;
- в) Метрологический
- г) Параметрический.

36. Метод, непосредственно характеризующий работоспособность объекта называется:

- а) Акустическим;
- б) Структурным;
- в) Метрологическим
- г) Параметрическим.

37. Метод, основанный на контроле нормируемых параметров объекта называется:

- а) Акустическим;
- б) Структурным;
- в) Метрологическим
- г) Параметрическим.

38. Метод, основанный на регистрации изменений температурных полей называется:

- а) Тепловым;
- б) Структурным;
- в) Метрологическим
- г) Параметрическим.

39. Метод, основанный на измерении электрических параметров, включающих в себя отклонения токов и напряжений от номинальных значений называется:

- а) Физическим;
- б) Радиоволновым;
- в) Электрическим;
- г) Параметрический.

40. Диагностика это:

- а) Прогнозирование остаточного ресурса;
- б) Область знаний, охватывающая теорию, методы и средства определения технического состояния объектов;
- в) Поиск дефектов;
- г) Свод правил и указаний.

Код и наименование индикатора достижения компетенции	Образовательный результат					
ПК-7.2. Систематизирует и анализирует методы: распознавания диагностических признаков; оценки информативности диагностических параметров; прогнозирования остаточного ресурса	Обучающийся параметров	умеет:	проводить	оценку	информативности	диагностических

Примеры вопросов/заданий

Задание 11

Требуется определить граничное значение K_0 , разделяющее объекты на два класса: исправный и неисправный. Техническое диагностирование объекта осуществляется по параметру K. Параметр имеет нормальное распределение при исправном (\mathbf{D}_1) , неисправном (\mathbf{D}_2) состояниях.

Априорные вероятности диагнозов D_1 и D_2 известны на основе предварительных статистических данных: $P_1 = P(D_1) = 0.95$; $P_2 = P(D_2) = 0.05$.

Объект - тяговый электродвигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы моторно-якорных подшипников.

Для исправного объекта даются среднее значение параметра K_1 и среднеквадратическое отклонение σ_1 , а для неисправного соответственно K_2 и σ_2 . Также приводится соотношение цен: C_{12} - стоимость пропуска дефекта (C_{12}) к стоимости ложной тревоги (C_{21}) - C_{12} / C_{21} :

$$K_{I} = 37$$

$$K_{2} = 67$$

$$\sigma_{I} = 7$$

$$\sigma_{2} = 8$$

$$C_{12} / C_{21} = 10$$

Требуется определить граничное значение K_0 , разделяющее объекты на два класса: исправный и неисправный. Техническое диагностирование объекта осуществляется по параметру K. Параметр имеет нормальное распределение при исправном (D_1) , неисправном (D_2) состояниях.

Априорные вероятности диагнозов D_1 и D_2 известны на основе предварительных статистических данных: $P_1 = P(D_1) = 0.95$; $P_2 = P(D_2) = 0.05$.

Объект - тяговый электродвигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы моторно-якорных подшипников.

Для исправного объекта даются среднее значение параметра K_1 и среднеквадратическое отклонение σ_1 , а для неисправного соответственно K_2 и σ_2 . Также приводится соотношение цен: C_{12} - стоимость пропуска дефекта (C_{12}) к стоимости ложной тревоги (C_{21}) - C_{12} / C_{21} :

$$K_{I} = 42$$

$$K_{2} = 72$$

$$\sigma_{I} = 7$$

$$\sigma_{2} = 8$$

$$C_{12} / C_{21} = 10$$

Задание 13

Требуется определить граничное значение K_0 , разделяющее объекты на два класса: исправный и неисправный. Техническое диагностирование объекта осуществляется по параметру K. Параметр имеет нормальное распределение при исправном (D_1) , неисправном (D_2) состояниях.

Априорные вероятности диагнозов D_1 и D_2 известны на основе предварительных статистических данных: $P_1 = P(D_1) = 0.95$; $P_2 = P(D_2) = 0.05$.

Объект - тяговый электродвигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы моторно-якорных подшипников.

Для исправного объекта даются среднее значение параметра K_1 и среднеквадратическое отклонение σ_1 , а для неисправного соответственно K_2 и σ_2 . Также приводится соотношение цен: C_{12} - стоимость пропуска дефекта (C_{12}) к стоимости ложной тревоги (C_{21}) - C_{12} / C_{21} :

$$K_{I} = 48$$

$$K_{2} = 78$$

$$\sigma_{I} = 7$$

$$\sigma_{2} = 8$$

$$C_{12} / C_{21} = 10$$

Задание 14

Требуется определить граничное значение K_0 , разделяющее объекты на два класса: исправный и неисправный. Техническое диагностирование объекта осуществляется по параметру K. Параметр имеет нормальное распределение при исправном (D_1) , неисправном (D_2) состояниях.

Априорные вероятности диагнозов D_1 и D_2 известны на основе предварительных статистических данных: $P_1 = P(D_1) = 0.95$; $P_2 = P(D_2) = 0.05$.

Объект - тяговый электродвигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы моторно-якорных подшипников.

Для исправного объекта даются среднее значение параметра K_1 и среднеквадратическое отклонение σ_1 , а для неисправного соответственно K_2 и σ_2 . Также приводится соотношение цен: C_{12} стоимость пропуска дефекта (C_{12}) к стоимости ложной тревоги (C_{21}) - C_{12} / C_{21} :

$$K_{I} = 52$$

$$K_{2} = 82$$

$$\sigma_{I} = 7$$

$$\sigma_{2} = 8$$

$$C_{12} / C_{21} = 10$$

Задание 15

Требуется определить граничное значение K_0 , разделяющее объекты на два класса: исправный и неисправный. Техническое диагностирование объекта осуществляется по параметру K. Параметр имеет нормальное распределение при исправном (D_1) , неисправном (D_2) состояниях.

Априорные вероятности диагнозов D_1 и D_2 известны на основе предварительных статистических данных: $P_1 = P(D_1) = 0.95$; $P_2 = P(D_2) = 0.05$.

Объект - тяговый электродвигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы моторно-якорных подшипников.

Для исправного объекта даются среднее значение параметра K_1 и среднеквадратическое отклонение σ_1 , а для неисправного соответственно K_2 и σ_2 . Также приводится соотношение цен: C_{12} - стоимость пропуска дефекта (C_{12}) к стоимости ложной тревоги (C_{21}) - C_{12} / C_{21} :

$$K_{I} = 56$$

$$K_{2} = 86$$

$$\sigma_{I} = 7$$

$$\sigma_{2} = 8$$

$$C_{12} / C_{21} = 10$$

	I				
Код и наименование индикатора	Образовательный результат				
достижения компетенции					
ПК-7.2. Систематизирует и	Обучающийся владеет:	навыками	прогнозирования	остаточного	pecypca
анализирует методы:	оборудования ВТ				
распознавания диагностических					
признаков; оценки					
информативности					
диагностических параметров;					
прогнозирования остаточного					
ресурса					

Примеры вопросов/заданий

Задание 16

Неисправная система состоит из 12 последовательно соединенных блоков, вероятности отказов за время T которых равны, соответственно, 0,01; 0,02; 0,03; 0,04; 0,1; 0,2; 0,15; 0,18; 0,25; 0,22; 0,1; 0,15. Используя *метод половинного разбиения*, составить план очередности проверок блоков системы, реализуемый в системе технической диагностики. Рассмотреть случай, когда результаты 1-й, 2-й и 3-й проверок — «исправно». Определить неисправные блоки.

Задание 17

Неисправная система состоит из 11 последовательно соединенных блоков, вероятности отказов за время T которых равны, соответственно, 0,02; 0,03; 0,04; 0,05; 0,11; 0,22; 0,13; 0,16; 0,22; 0,2; 0,08. Используя метод половинного разбиения, составить план очередности проверок блоков системы, реализуемый в системе технической диагностики. Рассмотреть случай, когда результаты 1-й, 2-й и 3-й проверок — «неисправно». Определить неисправные блоки.

Неисправная система состоит из 10 последовательно соединенных блоков, вероятности отказов за время Т которых равны, соответственно, 0,05; 0,07; 0,09; 0,06; 0,15; 0,14; 0,15; 0,05; 0,15; 0,12. Используя метод половинного разбиения, составить план очередности проверок блоков системы, реализуемый в системе технической диагностики. Рассмотреть случай, когда результаты 1-й и 2-й проверок — «исправно». Определить неисправные блоки.

Задание 19

Неисправная система состоит из 9 последовательно соединенных блоков, вероятности отказов за время Т которых равны, соответственно, 0,07; 0,08; 0,11; 0,08; 0,13; 0,12; 0,16; 0,08; 0,19. Используя метод половинного разбиения, составить план очередности проверок блоков системы, реализуемый в системе технической диагностики. Рассмотреть случай, когда результаты 1-й и 2-й проверок — «неисправно». Определить неисправные блоки.

Задание 20

Неисправная система состоит из 9 последовательно соединенных блоков, вероятности отказов за время Т которых равны, соответственно, 0,05; 0,06; 0,07; 0,08; 0,09; 0,10; 0,11; 0,12; 0,13. Используя метод половинного разбиения, составить план очередности проверок блоков системы, реализуемый в системе технической диагностики. Рассмотреть случай, когда результаты 1-й и 2-й проверок — «неисправно». Определить неисправные блоки.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (экзамену)

- 1. Сущность и задачи технической диагностики как отрасли научно технических знаний
- 2. Понятие технического состояния объекта диагностирования. Виды технического состояния
- 3. Основные показатели работоспособности: отказ и неисправность
- 4. Виды отказов. Управление техническим состоянием ВТ
- 5. Требования, предъявляемые к диагностическим параметрам
- 6. Структурные и диагностические параметры. Принципы отбора диагностических параметров
- 7. Классификация диагностических параметров по характеру информации
- 8. Объект и средства диагностирования. Системы диагностирования, их основные виды
- 9. Системы тестового диагностирования. Область применения
- 10. Средства технической диагностики ВТ: классификация, особенности применения
- 11. Роль и место диагностики в системе технического обслуживания и ремонта ВТ
- 12. Системы функционального диагностирования. Область применения
- 13. Понятие алгоритма диагностирования. Принципы построения алгоритмов диагностирования
- 14. Понятия прогноза и генеза технического состояния объектов.
- 15. Объекты диагностирования, их виды и структурные особенности
- 16. Блочно-функциональная декомпозиция ВТ
- 17. Функциональное, морфологическое и информационное описание ВТ
- 18. Структура диагностического обеспечения ВТ
- 19. Дискретные объекты диагностики, их особенности и критерии выделения при декомпозиции сложного объекта
- 20. Аналоговые объекты диагностики, их особенности и критерии выделения при декомпозиции сложного объекта
- 21. Виды и способы контроля диагностических параметров
- 22. Параметры оптического вида, область применения для целей диагностики
- 23. Параметры электрического вида, область применения для целей диагностики
- 24. Параметры электромагнитного вида, область применения для целей диагностики
- 25. Параметры магнитного вида, область применения для целей диагностики
- 26. Параметры виброакустического вида, область применения для целей диагностики
- 27. Основные принципы диагностики технических объектов
- 28. Принципы неразрушающего контроля
- 29. Показатели и критерии эффективности диагностирования
- 30. Современное состояние средств технической диагностики ВТ

- 31. Виды диагностических моделей объекта диагностирования. Требования, предъявляемые к диагностическим моделям
- 32. Аналитические диагностические модели
- 33. Диагностические модели в виде регрессивных зависимостей
- 34. Логические диагностические модели
- 35. Диагностические модели представленные графами
- 36. Виды нормативных значений диагностических параметров
- 37. Требования контролепригодности предъявляемые к ВТ
- 38. Критерии контролепригодности
- 39. Диагностирование электрических машин
- 40. Диагностирование электрических аппаратов
- 41. Диагностирование подшипниковых узлов качения
- 42. Диагностирование механического оборудования
- 43. Построение аппаратных средств диагностирования
- 44. Основные функциональные блоки и схемы диагностических комплексов
- 45. Обобщенная схема устройства диагностики.
- 46. Структуры бортовых диагностических комплексов.
- 47. Системы сбора диагностической информации.
- 48. Классификация датчиков. Назначение, устройство, принцип действия.
- 49. Типы аналогово-цифровых преобразователей (АЦП).
- 50. Интерфейсы диагностических устройств.
- 51. Виды диагностических сигналов.
- 52. Алгоритмы обработки диагностических сигналов.
- 53. Программное обеспечение, используемых при построении диагностических комплексов.
- 54. Принципы обработки диагностических сигналов.
- 55. Фурье-преобразования диагностических сигналов
- 56. Перспективы развития диагностических комплексов.
- 57. Интерпретация данных диагностических комплексов.
- 58. Функционально-диагностические модели.
- 59. Магнитопорошковый метод обнаружения дефектов деталей
- 60. Методы и аппаратура ультразвукового контроля
- 61. Основы виброакустической диагностики
- 62. Вихретоковый метод контроля

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – обучающийся допустил существенные ошибки.

«**Неудовлетворительно**» — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.