Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДЕРИЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Должность: Едерильное государственное бюджетное образовательное учреждение высшего образования Дата подписания: 71.10.2025 15:09:13. Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Теоретические основы электротехники

рабочая программа дисциплины (модуля)

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 10 ЗЕТ

Виды контроля в семестрах:

экзамены 4 зачеты 3

курсовые работы 3

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	3 (2.1)		4 (2.2)		Итого	
Недель	16	2/6	16	2/6		
Вид занятий	УП	РΠ	УП	РΠ	УП	РП
Лекции	32	32	32	32	64	64
Лабораторные	16	16	16	16	32	32
Практические	16	16	16	16	32	32
Конт. ч. на аттест.	1	1	0,4	0,4	1,4	1,4
Конт. ч. на аттест. в период ЭС	0,15	0,15	2,3	2,3	2,45	2,45
В том числе инт.	26	26	26	26	52	52
В том числе в форме практ.подготовки	66	66	49	49	115	115
Итого ауд.	64	64	64	64	128	128
Контактная работа	65,15	65,15	66,7	66,7	131,85	131,85
Сам. работа	106	106	88,6	88,6	194,6	194,6
Часы на контроль	8,85	8,85	24,7	24,7	33,55	33,55
Итого	180	180	180	180	360	360

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 2

Программу составил(и):

д. т. н., профессор, Путько В.Ф.

Рабочая программа дисциплины

Теоретические основы электротехники

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

составлена на основании учебного плана: 13.03.02-25-2-ЭЭб.plm.plx

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Рабочая программа одобрена на заседании кафедры

Электротехника

Зав. кафедрой Харитонова Т.В.

УП: 13.03.02-25-2-ЭЭб.plm.plx стр.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Целью освоения дисциплины является формирование компетенций, позволяющих решать инженерные задачи в профессиональной деятельности с использованием методов теоретического и экспериментального исследования электротехнических законов, методов анализа и моделирования электрических цепей и электрических машин.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цикл (раздел) OП: Б1.O.17

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин
- ОПК-4.1 Использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного тока
- ОПК-4.5 Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин
- ОПК-4.6 Использует методы анализа для расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях

В результате освоения дисциплины (модуля) обучающийся должен

3.1 Знать: 3.1.1 основные понятия и законы линейных и нелинейных электрических цепей постоянного и переменного тока, методы анализа электрических цепей; основные понятия и законы переходных и установившихся процессов наблюдаемых в линейных и нелинейных электрических цепях, методы анализа переходных процессов в электрических цепях; основные методики и математические соотношения, необходимые при обработке результатов натурных экспериментов. 3.2 Уметь:

3.2.1 определять и рассчитывать параметры линейных и нелинейных электрических цепей постоянного и переменного тока; определять и рассчитывать параметры переходных процессов в электрических цепях; определять и рассчитывать параметры электрических цепей, в которых наблюдаются переходные процессы

3.3 Владеть:

3.3.1 навыками измерять параметры линейных и нелинейных электрических цепей; навыками измерять параметры электрических цепей, в которых наблюдаются переходные процессы; навыками пользоваться современными измерительными средствами; навыками обрабатывать результатов измерения, полученные в процессе исследования электрических цепей.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код	Наименование разделов и тем /вид занятия/	Семестр	Часов	Примечание
занятия		/ Kypc		
	Раздел 1. Линейные цепи постоянного тока			
1.1	Введение. Основная и дополнительная литература. Основные законы, элементы и параметры электрической цепи. Классификация. Схемы электрических цепей, элементы схем. Источник электродвижущей силы, источник тока. Вольт-амперные характеристики элементов электрической цепи. /Лек/	3	2	
1.2	Ток и плотность тока проводимости. Механизм проводимости. Закон Ома для однородного участка. Закон Ома для неоднородного участка цепи. Работа и мощность тока. Закон Джоуля- Ленца. Последовательное, параллельное и смешанное соединение элементов. /Лек/	3	2	
1.3	Расчет простейших цепей постоянного тока. Определение интегральных параметров электрической цепи при последовательном, параллельном и смешанном соединениях сопротивлений. /Пр/	3	2	Практическая подготовка
1.4	Методы расчета электрических цепей: уравнений Кирхгофа, контурных токов, узловых напряжений, наложения, эквивалентного генератора. Расчет и построение потенциальной диаграммы. Расчет баланса мощности /Пр/	3	2	Практическая подготовка
	Раздел 2. Линейные цепи однофазного синусоидального тока			
2.1	Линейные цепи однофазного синусоидального тока. Получение однофазной энергии на примере идеального генератора. Преимущества и недостатки однофазной энергии. Параметры однофазной энергии. /Лек/	3	2	
2.2	Четыре формы представления синусоидального тока: временная диаграмма, тригонометрическая функция, вращающийся вектор, комплексное число. Методика расчета цепей переменного тока с помощью метода комплексных чисел. /Лек/	3	2	

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 4

2.3	Синусоидальный ток в R, L, C. Комплекс полного сопротивления цепи. Треугольник сопротивлений. Векторная диаграмма. /Лек/	3	2	
2.4	Последовательное и параллельное соединения элементов R, L и C в цепи синусоидального тока. Резонанс напряжений и токов. Векторная диаграмма. Резонансные кривые. Векторно-топографическая диаграмма сложной электрической цепи. /Лек/	3	2	
2.5	Энергетические зависимости в цепях синусоидального тока. Активная, реактивная и полная мощность. Комплексная форма записи мощности. Треугольник мощности. Коэффициент мощности. /Лек/	3	2	
2.6	Расчет параметров цепей синусоидального тока. Определение параметров электрической цепи при последовательном, параллельном и смешанном соединениях элементов. Построение векторных диаграмм. /Пр/	3	2	Практическая подготовка
2.7	Расчет цепей синусоидального тока. Комплексный метод расчета. Построение векторных диаграмм. /Пр/	3	2	Практическая подготовка
2.8	Расчет однофазных цепей при резонансе тока или напряжения. /Пр/	3	2	Практическая подготовка
2.9	Расчет токов в разветвленных цепях переменного тока, с применением законов Кирхгофа, метода контурных токов, метода узловых напряжений, эквивалентного генератора. Составление баланса мощности. Расчет и построение векторных диаграммы. /Пр/	3	2	Практическая подготовка
2.10	Изучение стенда для выполнения цикла лабораторных работ. Исследование последовательной RL-цепи при гармоническом воздействии. /Лаб/	3	2	Практическая подготовка
2.11	Исследование последовательной RC-цепи при гармоническом воздействии. /Лаб/	3	2	Практическая подготовка
2.12	Исследование последовательной RLC-цепи при гармоническом воздействии. /Лаб/	3	4	Практическая подготовка
2.13	Исследование параллельных RC- и RL-цепей при гармоническом воздействии. /Лаб/	3	4	Практическая подготовка
2.14	Исследование параллельной цепи с RLC-элементами при гармоническом воздействии. /Лаб/	3	4	Практическая подготовка
	Раздел 3. Периодические негармонические токи и напряжения			
3.1	Электрические цепи несинусоидального тока. Понятие о гармоническом составе несинусоидальных электрических величин. Четные и нечетные гармоники. Разложение несинусоидальных электрических величин на гармонические составляющие. /Лек/	3	2	
3.2	Влияние характера цепи на гармонический состав тока. Действующее значение несинусоидальных величин. Мощность в цепи несинусоидального тока. Расчет электрических цепей несинусоидального тока. /Лек/	3	2	
3.3	Разложение несинусоидальных ЭДС и токов на гармонические составляющие. Построение спектральных диаграмм. /Пр/ Раздел 4. Трехфазные цепи	3	2	Практическая подготовка
4.1	Многофазные цепи. Связывание трехфазных систем в звезду и треугольник. Симметричность и уравновешенность трехфазных систем. Трех- и четырехпроводные трехфазные цепи при соединении в «звезду». Расчет трехфазных цепей при соединении в "звезду" в симметричном режиме. Векторно-топографическая диаграмма. /Лек/	3	2	
4.2	Трехфазные цепи при соединении в «треугольник». Расчет трехфазных цепей при соединении в «треугольник» в симметричном режиме. Векторнотопографическая диаграмма. /Лек/	3	1	
4.3	Аварийные и несимметричные режимы в трехфазных цепях. Векторнотопографические диаграммы аварийных режимов в трехфазных цепях. Мощность трехфазной цепи. Способы измерений мощности в трехфазных цепях. /Лек/	3	1	
4.4	Расчет симметричного и несимметричного режимов работы трехфазных цепей при соединении потребителей в "звезду" или "треугольник". Расчет аварийных режимов. /Пр/	3	2	Практическая подготовка
	Раздел 5. Нелинейные электрические цепи постоянного и переменного тока			

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 5

5.1	Особые свойства нелинейных электрических цепей. Элементы электрической цепи с нелинейными сопротивлениями, их параметры и характеристики. Симметричные и несимметричные характеристики элементов с нелинейными сопротивлениями. /Лек/	3	2	
5.2	Инерционные и безинерционные элементы с нелинейным сопротивлением. Анализ нелинейного элемента или устройства на примере полупроводниковых элементов подключенных на синусоидальное напряжение. /Лек/	3	1	
	Раздел 6. Четырехполюсники			
6.1	Характеристическое сопротивление и постоянная передачи четырехполюсника. Эквивалентные схемы замещения четырехполюсника. Обратимые, симметричные и вырожденные четырехполюсники. /Лек/	3	2	
6.2	Уравнения и характеристические параметры симметричных четырехполюсников. Матричная форма записи уравнений четырехполюсника. Схемы соединений четырехполюсников. /Лек/	3	1	
6.3	Передаточная функция четырехполюсника. Обратная связь. Активный четырехполюсник. /Лек/	3	2	
6.4	Электрические фильтры. Общие требования к частотным характеристикам фильтров. Идеальный фильтр нижних частот при импульсном воздействии. LC-фильтр нижних частот. /Лек/	3	2	
	Раздел 7. Самостоятельная работа			
7.1	Методы решения системы дифференциальных уравнений. Применение комплексных величин для решения системы дифференциальных уравнений. /Ср/	3	5	
7.2	Математические операции с комплексными величинами. Полнота математических операций в поле комплексных чисел. /Ср/	3	5	
7.3	Энергетические соотношения в резонансных цепях. Понятие коэффициента мощности. Компенсация коэффициента мощности. /Ср/	3	1	
7.4	Цепи переменного тока с ферромагнитными сердечниками. /Ср/	3	2	
7.5	Несимметричный режим работы цепи трехфазного тока. Мощность несимметричной трехфазной цепи. /Ср/	3	3	
7.6	Методы измерения действующего и среднего значения несинусоидальных величин. /Ср/	3	1	
7.7	Измерение мощности в цепях несинусоидального тока. /Ср/	3	2	
7.8	Изображение комплексных чисел на комплексной плоскости. Понятие комплексного оператора јω. Связь между временным (тригонометрическим) и комплексным (векторным) представлением электрических величин. /Ср/	3	3	
7.9	Подготовка к лекциям /Ср/	3	16	
7.10	Подготовка к практическим занятиям /Ср/	3	16	
7.11	Подготовка к лабораторным работам /Ср/	3	16	
7.12	Выполнение курсовой работы /Ср/	3	35	Практическая подготовка
7.13	Составление уравнений по законам Кирхгофа для расчета электрических цепей на переменном токе. Характеристика получаемых уравнений. /Ср/ Раздел 8. Контактные часы на аттестацию	3	1	
8.1	Курсовая работа /КА/	3	1	
8.2	Зачет /КЭ/	3	0,15	
	Раздел 9. Классический метод расчета переходных процессов		1 , , ,	
9.1	Переходные процессы в линейных цепях. Возникновение переходных процессов. Понятие коммутации. Законы коммутации. Нулевые и ненулевые начальные условия. /Лек/	4	2	
9.2	Переходные процессы в RL- RC-цепи (1 порядка) при различных внешних воздействиях. /Лек/	4	2	

УП: 13.03.02-25-2-ЭЭб.plm.plx стр. 6

9.3	Переходные процессы в цепях 2 порядка с последовательно соединенными R, L и C. элементами при постоянной и переменной ЭДС. Расчет переходных процессов в сложной цепи. /Лек/	4	2	
9.4	Устойчивость электрических цепей. Устойчивость в малом. Анализ устойчивости простейших активных цепей. Критерии Гурвица, Михайлова, Найквиста. Частотные характеристики. /Лек/	4	2	
9.5	Расчет переходных процессов в RC-цепи при различных внешних воздействиях классическим методом. /Пр/	4	2	Практическая подготовка
9.6	Расчет переходных процессов в RLC-цепи при различных внешних воздействиях классическим методом. /Пр/	4	2	Практическая подготовка
9.7	Расчет переходных процессов в RL-цепи при различных внешних воздействиях классическим методом. /Пр/	4	2	Практическая подготовка
9.8	Исследование переходных процессов в RL-цепи первого порядка. /Лаб/	4	4	Практическая подготовка
9.9	Исследование переходных процессов в RC-цепи первого порядка. /Лаб/	4	4	Практическая подготовка
9.10	Изучение переходных процессов в последовательной RLC-цепи. /Лаб/	4	2	Практическая подготовка
	Раздел 10. Магнитные цепи и электрические цепи с взаимной индуктивностью			
10.1	Магнитное поле основные сведения. Основные величины, характеризующие магнитное поле. Закон полного тока и его применение при анализе магнитных цепей. /Лек/	4	2	
10.2	Силы в магнитном поле. Действие магнитного поля на вещество. Магнитная цепь. Закон Ома для магнитной цепи. Магнитное поле в веществе. Виды магнетиков. Намагничивание ферромагнитных материалов. /Лек/	4	2	
10.3	Свойства ферромагнитных материалов. Методы расчета магнитных цепей. Расчет разветвленной и неразветвленной магнитная цепь с использованием аналитических и графических методов. /Лек/	4	2	
10.4	Электромеханическое действие магнитного поля. Катушка с магнитопроводом в цепи переменного тока. Понятие об идеализированной катушке с магнитопроводом. Процессы намагничивания магнитопровода идеализированной катушки. Уравнения, схемы замещения и векторные диаграммы реальной катушки с магнитопроводом. Мощность потерь в магнитопроводе. Вольт-амперная характеристика катушки с магнитопроводом. /Лек/	4	2	
10.5	Взаимоиндуктивное сопротивление. Расчет электрических цепей с взаимной индуктивностью. Трансформатор без ферромагнитного сердечника. /Лек/	4	2	
10.6	Расчет магнитных цепей. Прямая и обратная задача. /Пр/	4	4	Практическая подготовка
10.7	Графический метод расчета неразветвленных и разветвленных магнитных цепей при различных типах задач (прямая и обратная) /Пр/	4	2	Практическая подготовка
10.8	Расчет катушек с ферромагнитным сердечником. Расчет трансформатора с ферромагнитным сердечником. /Пр/	4	2	Практическая подготовка
10.9	Расчет цепей при наличии взаимной индукции. Индуктивно связанные элементы в трехфазных цепях. /Пр/	4	2	Практическая подготовка
10.10	Исследование нелинейных элементов в цепи постоянного тока. /Лаб/	4	2	Практическая подготовка
10.11	Нелинейные элементы в цепях постоянного тока. Нелинейный мост. /Лаб/	4	4	Практическая подготовка
	Раздел 11. Цепи с распределенными параметрами			
11.1	Основные определения. Первичные параметры однородной линии. Дифференциальные уравнения для однородной линии. Решение уравнений линии с распределенными параметрами при установившемся синусоидальном процессе. Цепочечный эквивалент регулярной линии передачи. /Лек/	4	2	
11.2	Бегущие волны. Характеристики однородной линии. Условия для неискажающей линии. Линии без потерь. Мощность, переносимая бегущими волнами вдоль линии передачи. Некоторые типы линий передач. /Лек/	4	2	
	Раздел 12. Электростатическое поле			

УП: 13.03.02-25-2-ЭЭб.plm.plx стр. 7

12.1	Электрический заряд. Напряженность электростатического поля. Безвихревой характер электростатического поля. /Лек/	4	2	
12.2	Электрический потенциал. Графическое изображение электростатического поля. Вектор поляризованности. Проводимость в электростатическом поле. /Лек/	4	2	
	Раздел 13. Плоские электромагнитные волны			
13.1	Основные определения. Уравнение плоской волны. Распространение плоской волны в идеальном диэлектрике и хорошо проводящей среде. /Лек/	4	2	
13.2	Комплексные параметры среды. Групповая скорость. Распространение плоской волны в неоднородной среде. /Лек/	4	2	
	Раздел 14. Поверхностный эффект			
14.1	Явление поверхностного эффекта. Поверхностный эффект в цилиндрическом проводнике. Активное сопротивление и внутренняя индуктивность цилиндрического провода с учетом поверхностного эффекта. Переменный магнитный поток в плоском листе. Поверхностный эффект в ленточной линии. /Лек/	4	2	
	Раздел 15. Самостоятельная работа			
15.1	Подготовка к лекциям /Ср/	4	16	
15.2	Подготовка к практическим занятиям /Ср/	4	16	
15.3	Подготовка к лабораторным работам /Ср/	4	16	
15.4	Выполнение расчетно-графической работы /Ср/	4	17,6	Практическ подготовка
15.5	Распространение плоской волны в идеальном диэлектрике и хорошо проводящей среде. /Ср/	4	4	
15.6	Явление поверхностного эффекта. Поверхностный эффект в цилиндрическом проводнике. /Ср/	4	4	
15.7	Электрический потенциал. Графическое изображение электростатического поля. Вектор поляризованности. Проводимость в электростатическом поле. /Ср/	4	4	
15.8	Первичные параметры однородной линии. Дифференциальные уравнения для однородной линии. Решение уравнений линии с распределенными параметрами при установившемся синусоидальном процессе. Цепочечный эквивалент регулярной линии передачи. /Ср/	4	4	
15.9	Бегущие волны. Характеристики однородной линии. Условия для неискажающей линии. Линии без потерь. Мощность, переносимая бегущими волнами вдоль линии передачи. /Ср/	4	4	
15.10	Электромеханическое действие магнитного поля. Катушка с магнитопроводом в цепи переменного тока. Понятие об идеализированной катушке с магнитопроводом. /Ср/	4	3	
	Раздел 16. Контактные часы на аттестацию			
16.1	Расчетно-графическая работа /КА/	4	0,4	
		1		1

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Рекомендуемая литература

6.1.1. Основная литература

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 8

	Авторы, составители	Заглавие	Издательс	Эл. адрес			
Л1.1	Попов В. П.	Основы теории цепей: учебник для вузов	тво, год Москва: Юрайт, 2025	tps://urait.ru/bcode/55832			
		6.1.2. Дополнительная литература					
	Артори досторитони	Заглавие	Издательс	Эн ангаа			
	Авторы, составители	Заглавис	тво, год	Эл. адрес			
Л2.1	Ионов А. А., Фадеев А. С., Назаров М. А.	Теоретические основы электротехники. Цепи постоянного и переменного синусоидального (однофазного и трехфазного) тока: конспект лекций	Самара: СамГУП С, 2018	://e.lanbook.com/book/13			
Л2.2	Бессонов Л. А., Демидова И. Г., Заруди М. Е., Каменская В. П., Миленина С. А., Расовская С. Э.	Теоретические основы электротехники. Сборник задач: Учебное пособие для вузов	Москва: Юрайт, 2020	tps://urait.ru/bcode/46702			
Л2.3	Ионов А. А., Фадеев А. С., Назаров М. А.	Теоретические основы электротехники. Цепи при гармоническом воздействии. Переходные процессы. электрические цепи с взаимной индукцией. Четырехполюсники: конспект лекций	Самара: СамГУП С, 2018	://e.lanbook.com/book/13			
Л2.4	Ионов А. А.	Теоретические основы электротехники: конспект лекций	Самара: СамГУП С, 2017	://e.lanbook.com/book/13			
6.2	Информационные тех	нологии, используемые при осуществлении образователь (модулю)	ьного процес	са по дисциплине			
	6.2.1 Перечені	ь лицензионного и свободно распространяемого программ	иного обеспе	ечения			
6.2.1.1	Microsoft Office						
	6.2.2 Перечен	нь профессиональных баз данных и информационных сп	равочных сі	истем			
6.2.2.1	База данных для тепло	энергетиков: https://q-teplota.ru/					
		гроэнергетиков: https://pomegerim.ru/					
6.2.2.3	База данных «Техническая литература» http://booktech.ru/journals/vestnik-mashinostroeniya						
6.2.2.4	Marketelectro Отрасле	вой электротехнический портал. Адрес ресурса: https://marke	telectro.ru/				
6.2.2.5	Электротехника. https://electrono.ru						
6.2.2.6	* *	*					
	7. МАТЕРИ	АЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИ	ІНЫ (МОДУ	(RILV			
7.1	и техническими средс	ля проведения занятий лекционного типа, укомплектованные твами обучения: мультимедийное оборудование для предоста или звукоусиливающее оборудование (стационарное или пер	авления учеб				

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 9

7.2	Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное).
7.3	Лаборатории, оснащенные специальным лабораторным оборудованием: учебно-лабораторный комплекс "Электротехника и основы электроники", осциллограф, вольтметр, мультиметры.
7.4	Помещения для курсового проектирования / выполнения курсовых работ, укомплектованные специализированной мебелью и техническими средствами обучения (стационарными или переносными).
7.5	Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета.
7.6	Помещения для хранения и профилактического обслуживания учебного оборудования.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теоретические основы электротехники

(наименование дисциплины (модуля)

Направление подготовки / специальность

13.03.02 Электроэнергетика и электротехника

(код и наименование)

Направленность (профиль)/специализация

«Электрический транспорт»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (3 семестр), курсовая работа (3 семестр), экзамен (4 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4: Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.1: Использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного тока ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин ОПК-4.6: Использует методы анализа для расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 3, 4)
ОПК-4.1: Использует основные понятия и законы линейных и нелинейных цепей	Обучающийся знает: основные понятия и законы линейных и нелинейных электрических цепей постоянного и переменного тока, методы анализа электрических цепей.	Вопросы (№ 1- №5)
постоянного и переменного тока		Задания (№ 1- №3)
	Обучающийся владеет: навыками измерять параметры линейных и нелинейных электрических цепей; навыками пользоваться современными измерительными средствами.	Задания (№ 4- №6)
ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин	Обучающийся знает: основные понятия и законы переходных и установившихся процессов наблюдаемых в линейных и нелинейных электрических цепях, методы анализа переходных процессов в электрических цепях.	Вопросы (№ 6- №9)
	Обучающийся умеет: определять и рассчитывать параметры переходных процессов в электрических цепях.	Задания (№ 7- №10)
	Обучающийся владеет: навыками измерять параметры электрических цепей, в которых наблюдаются переходные процессы; навыками пользоваться современными измерительными средствами.	Задания (№ 11- №14)
ОПК-4.6: Использует методы анализа для	;	Вопросы (№ 10- №14)

расчета переходных и	при обработке результатов натурных
установившихся	экспериментов.
процессов в линейных	Обучающийся умеет: определять и Задания (№ 15- №17)
и нелинейных	рассчитывать параметры электрических цепей,
электрических цепях	в которых наблюдаются переходные процессы.
	Обучающийся владеет: навыками обрабатывать Задания (№ 18- №20)
	результатов измерения, полученные в процессе
	исследования электрических цепей.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) учебная деловая игра;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-4.1: Использует	Обучающийся знает: основные понятия и законы линейных и
основные понятия и законы	нелинейных электрических цепей постоянного и переменного тока,
линейных и нелинейных	методы анализа электрических цепей.
цепей постоянного и	
переменного тока	
7 / > ~	

Примеры вопросов/заданий

Вопрос. 1. Как электрическая величина измеряется в сименсах:

а) сопротивление; б) индуктивность; в) проводимость; в) напряженность.

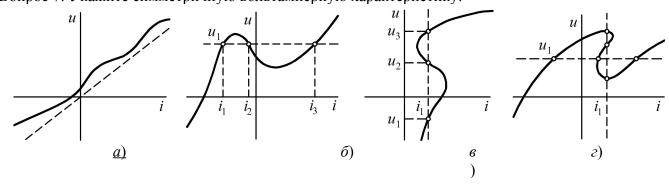
Вопрос 2. Определите и укажите мощность, рассеиваемую на участке цепи, обладающем проводимостью g = 0.02 См, если падение напряжения на нем U = 150 В:

а) 6 Вт; б) 30 Вт; в) <u>450 Вт</u> г) 90 Вт.

Вопрос 3. Чему равняется частота питающего напряжения в РФ:____ (50)

Вопрос 4. В электрическую цепь постоянного тока включены последовательно амперметр, катушка индуктивности и лампа накаливания. На каком из электроприборов вольтметр покажет большее падение напряжения? _____ (лампа накаливания).

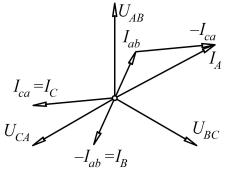
Вопрос 5. Продолжите формулировку закона Ома для участка цепи. «Напряжение на участке цепи равно....

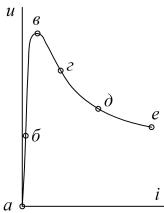

а) ЭДС источника умноженное на сопротивление; б) ЭДС источника плюс ток; в) <u>произведению тока</u> на сопротивление; г) отношению квадрату тока на сумму сопротивлений.

ОПК-4.5: Прово	одит расче	ТИ
анализ параметров основных		
характеристик		
электрических	цепей	И
электрических машин		

Обучающийся знает: основные понятия и законы переходных и установившихся процессов наблюдаемых в линейных и нелинейных электрических цепях, методы анализа переходных процессов в электрических цепях.

Вопрос 6. В электрическую цепь последовательно включены два сопротивления номиналами 4 и 8 Ом. Чему равняется мощность, преобразуемая в тепло, при токе 2 А? (48 Вт).


Вопрос 7. Укажите симметричную вольтамперную характеристику:


Вопрос 8. На рисунке представлена векторная диаграмма, построенная для трехфазной цепи. Определить в каком режиме работает электрическая цепь?

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

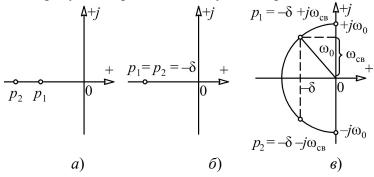
а) номинальный режим для нагрузки соединенной по схеме «звезда»; б) аварийный режиме «смещение нейтрали» в нагрузке соединенной по схеме «звезда»; в) номинальный режиме для нагрузки соединенной по схеме «треугольник»; г) аварийный режиме обрыв фазного провода в соединение нагрузки по схеме «треугольник».

Вопрос 9. Какая точка на ВАХ соответствует моменту зажигания электрической дуги?

ОПК-4.6: Использует методы анализа для расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях

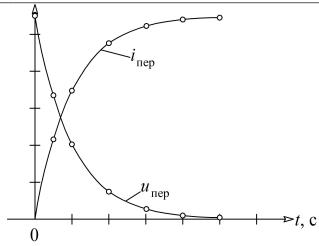
Обучающийся знает: основные методики и математические соотношения, необходимые при обработке результатов натурных экспериментов.

Примеры вопросов/заданий

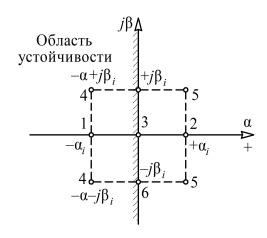

Вопрос 10. В каком случае затухание переходного процесса будет происходить быстрее:

а) малое значение L и большое значение C; б) малое значение C и большое значение L; в) <u>увеличение активной проводимости цепи;</u> г) уменьшение активной проводимости цепи; д) зависит только от параметров источника питания.

Вопрос 11. Каким выражением (выражениями) нельзя определить постоянную времени:


а)
$$\mathsf{t} = L/r$$
; б) $\underline{\mathsf{t}} = Lr$; в) $\mathsf{t} = rC \; \mathsf{t} = rC$; г) $\underline{\mathsf{t}} = C/r$; д) $\mathsf{t} = rCL \; \mathsf{t} = rCL$.

Вопрос 12. На каком из рисунков представлен случай апериодического процесса: (а)



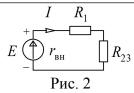
Вопрос 13. Переходный процесс, происходящий в цепи можно представить графиками. Из каких элементов состоит цепь и как изменяется энергия в этой цепи?

а) зарядка конденсатора через активное сопротивление; б) зарядка катушки индуктивности через активное сопротивление; в) разрядка конденсатора на активное сопротивление; г) разрядка катушки на активное сопротивление.

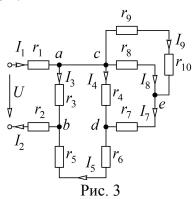
Вопрос 14. Какими точками на графике представлена цепь, в которой переходный процесс будет сходящимся? (1, 4)

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

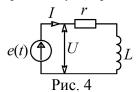

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-4.1: Использует	Обучающийся умеет: определять и рассчитывать параметры линейных и
основные понятия и	нелинейных электрических цепей постоянного и переменного тока.
законы линейных и	
нелинейных цепей	
постоянного и	
переменного тока	

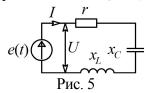
Примеры заданий


Задача 1 В цепи (рис. 1) ЭДС источника E=37.5 В, внутреннее сопротивление $r_{\rm BH}=0.6$ Ом. Сопротивления потребителей: $R_1=2.4$ Ом, $R_2=4.8$ Ом, $R_3=7.2$ Ом. Определить ток в цепи, напряжение на зажимах источника и потребителей, а также мощность источника энергии и мощность всех потребителей.

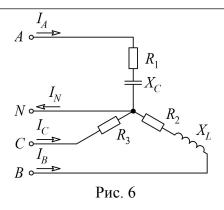
$$E \stackrel{+}{ \longrightarrow} r_{\text{вн}} R_3 \qquad R_2$$

Задача 2. Источник энергии с ЭДС $E=120~{\rm B}$ и внутренним сопротивлением $r_{\rm вн}=2~{\rm Om}$ (рис. 2) включен в цепь, в которой $R_1=18~{\rm Om},~R_2=100~{\rm Om},~R_3=150~{\rm Om}.$ Вычислить токи в ветвях, напряжения на зажимах потребителей и источника, а также мощности источника и всех потребителей.


Задача 3. Найти распределение токов в схеме (рис. 3), если приложенное напряжение на входе U = 230 В, а сопротивления участков схемы $r_1 = r_2 = 0.5$ Ом; $r_3 = 8$ Ом; $r_4 = 12$ Ом; $r_5 = r_6 = 1$ Ом; $r_7 = 2$ Ом; $r_8 = 15$ Ом; $r_9 = 10$ Ом; $r_{10} = 20$ Ом.


ОПК-4.1: Использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного тока

Обучающийся владеет: навыками измерять параметры линейных и нелинейных электрических цепей; навыками пользоваться современными измерительными средствами.


Задача 4. В катушке (рис. 4), индуктивность которой L = 15 м Γ н и активное сопротивление r = 5 Ом, протекает ток $i = 10\sin 500t$. Определить действующие значения тока и напряжения; написать выражение для мгновенного значения напряжения, приложенного к катушке; определить мощность, потребляем катушкой; построить векторную диаграмму.

Задача 5. К цепи, состоящей из активного r = 10 Ом, индуктивного $x_L = 50$ Ом и емкостного $x_C = 30$ Ом сопротивлений (рис. 5) приложено напряжение $u = U_{\rm m} {\rm sin} \omega t = 310 {\rm sin} 314t$. Определить действующее значение тока в цепи; написать выражение мгновенного значения тока в цепи и мгновенного значение напряжения на каждом из приемников; определить активную, фиктивную и кажущуюся мощности цепи.

Задача 6. В каждую фазу трехфазной четырехпроводной сети включили сопротивления так, как показано на рис. 6. Схема имеет следующие параметры: $U_{\pi} = 380$ В, $r_1 = 6$ Ом, $x_C = 8$ Ом, $r_2 = 16$ Ом, $x_L = 12$ Ом, $r_3 = 10$ Ом. Определить: линейные токи, углы сдвига фаз, ток в нулевом проводе, активную, реактивную и полную мощности трех фаз. Построить в масштабе векторную диаграмму.

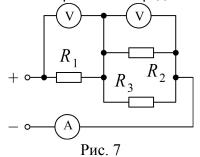
 ОПК-4.5:
 Проводит

 расчет
 и
 анализ

 параметров
 основных

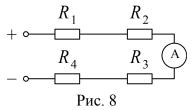
 характеристик
 и

 электрических
 цепей и

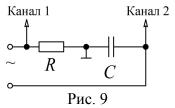

 электрических
 машин

Обучающийся умеет: определять и рассчитывать параметры переходных процессов в электрических цепях.

Примеры заданий


Задача 7. Для электрической цепи, представленной на рис. 7, необходимо:

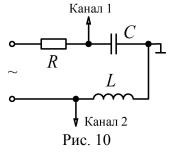
- с помощью вольтметра и амперметра определить напряжение на резистивных элементах и ток, протекающий по цепи;
- используя полученные значения тока и напряжений определить мощность источника.


Задача 8. Для электрической цепи, представленной на рис. 8, необходимо:

- с помощью амперметра определить ток, протекающий по цепи;
- с помощью омметра замерить сопротивления резисторов;
- используя полученные значения тока и сопротивления резисторов определить напряжение источника.

Задача 9. Для электрической цепи, представленной на рис. 9, необходимо:

- используя двухканальный осциллограф определить амплитудные значения напряжений на резистивном и емкостном элементах;
- изменяя частоту напряжения источника питания добиться равенства напряжений на резисторе и конденсаторе, зафиксировать значение частоты и определить сопротивление конденсатора, используя его емкость.

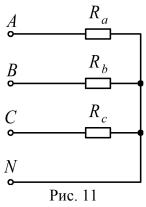


Задача 10. Для электрической цепи, представленной на рис. 10, необходимо:

- используя двухканальный осциллограф определить и зарисовать осциллограммы изменения

напряжений на реактивных элементах;

— за счет изменения частоты напряжения источника питания добиться резонанса напряжения и зафиксировать амплитуды напряжений на элементах, так же частоту резонанса.


ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и

электрических машин

Обучающийся владеет: навыками измерять параметры электрических цепей, в которых наблюдаются переходные процессы; навыками пользоваться современными измерительными средствами.

Задача 11. Для электрической цепи, представленной на рис. 11, необходимо:

- используя амперметр и вольтметр замерить фазные токи и напряжения во всех фазах нагрузки;
- отсоединить нейтральный провод от потребителя и повторить измерения токов и напряжений;
- сделать вывод об изменение режима питания трехфазной нагрузки.

Задача 12. Для электрической цепи, представленной на рис. 12, необходимо:

- используя амперметр и вольтметр замерить напряжения и ток на представленных нелинейных элементах;
- построить вольтамперные характеристики нелинейных элементов и по ним определить напряжение источника;
- используя вольтамперную характеристику одного из нелинейных элементов определить его статическое сопротивление.

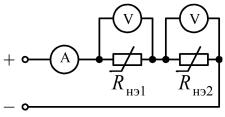


Рис. 12

Задача 13. Для электрической цепи, представленной на рис. 13, необходимо:

- задавшись интервалом изменения напряжения и изменяя его с помощью источника питания измерить с помощью амперметра ток в выбранных точках;
- построить вольтамперную характеристику исследуемой нелинейной цепи;
- определить момент уравновешивая плеч нелинейного моста и пояснить данный эффект.

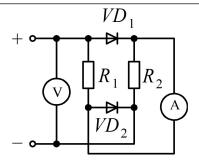


Рис. 13Примеры заданий

Задача 14. Катушка индуктивности с активным сопротивлением R=5 Ом и индуктивностью L=50 мГн включается в сеть постоянного тока с напряжением U=110 В (рис. 14). Установить зависимость изменения переходных тока $i_{\rm nep}(t)$ в катушке и напряжения $u_{\rm nep}(t)$ на катушке при переходном процессе. Определить энергию магнитного поля A_L катушки для момента времени, равного постоянной времени электрической цепи ($t=\tau$), после включения выключателя K.

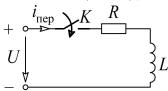
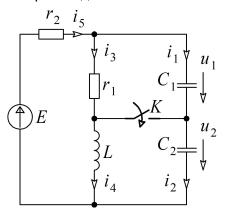



Рис. 14

ОПК-4.6: Использует методы анализа для расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях

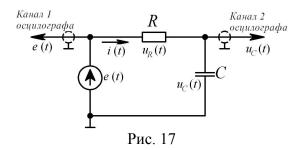
Обучающийся умеет: определять и рассчитывать параметры электрических цепей, в которых наблюдаются переходные процессы.


Задача 15. Электрическая цепь составлена из конденсатора, емкость которого $C=200\,$ мкФ, соединенного последовательно с резистором $R=50\,$ Ом (рис. 15), подключается к источнику постоянного напряжения $U=100\,$ В. Установить зависимость тока $i_{\rm nep}(t)$ в цепи и напряжения $u_{\rm Cnep}(t)$ на обкладках конденсатора в функции времени.

Задача 16. Двухжильный кабель, емкость которого C = 1,5 мкФ и сопротивление каждой жилы r = 0,8 Ом, включается на постоянное напряжение U = 500 В. Определить начальное значение тока и время t_1 , в течение которого ток спадает до 2 % своего начального значения.

Рис. 15

Задача 17. В цепи, изображенной на рис. 16, моменту t=0 предшествовал установившийся режим постоянного тока. При t=0 замкнулся контакт K. Найти начальные значения тока в индуктивности и напряжений на емкостях и их первых производных.



ОПК-4.6: Использует методы анализа для расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях

Обучающийся владеет: навыками обрабатывать результатов измерения, полученные в процессе исследования электрических цепей.

Задача 18. Для электрической цепи, представленной на рис. 17, необходимо:

- используя двухканальный осциллограф зафиксировать переходный процесс изменения напряжения на емкостном элементе;
- используя параметры резистора и конденсатора рассчитать постоянную времени цепи;
- на основании полученной осциллограммы определить постоянную времени цепи и сравнить ее с расчетной. Сделать выводы.

Задача 19. Для электрической цепи, представленной на рис. 18, необходимо:

- используя двухканальный осциллограф зафиксировать переходный процесс изменения напряжения на индуктивном элементе;
- используя параметры резистора и катушки индуктивности рассчитать теоретическое время окончания переходного процесса;
- на основании полученной осциллограммы определить практическое время окончания переходного процесса и сравнить его расчетным значением. Сделать выводы.

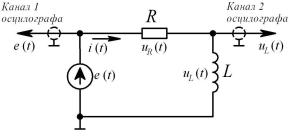
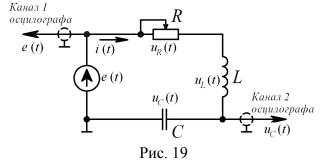



Рис. 18

Задача 20. Для электрической цепи, представленной на рис. 19, необходимо:

- используя двухканальный осциллограф зафиксировать переходный процесс изменения напряжения на индуктивном и емкостном элементах;
- с помощью осциллографа измерить период затухания колебаний и вычислить значение частоты этих колебаний;
- изменяя сопротивление резистора и отслеживания по осциллографу, добиться апериодического закона изменения напряжения на конденсаторе.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Предмет электротехники
- 2. Применение электрической энергии
- 3. Получение электрической энергии
- 4. Понятие электрические цепи и его состав
- 5. Ток в электрической цепи
- 6. ЭДС и напряжение в электрической цепи
- 7. Источник ЭДС и источник тока
- 8. Закон Ома для участка цепи
- 9. Электрическое сопротивление
- 10. Закон Ома для замкнутой цепи
- 11. Энергия и мощность электрического тока
- 12. Закон Джоуля Ленца
- 13. Законы Кирхгофа
- 14. Последовательное соединение потребителей
- 15. Параллельное соединение потребителей
- 16. Электротехнические устройства синусоидального тока
- 17. Получение индуктированной ЭДС
- 18. Величина и направление индуктированной ЭДС. Правило Ленца.
- 19. Элементы электрической цепи синусоидального тока
- 20. Получение синусоидального напряжения и его параметры
- 21. Различные представления синусоидальных величин
- 22. Закон Ома в комплексной форме для резистивного, индуктивного и емкостного элементов
- 23. Последовательное соединение RL элементов
- 24. Последовательное соединение RC элементов
- 25. Параллельное соединение RC элементов
- 26. Параллельное соединение RL элементов
- 27. Резонанс напряжений при последовательном соединении RLC элементов
- 28. Резонанс токов при параллельном соединении RLC элементов
- 29. Резонанс в сложной цепи
- 30. Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока
- 31. Коэффициент мощности. Компенсация коэффициента мощности
- 32. Электрические цепи несинусоидального тока
- 33. Способы изображения несинусоидальных периодических функций
- 34. Понятие о гармоническом составе несинусоидальных электрических величин
- 35. Разложение несинусоидальных электрических величин на гармонические составляющие
- 36. Влияние характера цепи на гармонический состав тока
- 37. Действующее значение несинусоидальных величин
- 38. Мощность в цепи несинусоидального тока
- 39. Расчет электрических цепей несинусоидального тока
- 40. Преимущества трехфазных цепей
- 41. Создание трехфазной энергии
- 42. Соединение источника энергии и приемника по схеме «звезда»
- 43. Соединение источника энергии и приемника по схеме «треугольника»
- 44. Мощность трехфазного тока
- 45. Измерение активной мощности трехфазной системы
- 46. Аварийные режимы в трехфазных цепях
- 47. Особые свойства нелинейных электрических цепей
- 48. Элементы электрической цепи с нелинейными сопротивлениями, их параметры и характеристики
- 49. Симметричные и несимметричные характеристики элементов с нелинейными сопротивлениями
- 50. Инерционные и безынерционные элементы с нелинейным сопротивлением
- 51. Выпрямление переменного тока
- 52. Сглаживание пульсации фильтрами

- 53. Основные определения и классификация четырехполюсников
- 54. Системы уравнений четырехполюсника
- 55. Уравнения четырехполюсника в форме ||A||
- 56. Характеристические параметры четырехполюсника
- 57. Схемы замещения четырехполюсника
- 58. Активный четырехполюсник
- 59. Передаточная функция
- 60. Каскадное соединение четырехполюсников
- 61. Уравнения сложных четырехполюсников
- 62. Электрические фильтры

Вопросы для подготовки к экзамену

- 1. Возникновение переходных процессов
- 2. Законы коммутации и начальные условия
- 3. Установившийся и свободный режимы
- 4. Переходный процесс в цепи r, L
- 5. Переходный процесс в цепи г, С
- 6. Переходный процесс в цепи г, L, С
- 7. Расчет переходного процесса в разветвленной цепи
- 8. Устойчивость электрических цепей. Устойчивость в «малом» и «большом».
- 9. Анализ устойчивости простейших активных цепей. Критерии Гурвица, Михайлова, Найквиста. Частотные характеристики
- 10. Основные сведения о магнитном поле
- 11. Основные величины, характеризующие магнитное поле
- 12. Закон полного тока в дифференциальной форме
- 13. Силы в магнитном поле. Действие магнитного поля на вещество
- 14. Магнитная цепь. Закон Ома для магнитной цепи
- 15. Намагничивание ферромагнитных материалов
- 16. Свойства ферромагнитных материалов
- 17. Электромеханическое действие магнитного поля
- 18. Методика расчета магнитных цепей
- 19. Неразветвленная магнитная цепь. Расчет неразветвленной цепи
- 20. Катушка с магнитопроводом в цепи переменного тока. Понятие об идеализированной катушке с магнитопроводом
- 21. Процессы намагничивания магнитопровода идеализированной катушки
- 22. Уравнения, схемы замещения и векторные диаграммы реальной катушки с магнитопроводом
- 23. Мощность потерь в магнитопроводе
- 24. Вольт-амперная характеристика катушки с магнитопроводом
- 25. Взаимоиндуктивное сопротивление
- 26. Расчет электрических цепей с взаимной индуктивностью
- 27. Трансформатор без ферромагнитного сердечника
- 28. Первичные параметры однородной линии
- 29. Дифференциальные уравнения для однородной линии
- 30. Решение уравнений линии с распределенными параметрами при установившемся синусоидальном процессе
- 31. Цепочечный эквивалент регулярной линии передачи
- 32. Бегущие волны
- 33. Характеристики однородной линии. Неискажающей линии
- 34. Линии без потерь
- 35. Мощность, переносимая бегущими волнами вдоль линии передачи
- 36. Электрический заряд
- 37. Напряженность электростатического поля
- 38. Безвихревой характер электростатического поля
- 39. Электрический потенциал
- 40. Графическое изображение электростатического поля
- 41. Вектор поляризованности

- 42. Теорема Гаусса. Уравнения Пуассона и Лапласа
- 43. Проводники в электростатическом поле
- 44. Энергия взаимодействия точечных заряженных тел
- 45. Энергия электростатического поля
- 46. Силы, действующие в электрическом поле
- 47. Полный электрический ток
- 48. Дивергенция плотности тока проводимости (уравнение непрерывности)
- 49. Два уравнения Максвелла
- 50. Полная система уравнений электромагнитного поля
- 51. Теорема Умова-Пойтинга
- 52. Излучение электромагнитных волн
- 53. Мощность и сопротивление излучения
- 54. Основные определения плоской электромагнитной волны
- 55. Уравнение плоской волны
- 56. Исследование плоских волн
- 57. Переменное электромагнитное поле в проводящей среде
- 58. Явление поверхностного эффекта
- 59. Активное и внутреннее индуктивное сопротивления проводов
- 60. Сопротивление провода при резком проявлении поверхностного эффекта
- 61. Поверхностный эффект в массивных проводах из ферромагнитного материала
- 62. Активное и внутреннее индуктивное сопротивления цилиндрических проводов круглого сечения
- 63. Электромагнитное экранирование.

Учебным планом в 3 семестре предусмотрена курсовая работа. Курсовая работа выполняется по теме – «Методы расчета линейных электрических цепей». Целью курсовой работы является усвоение студентами основных методов расчета электрических цепей с независимыми и зависимыми источниками.

Для расчета курсовой работы используются следующие исходные данные: электрическая схема, расчет которой необходимо осуществить; параметры активных и реактивных элементов; тип источника электрической энергии (источник тока или напряжения) и его параметры.

На основании исходных данных в курсовой работе необходимо рассчитать: сопротивления реактивных элементов; используя метод контурных токов или узловых напряжения рассчитать токи в ветвях; проверить правильность расчетов, составив баланс мощности; для одной из ветвей рассчитать ток используя теорему об эквивалентном источнике напряжения или теоремы об эквивалентном источнике тока; выбрать один из контуров схемы и построить векторную диаграмму; для одного из токов схемы и напряжения между двумя узлами схемы построить временные диаграммы задавшись интервалом изменения времени.

Контрольные вопросы для подготовки к защите курсовой работы

- 1. Из каких элементов состоит электрическая цепь?
- 2. Что такое источник и источник напряжения. В чем их отличия и сходство?
- 3. Что такое внешняя характеристика источника напряжения и тока?
- 4. В чем отличие «идеального источника» от «реального источника»?
- 5. Как влияет на параметры резистивного элемента изменение температуры?
- 6. Какой процесс моделирует резистивный элемент?
- 7. Что показывает такой параметр как плотность тока? В чем она измеряется?
- 8. Чем отличается напряжение от ЭДС?
- 9. Чем обусловлено внутренне сопротивление источника? В каких случаях этим параметром можно пренебречь?
- 10. В каких случаях при расчете электрических цепей лучше пользоваться сопротивлением, а в каких проводимостью?
- 11. Дайте понятие проводникам, диэлектрикам и полупроводникам. Какое основное различие между этими веществами?
- 12. Сколько формулировок закона Ома? В каких случаях их применяют?
- 13. Для каких электрических цепей можно применить закон Джоуля-Ленца?
- 14. Как звучат законы Кирхгофа? Во всех ли цепях правомерны эти законы?

- 15. Назовите основные способы соединения резистивных элементов в электрической цепи?
- 16. Для чего осуществляют переход от соединения элементов по схеме «звезда» к эквивалентному «треугольнику» и на оборот?
- 17. Опишите алгоритм расчета цепи по методу «свертки». Сколько источников может быть в рассчитываемой схеме в данном случае?
- 18. Опишите алгоритм расчета электрической схемы по методы «уравнения Кирхгофа». Какое количество уравнений составляется по первому и второму закону?
- 19. Опишите алгоритм расчета электрической схемы по методу «Контурных токов». Чем отличаются контурные токи и реально протекающих в цепи?
- 20. Опишите алгоритм расчета электрической схемы по методу «Узловых потенциалов». С какой целью осуществляют заземление одного узла?
- 21. Опишите алгоритм расчета электрической схемы по методу «эквивалентного генератора». В каком случае искомый ток получается со знаком «минус»?
- 22. Что такое потенциальная диаграмма. На примере покажите, как можно построить потенциальную диаграмму.
- 23. Что показывается баланс мощности? В каких случаях баланс мощности может не сойтись?
 - 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Зачет и экзамен по дисциплине проводятся в устной форме. Билеты для приема зачета и экзамена должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно быть определено с учетом количества студентов в группах, где проводится зачет или экзамен плюс пять билетов дополнительно. К зачету допускаются обучающиеся, выполнившие следующие требования: сданная курсовая работа на положительную оценку, выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу, по билету обучающемуся дается 20 минут. К экзамену допускаются обучающиеся, выполнившие следующие требования: сделавшие и отчитавшиеся расчетно-графическую работу, выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу, по билету обучающемуся дается 45 минут.

Билет для приема зачета и экзамена состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведение тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение, формулу, точку на вольтамперной характеристике или саму графическую зависимость. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный так и ошибочный ответ.

К защите курсовой работы допускаются обучающиеся, выполнившие в полном объеме расчет линейной электрической цепи, с выполненным по результатам расчета графическим материалом в виде потенциальных диаграмм. Перед защитой пояснительная записка должна быть сдана преподавателю для проверки, по результатам которой делается отметка на титульном листе о допуске к защите курсовой работы. В случае наличия ошибок преподаватель делает отметку на титульном листе с кратким указанием замечаний и рекомендаций по их устранению. Защита курсовой работы проходит в устной форме в виде собеседования в личной беседе с обучающимся. При защите курсовой работы рекомендуется использовать вопросы, приведенные в методических указаниях или рабочей программе. Обучающийся при ответе на поставленные вопросы должен четко формулировать свой ответ с подробным пояснением и использованием графиков, эскизов или математических зависимостей.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных ситуаций, где могут быть использованы электрические схемы и схемы замещения. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЗАЩИТЕ КУРСОВОЙ РАБОТЫ

Оценку «Отлично» (5 баллов) — получают обучающиеся, самостоятельно выполнившие и оформившие курсовую работу в соответствии с предъявляемыми требованиями, в которой отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы, а также грамотно ответившие на все встречные вопросы преподавателя.

Оценку «Хорошо» (4 балла) — получают обучающиеся, самостоятельно выполнившие и оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты проведенных расчетов, сделаны обобщающие выводы. При этом при ответах на вопросы преподавателя обучающийся допустил не более одной грубой ошибки или двух негрубых ошибок.

Оценку «Удовлетворительно» (3 балла) – получают обучающиеся, самостоятельно выполнившие и оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты проведенных расчетов, сделаны обобщающие выводы. При этом при ответах на вопросы преподавателя обучающийся допустил две-три грубые ошибки или четыре негрубых ошибок.

Оценку «Неудовлетворительно» (0 баллов) – ставится за курсовую работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно», либо работа выполнена обучающимся не самостоятельно.

Виды ошибок:

- грубые: неумение сделать обобщающие выводы, отсутствие знаний методик расчетов.
- негрубые: неточности в выводах, ошибки в построении схем и графиков, нарушение требований оформления.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – 100 – 90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 89 - 70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69 - 40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧИ

Оценку «зачтено» – получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «незачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических схем и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических элементов, правильно выполнившие все необходимые измерения и дополнительные расчеты при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «незачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических схем, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических элементов, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЭКЗАМЕНУ

Оценка «Отлично» (5 баллов) — студент демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

Оценка «Хорошо» (4 балла) — студент демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

Оценка «Удовлетворительно» (3 балла) – студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

Оценка «Неудовлетворительно» (0 баллов) — выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по зачету

«Зачтено»» - студент демонстрирует знание основных разделов программы изучаемого курса, его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, не допустил фактических ошибок при ответе, последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено»» - студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса, его базовых понятий и фундаментальных проблем; слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии.