Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 15:44:32

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электрические машины высокоскоростного транспорта

(наименование дисциплины(модуля)

Направление подготовки / специальность 23.05.05 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация Высокоскоростной наземный транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет с оценкой, РГР, предусмотренные учебным планом, в 7 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции				
ПК-6 Способен разбираться в конструкции, принципах действия и закономерностях работы электрического и электронного оборудования высокоскоростного транспорта	ПК-6.1. Приводит и перечисляет принципы функционирования, параметры и характеристики электрических машин высокоскоростного транспорта ПК-6.2 Выполняет расчет и проектирование элементов электрических машин высокоскоростного транспорта				

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы		
	Обучающийся знает: принцип действия электрических машин высокоскоростного транспорта, режимы работы	Вопросы (1 – 10)		
ПК-6.1. Приводит и перечисляет	и характеристики.			
принципы функционирования, параметры и характеристики электрических машин высокоскоростного транспорта	Обучающийся умеет: рассчитывать параметры и характеристики электрических машин высокоскоростного транспорта.	Задания (1 – 3)		
	Обучающийся владеет: навыками анализа параметров и характеристик электрических машин различного типа.	Задания (4 – 6)		
	Обучающийся знает: перечень параметров для расчета и проектирования электрических машин высокоскоростного транспорта.	Вопросы (11 – 20)		
ПК-6.2 Выполняет расчет и	Обучающийся умеет: вычислять параметры для	Задания (7 – 10)		
проектирование элементов электрических	расчета и проектирования электрических машин			
машин высокоскоростного транспорта	высокоскоростного транспорта.			
	Обучающийся владеет: методикой расчета и	Задания (10 – 12)		
	проектирования электрических машин			
	высокоскоростного транспорта.			

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знание проверяемого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат				
достижения компетенции					
ПК-6.1. Приводит и перечисляет	Обучающийся знает: принцип действия электрических машин высокоскоростного				
принципы функционирования,	транспорта, режимы работы и характеристики.				
параметры и характеристики					
электрических машин					
высокоскоростного транспорта					

Примеры вопросов/заданий

- 1) Кто впервые сконструировал трёхфазный асинхронный электродвигатель? Год.
- а) Б.С. Якоби, 1834 г.;
- б) М.О. Доливо-Добровольский, 1889 г.;
- в) П.Н. Яблочков, 1876 г.;
- 2) Основные элементы асинхронного электродвигателя:
- а) статор, ротор, вал, обмотки.;
- б) станина, якорь;
- в) статор, якорь, подшипники.
- 3) Из какого материала выполняют статор асинхронного электродвигателя
- а) электротехническая сталь;
- б) константан;
- в) никель;
- 4) Из какого материала выполняются стержни короткозамкнутого ротора?
- а) сталь;
- б) чугун;
- в) медь.
- 5) Принцип действия трехфазного асинхронного двигателя основан на:
- а) взаимодействии вращающегося магнитного поля статора с током ротора;
- б) взаимодействии вращающегося магнитного поля статора с общим магнитным полем ротора;
- в) взаимодействии магнитного поля статора с током ротора;
- 6) Скольжение ротора это
- а) отставание частоты вращения ротора от частоты вращения магнитного поля статора;
- б) отставание частоты вращения статора от частоты вращения ротора;
- в) скольжение обмотки ротора по обмотке статора.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

7) Перегрузочная способность асинхронного двигателя определяется так:

- а) отношение пускового тока к номинальному току;
- б) отношение максимального момента к номинальному;
- в) отношение номинального тока к пусковому;
- г) отношение пускового момента к номинальному.

8) Как называется основная характеристика асинхронного двигателя?

- а) механическая характеристика;
- б) регулировочная характеристика;
- в) скольжение;
- г) внешняя характеристика.

9) Как изменить направление вращения магнитного поля статора асинхронного трехфазного двигателя?

- а) достаточно изменить порядок чередования одной фазы;
- б) это сделать невозможно;
- в) достаточно изменить порядок чередования всех трёх фаз;
- г) достаточно изменить порядок чередования двух фаз из трёх.

10) Уберите несуществующий способ регулирования скорости вращения асинхронного двигателя:

- а) регулирование скольжением;
- б) частотное регулирование полюсов;
- в) реостатное регулирование.

Код и наименование индикатора	Образовательный результат			
достижения компетенции				
ПК-6.1. Приводит и перечисляет	Обучающийся умеет: рассчитывать параметры и характеристики электрических машин			
принципы функционирования,	высокоскоростного транспорта.			
параметры и характеристики				
электрических машин				
высокоскоростного транспорта				

Примеры вопросов/заданий

Задание 1

Шесть катушек, оси которых сдвинуты в пространстве одна относительно другой на угол 60° , питаются трехфазным током частотой $f = 50 \Gamma \mu$. Определить частоту вращения магнитного поля n_1 .

Задание 2

Магнитное поле, созданное трехфазным током частотой $f = 50 \, \Gamma$ ц, вращается с частотой $n_1 = 3000 \, \text{об/мин}$. Сколько полюсов 2p имеет это магнитное поле?

Задание 3

Три катушки обмотки статора асинхронной машины питаются от сети трехфазного тока частотой $f = 50 \, \Gamma$ ц. Ротор вращается с частотой $n = 2850 \, \text{об/мин}$. Определить скольжение S.

Код и наименование индикатора	Образовательный результат			
достижения компетенции				
ПК-6.1 Приводит и перечисляет	Обучающийся владеет: навыками анализа параметров и характеристик электрических			
принципы функционирования,	машин различного типа.			
параметры и характеристики				
электрических машин				
высокоскоростного транспорта				
Примеры вопросов/заданий				

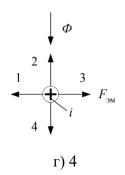
Задание 4

Пусковой момент асинхронного двигателя при номинальном напряжении $M_n=100~H$ м. Возможен ли запуск двигателя при снижении напряжения на 10 %, если момент нагрузки на валу $M_c=90~H$ м?

Задание 5

Максимальный момент асинхронного двигателя $M_{max} = 100 \ Hm$, номинальный $-M_{\rm H} = 50 \ Hm$. Как изменится перегрузочная способность двигателя при снижении напряжения на $10 \ \%$?

Задание 6

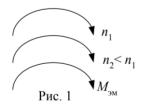

На заводской табличке асинхронного двигателя указано: $U_H = 380/220 \ B$. Двигатель подключают к сети напряжением $U = 220 \ B$. Изобразить схему обмотки статора?

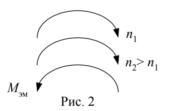
ПК-6.2 Выполняет расчет и проектирование элементов электрических машин высокоскоростного транспорта

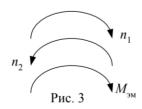
Обучающийся знает: Параметры, необходимые для расчета и проектирования электрических машин высокоскоростного транспорта.

Примеры вопросов/заданий

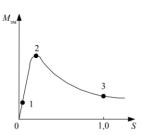
11) В соответствии с законом электромагнитных сил и правилом левой руки выберите правильное направление электромагнитной силы $F_{\scriptscriptstyle 2M}$ действующей на проводник с током i роторной обмотки асинхронного двигателя, находящейся в магнитном потоке Φ .

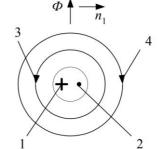

a) 1


б) 2

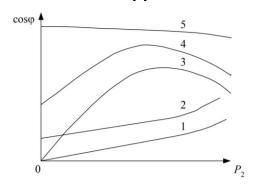

в) 3

12) Какой рисунок соответствует работе асинхронной машины в режиме электромагнитного тормоза?



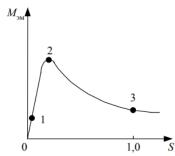

- а) Рис. 1
- б) Рис. 2
- в) Рис. 3

13) Какой участок механической характеристики асинхронного двигателя рабочий, устойчивый?


- a) 0 1
- 6) 1 2
- B) 0 2
- Γ) 2 3
- д) 1-3

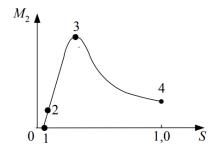
14) В соответствии с законом электромагнитной индукции и правилом правой руки выберите правильное направление индуктированной ЭДС в проводнике роторной обмотки асинхронного двигателя?

- a) 1
- б) 2
- в) 3
- г) 4
- 15) Какая рабочая характеристика асинхронного двигателя соответствует зависимости коэффициента мощности $cos\phi$ от мощности P_2 на валу?

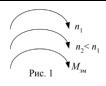


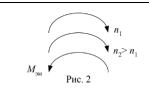
- a) 1
- б) 2
- в) 3
- г) 4
- д) 5
- 16) Во сколько раз уменьшится пусковой ток трехфазного асинхронного двигателя при соединении фаз в звезду вместо треугольника?
- a) $\sqrt{2}$

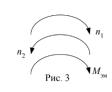
б) 2


B) $\sqrt{3}$

- г) 3
- 17) Какой участок механической характеристики асинхронного двигателя нерабочий, неустойчивый?

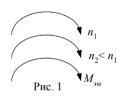

- a) 0 1
- 6) 1 2
- B) 0 2
- Γ) 2 3
- $_{\rm J}$) 1 3

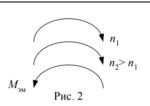

18) Какая точка механической характеристики асинхронного двигателя соответствует критическому моменту?

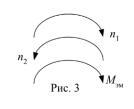


- a) 1
- б) 2
- в) 3
- г) 4

19) Какой рисунок соответствует работе асинхронной машины в двигательном режиме?







- а) Рис. 1
- б) Рис. 2
- в) Рис. 3

20) Какой рисунок соответствует работе асинхронной машины в генераторном режиме?

- а) Рис. 1
- б) Рис. 2 в) Рис. 3

Код и наименование индикатора	Образовательный результат							
достижения компетенции	<u> </u>							
ПК-6.2 Выполняет расчет и	Обучающийся у	умеет:	вычислять	параметры	для	расчета	И	проектирования
проектирование элементов	электрических ман	шин выс	окоскоростно	ого транспорт	a.			
электрических машин								
высокоскоростного транспорта								

Примеры вопросов/заданий

Задание 7

Определить пусковой момент асинхронного двигателя, если электрические потери в роторной цепи при пуске составляют 6,25 κBm , частота тока питающей сети $f=50~\Gamma \mu$, номинальная частота вращения $n_{\rm H}=570~oo/Muh$.

Задание 8

Скольжение шестиполюсного асинхронного двигателя равно 3 %. Определить частоту вращения ротора n, частоту тока обмотки ротора f_2 , если частота тока обмотки статора $f = 50 \Gamma \mu$.

Задание 9

На какую мощность должен быть рассчитан генератор, питающий асинхронный двигатель, который развивает на валу механическую мощность $P_2 = 5 \ \kappa Bm$, если известно, что коэффициент мощности двигателя $cos \varphi = 0.8$, а его коэффициент полезного действия $\eta = 0.9$?

Код и наименование индикатора	Образовательный результат			
достижения компетенции				
ПК-6.2 Выполняет расчет и	Обучающийся владеет: методикой расчета и проектирования электрических машин			
проектирование элементов	высокоскоростного транспорта.			
электрических машин				
высокоскоростного транспорта				

Примеры вопросов/заданий

Задание 10

Для трехфазного асинхронного двигателя известны следующие данные: номинальное напряжение $U_{H}=380\,B$, номинальный ток $I_{H}=18,6\,A$, активное сопротивление фазы обмотки статора $r_{I}=0,33\,O_{M}$, потери в стали статора $P_{Cm}=170\,B_{M}$, коэффициент мощности $cos\phi=0,85$, частота вращения ротора $n_{H}=3000\,o 6/muH$, схема соединения обмотки статора — «звезда». Определить: потребляемую мощность, электромагнитную мощность, электрические потери в цепи ротора.

Задание 11

Для трехфазного асинхронного двигателя известны следующие данные: номинальная частота вращения $n_{H}=1450$ об/мин, частота напряжения питающей сети $f=50\,\Gamma \mu$, электромагнитная мощность $P_{\text{эм}}=500\,Bm$, механические потери $\Delta P_{\text{мех}}=53,3\,Bm$. Определить номинальный и электромагнитный момент двигателя.

Задание 12

Паспортные данные асинхронного двигателя: $P=100~\kappa Bm,~U=380~B,~\eta=91,5\%,~\cos\varphi=0,92$, n=2960~oб/мин. Определить номинальный ток, номинальный момент, скольжение и частоту тока в роторе, если частота потребляемого из сети тока $f=50~\Gamma \mu$.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (экзамену)

- 1. Этапы создания электрических машин.
- 2. Классификация тяговых электрических машин. Терминология. Определения. Назначение.
- 3. Бесколлекторный тяговый привод за рубежом и в России.
- 4. Принцип действия синхронного генератора.
- 5. Принцип действия асинхронного двигателя.
- 6. Устройство статора синхронной и асинхронной машины.
- 7. Понятие о круговом, эллиптическом и пульсирующем магнитном полях.
- 8. Назначение и область применения асинхронных машин.
- 9. Режимы работы асинхронной машины: двигательной, генераторной и тормозной.
- 10. Условия перехода асинхронной машины в режимы: двигательной, генераторной и тормозной.
 - 11. Устройства трехфазного асинхронного двигателя с короткозамкнутой обмоткой ротора.
 - 12. Особенности конструкции асинхронного двигателя с фазным ротором.
 - 13. Аналогия между асинхронной машиной и трансформатором.
 - 14. Частота ЭДС, наведенная в обмотке ротора.
 - 15. Уравнение МДС и токов асинхронного двигателя.
 - 16. Векторная диаграмма и схема замещения асинхронного двигателя.
 - 17. Потери и КПД асинхронного двигателя.
 - 18. Электромагнитный момент асинхронного двигателя, его зависимость от скольжения.
 - 19. Перегрузочная способность асинхронного двигателя.

- 20. Влияние напряжения сети и активного сопротивления обмотки ротора на форму механической характеристики асинхронного двигателя.
 - 21. Рабочие характеристики асинхронного двигателя.
- 22. Пусковые свойства трехфазных асинхронных двигателей с короткозамкнутой обмоткой ротора.
 - 23. Способы пуска асинхронных двигателей.
 - 24. Пуск асинхронных двигателей с фазным ротором.
 - 25. Понятие об асинхронных двигателях с улучшенными пусковыми свойствами.
 - 26. Способы регулирования частоты вращения трехфазных асинхронных двигателей.
 - 27. Назначение и область применения исполнительных асинхронных двигателей.
 - 28. Требования, предъявляемые к исполнительным асинхронным двигателям.
 - 29. Типы исполнительных асинхронных двигателей.
 - 30. Конструкция двигателей серии 4А.
 - 31. Особенности тягового двигателя НТА-1200.
- 32. Особенности конструкции, принцип действия и область применения вращающихся трансформаторов.
- 33. Примеры использования асинхронных машин специального назначения для автоматических устройств.
 - 34. Назначение и область применения синхронных машин.
 - 35. Типы синхронных машин и их устройство.
 - 36. Способы возбуждения синхронных машин.
 - 37. Принцип работы и конструкция синхронного двигателя.
- 38. Конструкция, принцип действия, рабочие характеристики, область применения, достоинства и недостатки реактивного и гистерезисного синхронного двигателя.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету (пятибалльная шкала оценивания)

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.