Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 23.10.2025 10:12:03 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ПРИВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (ПривГУПС)

Приложение к рабочей программе дисциплины

г

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Динамика и прочность вагонов

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Грузовые вагоны

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Форма промежуточной аттестации: зачет (по очной форме - 8 семестр; по заочной форме - 4 курс)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения				
	компетенции				
ПК-1: Способен определять типы, комплектность, конструктивные особенности, технико-экономические параметры и техническое состояние единиц подвижного состава	ПК-1.2: Анализирует конструктивные особенности узлов и деталей, оценивает техническое состояние подвижного состава				
ПК-8: Способен выполнять работы по проектированию узлов и деталей вагонов, подготовке технической документации, в том числе с использованием современных цифровых технологий	ПК-8.1: Выполняет проектирование узлов и деталей вагонов с использованием САD/САЕ систем				

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Vол и поименование индикатора	Разунгтати обущания по пионипнина	Опананния	
Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные	
достижения компетенции		материалы	
THE 1.2	05	(семестр 9)	
ПК-1.2: Анализирует конструктивные	Обучающийся знает: основные методы разработки	Вопросы (№1 -	
особенности узлов и деталей, оценивает	и/или выбора технологий, способов выполнения	№5)	
техническое состояние подвижного	работ, применения нормативов эксплуатации,		
состава	технического обслуживания и ремонта устройств и		
	систем железнодорожного транспорта; основные		
	методы анализа конструктивных особенностей узлов		
	и деталей, оценки технического состояния		
	подвижного состава		
	Обучающийся умеет: определять типы и	Задания (№1 - №3)	
	комплектность, оценивать технико-экономические		
	параметры единиц подвижного состава;		
	анализировать конструктивные особенности узлов и		
	деталей, оценивать техническое состояние		
	подвижного состава		
	Обучающийся владеет навыками: разработки и/или	Задания (№4 - №6)	
	выбора технологий, выбора способов выполнения	,	
	работ, применения нормативов эксплуатации,		
	технического обслуживания и ремонта устройств и		
	систем железнодорожного транспорта; применения		
	основных методов анализа конструктивных		
	особенностей узлов и деталей, оценки технического		
	состояния подвижного состава		
ПК-8.1: Выполняет проектирование	Обучающийся знает: основные методы разработки	Вопросы (№6 -	
узлов и деталей вагонов с	проектной и/или конструкторской, технической	No10)	
использованием САД/САЕ систем	документации на устройства и системы	/	
	железнодорожного транспорта, в том числе с		
	использованием цифровых технологий;		
	основные методы разработки технологической		
	документации на устройства и системы		
	железнодорожного транспорта, в том числе с		
	менезнодорожного гранспорта, в том числе с		

использованием цифровых технологий	
Обучающийся умеет: выполнять проектирование	Задания (№7 - №9)
узлов и деталей вагонов с использованием CAD/CAE	
систем; разрабатывать технологическую	
документацию по технической эксплуатации и	
ремонту вагонов с применением	
автоматизированных систем	
Обучающийся владеет методами: разработки	Задания (№10 -
проектной и/или конструкторской, технической	№12)
документации на устройства и системы	
железнодорожного транспорта, в том числе с	
использованием цифровых технологий;	
разработки технологической документации на	
устройства и системы железнодорожного	
транспорта, в том числе с использованием цифровых	
технологий	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС ПривГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат			
достижения компетенции				
ПК-1.2: Анализирует	Обучающийся знает: основные методы разработки и/или выбора технологий,			
конструктивные особенности	способов выполнения работ, применения нормативов эксплуатации, технического			
узлов и деталей, оценивает	обслуживания и ремонта устройств и систем железнодорожного транспорта;			
техническое состояние	основные методы анализа конструктивных особенностей узлов и деталей, оценки			
подвижного состава технического состояния подвижного состава				
П				

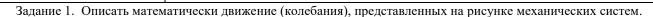
Примеры вопросов:

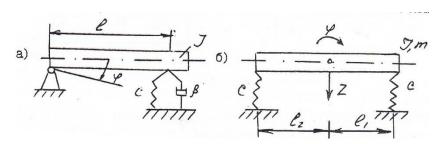
- 1. Динамика оперирует такими понятиями как:
- а) масса, сила, импульс, энергия;
- б) масса, момент, импульс, энергия;
- в) масса, момент, импульс.
- 2. Что описывает классическая динамика?
- а) движения объектов со скоростями от долей метра в секунду до километров в секунду;
- б) движения объектов со скоростями от долей миллиметров в секунду до километров в секунду;
- в) движения объектов со скоростями от долей миллиметров в секунду до километров в час;
- 3. Классическая динамика, базируется на законах:
- а) Ньютона:
- б) Сохранения энергии;
- в) Кулона.
- 4. Динамика, которая базируется на законах Ньютона называется...
- а) Виртуальной;
- б) Сплошной;
- в) Классической.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

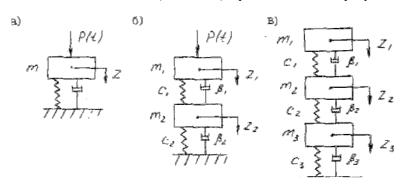
- 5. Сила как физическая величина характеризуется:
- а) модулем, направлением и «точкой» приложения силы;
- б) направлением и модулем;
- в) направлением и точкой приложения силы;

Код и наименование индикатора	Образовательный результат				
достижения компетенции					
ПК-8.1: Выполняет	Обучающийся знает: основные методы разработки проектной и/или				
проектирование узлов и деталей	конструкторской, технической документации на устройства и системы				
вагонов с использованием	железнодорожного транспорта, в том числе с использованием цифровых технологий;				
САD/САЕ систем основные методы разработки технологической документации на устройств					
	системы железнодорожного транспорта, в том числе с использованием цифровых				
	технологий				

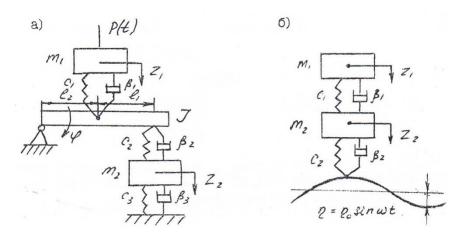

Примеры вопросов:


- 6. Учет нелинейных составляющих в выражениях деформаций оболочки через перемещения координатной поверхности необходим...
- а) для получения более точных результатов вычислительного эксперимента при расчете конструкций различного назначения;
- б) для получения более точных результатов натурного эксперимента при расчете конструкций различного назначения;
- в) все ответы не верны.
- 7. Что дает использование линейных моделей для расчета напряженно-деформированного состояния оболочек вращения?
- а) дает небольшую погрешность при больших нагрузках;
- б) дает значительную погрешность при больших нагрузках;
- в) дает значительную погрешность при небольших нагрузках.
- 8. Моделирование геометрической нелинейности производится с помощью...
- а) соответствующих нелинейных пространственных элементов;
- б) соответствующих линейных конечных элементов;
- в) соответствующих нелинейных конечных элементов.
- 9. Физическая нелинейность появляется при...
- а) пропорциональности между усилиями и деформациями, то есть при использовании неупругих материалов;
- б) отсутствии пропорциональности между усилиями и деформациями, то есть при использовании неупругих материалов;
- в) отсутствии пропорциональности между усилиями и деформациями, то есть при использовании упругих материалов.
- 10. При умеренных воздействиях многие материалы конструкций могут рассматриваться как...
- а) упругие, т.е. подчиняющиеся закону Гука;
- б) неупругие, т.е. подчиняющиеся закону Гука;
- в) упругие, т.е. неподчиняющиеся закону Гука.

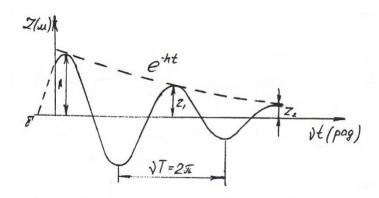
2.2 Типовые задания для оценки навыкового образовательного результата


Проверяемый образовательный результат:

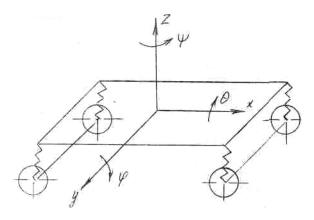
Код и наименование	Образовательный результат		
индикатора достижения			
компетенции			
ПК-1.2: Анализирует	Обучающийся умеет: определять типы и комплектность, оценивать технико-		
конструктивные особенности	экономические параметры единиц подвижного состава; анализировать конструктивные		
узлов и деталей, оценивает	особенности узлов и деталей, оценивать техническое состояние подвижного состава		
техническое состояние			
подвижного состава			



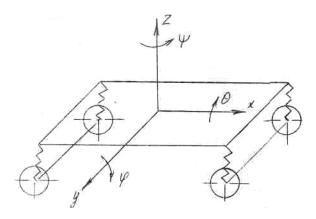
Задание 2. Описать математически движение (колебания), представленных на рисунке механических систем.


Задание 3. Запишите дифференциальные уравнения механических систем, изображенных на рисунке.

ПК-1.2: Анализирует конструктивные особенности узлов и деталей, оценивает техническое состояние подвижного состава

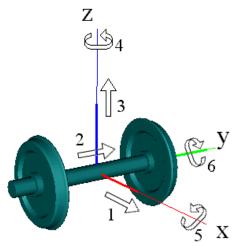

Обучающийся владеет навыками: разработки и/или выбора технологий, выбора способов выполнения работ, применения нормативов эксплуатации, технического обслуживания и ремонта устройств и систем железнодорожного транспорта; применения основных методов анализа конструктивных особенностей узлов и деталей, оценки технического состояния подвижного состава

Задание 4. Проанализировать график колебательного процесса собственных колебаний системы на графике.


Определить следующие показатели данного процесса: начальную амплитуду и начальную фазу, период и декремент.

Задание 5. Рассмотреть схему колебаний отдельно взятой тележек вагона.

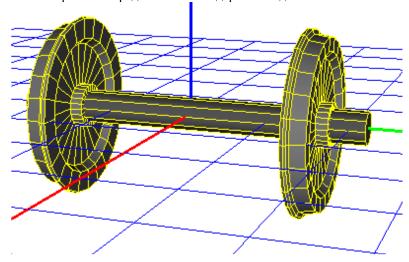
Определить поступательное линейное перемещение надрессорного строения вагона в направлении оси $\,Z\,.\,$


Задание 6. Рассмотреть схему колебаний отдельно взятой тележек вагона.

Определить угловые колебания кузова (или тележки) вагона, которые совершаются вокруг оси Z .

Код и наименование	Образовательный результат			
индикатора достижения				
компетенции				
ПК-8.1: Выполняет	Обучающийся умеет: выполнять проектирование узлов и деталей вагонов с			
проектирование узлов и	использованием CAD/CAE систем; разрабатывать технологическую документацию по			
деталей вагонов с	технической эксплуатации и ремонту вагонов с применением автоматизированных			
использованием CAD/CAE	систем			
систем				

Задание 7. Исследовать и описать основные характеристики модели колесной пары вагона с шестью степенями свободы.


Исходные данные: Колесная пара в UM представлена стандартной подсистемой. Модель колесной пары с шестью степенями свободы содержит два тела, два шарнира и графический образ колесной пары. Одно тело образует базу колесной пары и имеет пять степеней свободы (отсутствует степень свободы — поворот вокруг оси симметрии колесной пары), см. рис.. Стандартное имя базы КП — Wset. Второе тело является гиростатом, то есть симметричным телом, у которого только момент инерции относительно оси Y (оси симметрии КП) отличен от нуля. Стандартное имя гиростата — WSetRotat. Гиростат имеет одну степень свободы относительно базы колесной пары — вращение вокруг оси симметрии КП. Уравнения движения базы с гиростатом в точности совпадают с уравнениями движения единственного тела, имеющего шесть степеней свободы.

Задание 8. Исследовать и описать основные характеристики модели колесной пары подвижного состава с с семью степенями свободы.

Исходные данные: Колесная пара в «Универсальный механизм» представлена стандартной подсистемой. Координаты колесной пары пронумерованы в следующей последовательности:

- 1 поступательная степень свободы Х;
- 2 поступательная степень свободы Y;
- 3 поступательная степень свободы Z;
- 4 вращение вокруг Z;
- 5 вращение вокруг Х;
- 6 вращение вокруг Ү.
- 7. вращательная степень свободы правого колеса относительно левого. Модель состоит из трех тел и трех шарниров.

Задание 9. Произведите загрузку модели колесной пары вагона в программу моделирования движения. Исходные данные: Колесная пара в UM представлена стандартной подсистемой.

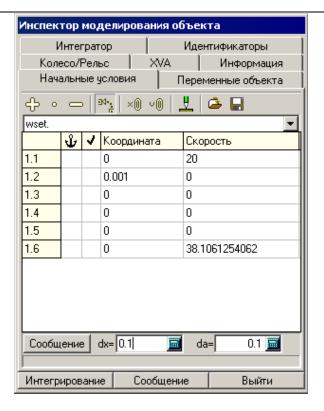

Колесная пара — одна из стандартных подсистем «Универсальный механизм». Для добавления новой колесной пары откройте окно инспектора моделирования объекта. Для этого выберите пункт меню Анализ/Моделирование.

ПК-8.1:	Выполн	яет	Обучающийся	владеет	методами:	разработки	проектной	и/или	конструкторской,
проектирование	узлов	И	технической до	кументац	ции на устро	йства и сист	емы железн	одорож	ного транспорта, в

деталей вагонов с использованием CAD/CAE систем

том числе с использованием цифровых технологий; разработки технологической документации на устройства и системы железнодорожного транспорта, в том числе с использованием цифровых технологий

Задание 10. Произвести задание и исследование профилей колес и рельсов. Колесная пара – одна из стандартных подсистем «Универсальный механизм». Для добавления новой колесной пары откройте окно инспектора моделирования объекта. Для этого выберите пункт меню Анализ/Моделирование.


Задание 11. Произвести выбор файлов и исследование неровностей путевой структуры в программном комплексе «Универсальный механизм» (UM).

Исходные данные: откройте файлы неровностей в соответствии с таблицей:

Поле	Файл
Левый рельс (Z)	aprg11.way
Правый рельс (Z)	aprg11.way
Левый рельс (Ү)	kolomvn.way
Правый рельс (Ү)	kolomvn.way

Определить поступательное линейное перемещение надрессорного строения вагона в направлении оси Z.

Задание 12. Скорректировать настройки численного метода интегрирования уравнений движения в «Универсальный механизм» (UM).

До запуска моделирования необходимо скорректировать настройки численного метода интегрирования уравнений движения. Перейдите в окно инспектора моделирования объекта.

Нажмите кнопку Интегрирование. При нулевых начальных значениях координат реализуется стационарный режим движения, при котором колесная пара не смещается в поперечном направлении и не поворачивается вокруг вертикальной оси. Контактные силы между колесом и рельсом принимают постоянное значение.

Установите начальное значение второй координаты, равное 0.001. Сместите колесную пару от положения равновесия на 1 мм и проанализируйте ее движение.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Перечень вопросов для зачета:

- 1 Составление дифференциальных уравнений собственных колебаний простейшей двух массовой системы. Методика их решений.
- 2 Оценка динамических качеств подвижного состава (вагонов).
- 3 Основные соотношения теории упругости. Статические соотношения.
- 4 Назначение и типы гасителей колебаний. Сопротивление гасителя.
- 5 Основные уравнения теории упругости. Геометрические соотношения.
- 6 Составление и решение дифференциального уравнения собственных колебаний одно-массовой системы с гидравлическим гасителем колебаний.
- 7 Основные соотношения теории упругости. Физические соотношения.
- 8 Вынужденные колебания простейших динамических систем.
- 9 Схемы решения задач теории упругости.
- 10 Причины возникновения колебаний подвижного состава (вагонов).
- 11 Основные уравнения и схемы решения плоской задачи теории упругости.
- 12 Силы безударного взаимодействия колеса с рельсом при движении по коротким неровностям и стрелочным переводам.
- 13 Метод конечных элементов. Дискретизация непрерывного тела.
- 14 Извилистое движение одиночной колесной пары.
- 15 Перемещения, деформации и напряжения в конечном элементе.
- 16 Расчет удара колеса по рельсу.
- 17 Основы вариационных принципов строительной механики. Вариационный принцип Лагранжа и обобщенный принцип Кастильяно.

- 18 Симметричные колебания подвижного состава (вагонов).
- 19 Вариационные принципы Кастильяно, Гамильтона, Дирихле.
- 20 Собственные колебания кузова рельсового экипажа на рессорах.
- 21 Особенности стержневых систем рельсового экипажа.
- 22 Вынужденные колебания кузова рельсового экипажа на рессорах.
- 23 Применение метода конечных элементов в расчетах стержневых систем рельсового экипажа при динамических нагружениях.
- 24 Оценка динамических качеств подвижного состава (вагонов).
- 25 Влияние способа изготовления деталей на уровень остаточных напряжений в поверхностном слое.
- 26 Связь между остаточными напряжениями в поверхностном слое концентратора и сопротивлением усталости изгибным нагрузкам.
- 27 Расчеты динамических характеристик подвижного состава (вагонов).
- 28 Составление уравнения вынужденных колебаний рельсового экипажа при движении по неровностям пути.
- 29 Составление дифференциальных уравнений собственных колебаний кузова подвижного состава (вагонов)на рессорах.
- 30 Определение собственных частот колебаний подпрыгивания, галопирования и боковой качки рельсового экипажа.
- 31 Расчеты параметров гасителей колебаний.
- 32 Проверка отсутствия "валкости" кузова подвижного состава (вагонов).
- 33 Нахождение аналитического выражения, описывающего процесс вынужденных колебаний подпрыгивания подвижного состава (вагонов).
- 34 Расчет динамических боковых и рамных сил при вписывании рельсового экипажа в кривые участки пути.
- 35 Расчет наибольших боковых и рамных сил, возникающих при извилистом движении рельсового экипажа в прямых участках пути и при входе его в кривую.
- 36 Расчет наибольших сил инерции необрессоренных масс подвижного состава (вагонов) при проходе колесом стыка и движении колеса с ползуном на поверхности катания.
- 37 Расчет запаса устойчивости от схода колеса рельсового экипажа с рельса при действии продольных сил в поезде.
- 38 Определение устойчивости пути поперечному сдвигу при движении по нему подвижного состава (вагонов).
- 39 От каких факторов и как зависят действующие на рельсовый экипаж продольные усилия при их соударениях в процессе маневровой работы.
- 40 От каких факторов и как зависят действующие на рельсовый экипаж продольные усилия при трогании поезда с места при невыбранных зазорах в ударно- тяговых приборах.
- 41 Какие наибольшие показатели плавности хода подвижного состава (вагонов)допускаются на наших железных дорогах.
- 42 Какие наибольшие показатели ускорений рельсового экипажав допускаются на наших железных дорогах.
- 43 Условия возникновения резонанса.
- 44 Продольные силы, возникающие в поезде и действующие на несущие элементы рельсового экипажа.
- 45 Устойчивость движения вагонов на прямых и кривых участках путей.
- 46 Вибрации упругих элементов вагонов, шум, виброзащита и виброизоляция.
- 47 Нагрузка на основные несущие элементы рельсового экипажа, их характер, значения. Нормирование нагрузок.
- 48 Основы расчета напряженно-деформированного состояния плоских листовых элементов несущих конструкций рельсового экипажа.
- 49 Возможные варианты учета влияния подкрепления листовых элементов гофрами, стержнями, накладками.
- 50 Основы расчета напряженно-деформированного состояния оболочных элементов несущих конструкций рельсового экипажа, учет влияния подкреплений. разрушения в задачах моделирования напряженности несущих узлов рельсового экипажа.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Критерии формирования оценок по зачету

«Зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.