Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 15:35:53

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электротехника и электроника

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация

«Высокоскоростной наземный транспорт»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: экзамен (4 семестр), зачет (3 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции	
ОПК-1: Способен решать инженерные задачи в профессиональной	ОПК-1.6: Применяет	
деятельности с использованием методов естественных наук,	основные понятия и законы	
математического анализа и моделирования.	электротехники для расчета	
	электрических цепей,	
	характеристик	
	электрических машин,	
	механической и	
	электрической части	
	электропривода	
	технологических установок	
	транспортных объектов.	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы(семестр)
ОПК-1.6: Применяет основные	Обучающийся знает: принципы построения	Вопросы (№ 1 - № 10)
понятия и законы	и функционирования электрических и	
электротехники для расчета	электронных цепей.	
электрических цепей,	Обучающийся умеет: применять основные	Задания (№ 1 - № 6)
характеристик электрических	законы и методы расчета электрических и	
машин, механической и	электронных схем.	
электрической части	Обучающийся владеет: навыками	Задания (№ 7 - № 12)
электропривода технологических	теоретического и экспериментального	
установок транспортных	исследования электрических и электронных	
объектов.	цепей, проводит измерения, обрабатывает и	
	представляет результаты.	

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из тестовых вопросов, задач и практических заданий;
- 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

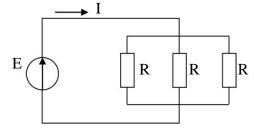
2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-1.6: Применяет	Обучающийся знает: принципы построения и функционирования
основные понятия и законы	электрических и электронных цепей.
электротехники для расчета	
электрических цепей,	
характеристик	
электрических машин,	
механической и	
электрической части	
электропривода	
технологических установок	
транспортных объектов.	

Примеры вопросов/заданий

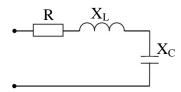
1. Коэффициент мощности пассивной электрической цепи синусоидального тока равен...:

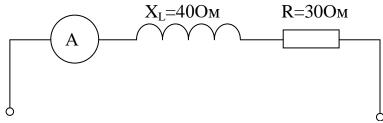

 $\cos \varphi$;

 $\cos \varphi + \sin \varphi$;

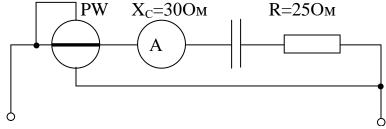
 $sin \varphi$;

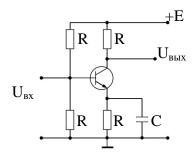
tg φ.

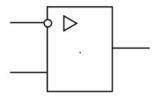

- 2. Отношение напряжений на зажимах первичной и вторичной обмоток трансформатора при холостом ходе приближённо равно:
- а) отношению магнитных потоков рассеяния;
- б) отношению токов первичной и вторичной обмоток трансформатора в номинальном режиме;
- в) отношению мощностей на входе и выходе трансформатора;
- г) отношению чисел витков обмоток.
- 3. Магнитопровод трансформатора выполняется из электротехнической стали для:
- а) повышения жёсткости конструкции;
- б) уменьшения ёмкостной связи между обмотками;
- в) увеличения магнитной связи между обмотками;
- г) удобства.
- 4. Если R=30 Ом, а E=20 В, то сила тока через источник составит:

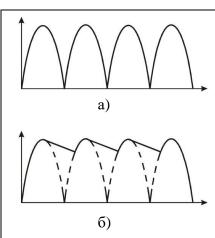

a)1,5 A; б) 2 A; 0,67 A; 0,27 A.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.


5. Если R=3 Ом, $X_L=10$ Ом, $X_C=6$ Ом, то полное сопротивление Z цепи равно:

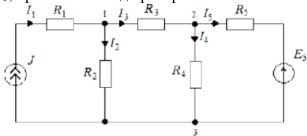

- а) 3 Ом; б) 7 Ом; в) 19 Ом; г) 3 Ом.
- 6. Если амперметр, реагирующий на действующее значения измеряемой величины, показывает 2A, то реактивная мощность Q цепи составляет:


- а) 120 ВАр; б) 280 ВАр; в) 160 ВАр; г) 140 ВАр.
- 7. Если амперметр, реагирующий на действующее значения измеряемой величины, показывает 2A, то показания ваттметра составляет:

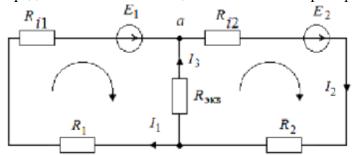

- а) 100 Вт; б) 220 Вт; в) 120 Вт; г) 110 Вт.
- 8. На рисунке приведена схема:

- а) однополупериодного выпрямителя;
- б) мостового выпрямителя;
- в) усилителя с общим эмиттером;
- г) делителя напряжения.
- 9. На рисунке приведено условно-графическое обозначения:

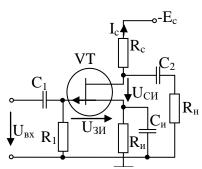
- а) мостовой выпрямительной схемы;
- б) делителя напряжения;
- в) операционного усилителя;
- г) однополупериодного выпрямителя.
- 10. По приведенным диаграммам на входе а) и выходе б). определить устройство:

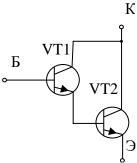

а) выпрямитель; б) трехфазный выпрямитель; в) сглаживающий емкостной фильтр; г) стабилизатор напряжения.

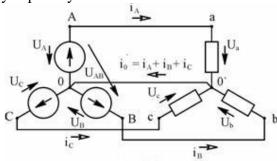
2.2 Типовые задания для оценки навыкового образовательного результата


Проверяемый образовательный результат

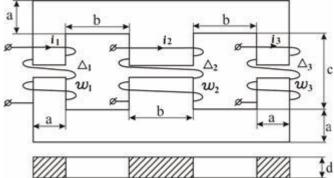
ОПК-1.6:	Применяет	Обучающийся умеет: применять основные законы и методы расчета
основные поняти	ия и законы	электрических и электронных схем.
электротехники ,	для расчета	
электрических	цепей,	
характеристик		
электрических	машин,	
механической	И	
электрической	части	
электропривода		
технологических	установок	
транспортных об	ъектов.	


Задача 1. Для цепи измерены параметры: E_5 =1 B; J=1 A; R_1 =1 Ом; R_2 =10 Ом; R_3 =20 Ом; R_4 =30 Ом; R_5 =5 Ом. Определить ток I_5 , применив метод преобразований.


Задача 2. В электрической цепи измеренные параметры: E_1 =20 B; E_2 = 1,1 B; R_{i1} =0,2 Ом; R_{i2} =0,4 Ом; R_1 = R_2 =5 Ом; R_3 =7 Ом. Определить токи в ветвях цепи по законам Кирхгофа.


Задача 3. Для каскада на полевом транзисторе КП103M, включенном с общим истоком, начертить схему замещения в динамическом режиме и рассчитать динамические параметры при S=2 мA/B, $R_i=60$ кОм, $R_1=2$ МОм, $R_C=1,75$ кОм, $R_H=7$ кОм.

Задача 4. Найти коэффициент усиления по току транзистора, составленного по схеме Дарлингтона, если $h_{21\ 31}=h_{21\ 32}=50$.



Задача 5. В симметричной трёхфазной цепи, представляющей собой соединение генератора и приёмника возникает аварийная ситуация в виде короткого замыкания или обрыва провода, приводящая через определённое время к установившемуся несимметричному режиму. Для цепи, соответствующей конкретному варианту:

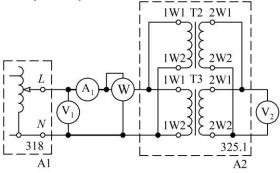
- Рассчитать действующие и мгновенные значения фазных и линейных токов в нагрузке до и после аварийной коммутации.
- Рассчитать действующие и мгновенные значения фазных и линейных напряжений на нагрузке до и после аварийной коммутации.
- Построить в выбранных масштабах для тока и напряжения топографические диаграммы напряжений и векторные диаграммы токов на нагрузке до и после аварийной коммутации. Диаграммы напряжений и токов должны быть совмещены.
- Сравнить активные и реактивные мощности потребления нагрузки до и после аварийной коммутации. Упругие волны в твердых телах Теория электромагнитного поля.

Задача 6. Схема, представляющая магнитопровод из ферромагнитного материала, магнитная проницаемость которого постоянна и не зависит от напряжённости магнитного поля.

Геометрические размеры магнитопровода указаны на рисунке. Конкретный расчётный вариант, выбирается в соответствие с буквенной литерой. Конструкция включает две обмотки, по одной из которых протекает электрический ток. Один из трёх стержней магнитопровода имеет воздушный зазор. Для всех вариантов величина тока определяется по формуле: i = 1 + 0,1 (n/m) A.

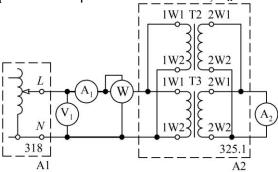
Воздушный зазор D=(0,3+0,1m) мм. Число витков: $w1=\{|(m-4)|+1\}^{\prime}100$; $w2=\{|(m-3)|+1\}^{\prime}100$; $w3=\{|(m-2)|+1\}^{\prime}100$. Отношение m/m=400+100 m.

Определить магнитные потоки, индукцию и напряжённость магнитного поля во всех участках магнитной цепи. При расчёте магнитными потоками рассеяния пренебречь. Вычислить объёмную плотность энергии магнитного поля W м/с на всех участках магнитной цепи, включая воздушный зазор. Объяснить разницу значений W м/с в воздушном зазоре и ферромагнитном участке. Дать развёрнутый ответ на вопрос — изменятся ли потоки на участках магнитной цепи в случае отсутствия воздушного зазора, вычислить собственные индуктивности обмоток и взаимную индуктивность между ними.

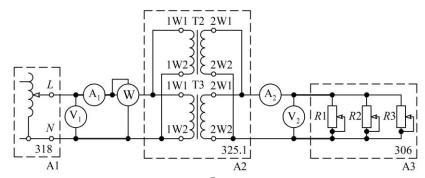

Геометрические размеры магнитопровода (в сантиметрах) для каждого варианта приведены в таблице 2.3 Номер варианта определяется по формулам: № = n при n < 11; № = n - 10 при 10<n<21; № = n - 20 при 20<n<31.

ОПК-1.6: Применяет основные понятия и законы электротехники для расчета электрических цепей, характеристик электрических машин, механической И электрической части электропривода технологических установок транспортных объектов.

Обучающийся владеет: навыками теоретического и экспериментального исследования электрических и электронных цепей, проводит измерения, обрабатывает и представляет результаты.

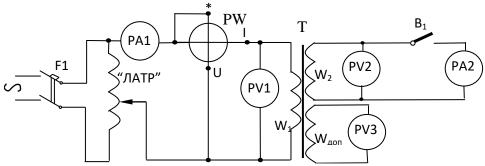

Задание 7. Используя электрическую схему, необходимо:

- провести опыт холостого хода;
- определить ток холостого хода при напряжение питания 165 В.

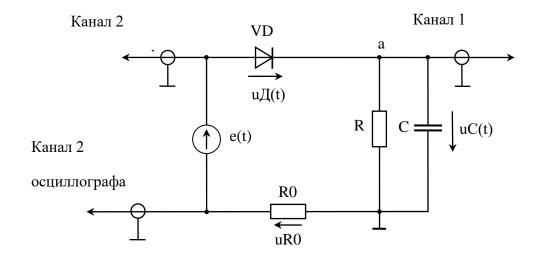

Задание 8. Используя электрическую схему, необходимо:

- провести опыт короткого замыкания;
- определить потери в меди при токе в первичной обмотке $0.5I_{\rm H}$.

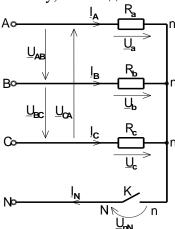
Задание 9. Используя электрическую схему, необходимо:


- провести исследование однофазного трансформатора под нагрузкой;
- определить ток во вторичной обмотке при загрузке трансформатора на 75 % от номинальной мощности.

Задание 10. Используя электрическую схему, необходимо:


Вычертить эскиз магнитной цепи испытуемого трансформатора, замерить с помощью линейки и указать на эскизе основные размеры. Рассчитать по измеренным данным площадь поперечного сечения стержня $Q_c = a_c b_c$ (cм²). Сосчитать количество витков дополнительной обмотки $W_{\text{доп}}$.

Определить числа витков обмоток, коэффициент трансформации K и магнитную индукцию в стержне $B_{\rm c}$.



Задание 11. Используя электрическую схему однополупериодного выпрямителя, необходимо:

- Снять эпюры гармонической ЭДС и напряжения на конденсаторе, измеряя их мгновенные значения в нескольких точках, удобных для измерения. По осциллограммам определите период и частоту пульсирующего напряжения u_C .
- Подключите параллельно конденсатору C ещё один конденсатор с ёмкостью $C_1 \approx 10~C$. Снимите эпюру напряжения на конденсаторе, фиксируя мгновенные значения напряжения в нескольких точках.
- Изменяя частоту f гармонической ЭДС в диапазоне $(f/2...2\cdot f)$, выясните её влияние на «амплитуду» пульсаций напряжения нагрузки.
- Вернитесь к начальному значению частоты f. Введите в цепь резистор R_0 с номинальным сопротивлением 100 Ом и подключите второй канал осциллографа к этому резистору. Используя закон Ома и осциллограмму этого напряжения $u_{R0}(t)$, изучите характер изменения тока в цепи.
- Зарисуйте эпюру напряжения $u_{R0}(t)$ на резисторе R_0 , сопоставляя её с зависимостью напряжения на конденсаторе С. Интервалы времени, для которых $u_{R0}(t) > 0,6$ В, соответствуют открытому состоянию диода, а значит, интервалу времени, в течение которого происходит заряд конденсатора. Измерьте максимальное значение напряжения $u_{R0}(t)$.

Задание 12. Используя электрическую схему, необходимо:

Произведите измерения фазных токов I_A , I_B , I_C ; фазных напряжений приёмника U_a , U_b , U_c и системы линейных напряжений U_{AB} , U_{BC} , U_{CA} .

Измерьте напряжение смещения нейтрали U_{nN} – напряжение между нейтральными точками генератора N и приёмника n.

Произведите расчёт активных мощностей фаз трехфазной системы по формулам:

$$P_A = U_a I_A$$
;

$$P_{B} = U_{b}I_{B};$$

$$P_C = U_c I_C;$$

и суммарной мощности трёхфазной системы

$$P = P_A + P_B + P_C.$$

На основании измерений убедитесь, что при симметричной нагрузке и симметричной системе фазных напряжений генератора действующие значения фазных напряжений приёмника будут равны между собой $U_a=U_b=U_c=U_{\varphi}$; линейные напряжения также равны между собой $U_{AB}=U_{BC}=U_{CA}=U_{\pi}$; действующее значение линейного напряжения больше действующего фазного в $\sqrt{3}$ раз, т. е. соответствует соотношению $U_{\pi}=\sqrt{3}\;U_{\varphi}$; напряжение смещения нейтрали – отсутствует ($U_{nN}\approx 0$); фазные токи образуют симметричную систему $I_A=I_B=I_C$.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к экзамену

- 1. Электротехника. Основные свойства электрической энергии.
- 2. Электрические цепи постоянного тока, элементы электрических цепей.
- 3. Закон Ома для участка цепи. Определение контура, ветви, узла электрической цепи.
- 4. Первый закон Кирхгофа.
- 5. Второй закон Кирхгофа.
- 6. Электрическая мощность. Зависимость мощности источника, полезной мощности, мощности потерь, КПД от тока нагрузки.
- 7. Последовательное соединение сопротивлений в цепях постоянного тока. Вывод формулы эквивалентного сопротивления.
- 8. Параллельное соединение сопротивлений в цепях постоянного тока. Вывод формулы эквивалентного сопротивления.
- 9. Смешанное соединение сопротивлений в цепях постоянного тока. Определение тока в ветвях.
- 10. Расчет цепей с использованием уравнений Кирхгофа.
- 11. Расчет цепей методом контурных токов.
- 12. Расчет цепей с использованием принципа наложения.
- 13. Расчет цепей методом эквивалентного генератора.
- 14. Расчет цепей методом узловых потенциалов.
- 15. Преобразование схем соединения пассивных элементов звездой и треугольником.
- 16. Электрические однофазные цепи синусоидального тока. Действующие и средние значения синусоидальных ЭДС, напряжения и тока.
- 17. Тепловое действие электрического тока.
- 18. Изображение синусоидальных ЭДС, напряжений и токов в виде вращающихся векторов. Сложение векторов. Начальная фаза, фазовый сдвиг.
- 19. Комплексный метод расчета электрических цепей.
- 20. Законы Кирхгофа для цепей синусоидального тока.
- 21. Законы изменения тока, векторные диаграммы цепей, содержащих активное сопротивление, индуктивность, емкость.
- 22. Последовательное соединение элементов R, L, C. Векторная диаграмма. Резонанс напряжений.
- 23. Параллельное соединение элементов R, L, C. Векторная диаграмма. Резонанс токов.
- 24. Мощность цепи синусоидального тока. Полная мощность. Активная и реактивная мощности.
- 25. Электромагнетизм и магнитные цепи. Магнитное поле, магнитная индукция, напряженность магнитного поля, магнитный поток. Закон полного тока.
- 26. Нелинейные электрические цепи постоянного тока. Виды вольтамперных характеристик. Статическое и дифференциальное сопротивления нелинейных элементов.
- 27. Графический метод расчета электрических цепей с нелинейными элементами при последовательном соединении.
- 28. Графический метод расчета электрических цепей с нелинейными элементами при параллельном соелинении.
- 29. Графический метод расчета электрических цепей с нелинейными элементами при смешанном соединении.
- 30. Аналитический метод расчета электрических цепей с нелинейными элементами.

Вопросы для подготовки к зачету

- 1. Электрические трехфазные цепи. Понятие о трехфазной системе токов. Принцип действия трехфазного генератора.
- 2. Соединение приемников электрической энергии звездой с нулевым проводом. Линейные и фазные токи и напряжения. Векторная диаграмма при несимметричной нагрузке.
- 3. Соединение приемников электрической энергии звездой без нулевого провода. Векторные диаграммы при несимметричной нагрузке, обрыве фазы, обрыве линейного провода.
- 4. Соединение обмоток генератора и фаз приемника треугольником. Линейные и фазные токи. Векторная диаграмма. Несимметричный режим работы.
- 5. Мощность трехфазной системы при соединении потребителей электроэнергии звездой и треугольником.

- 6. Измерение мощности трехфазной сети. Схемы измерений.
- 7. Трансформаторы, назначение, устройство и принцип действия. Область применения.
- 8. Схема приведенного трансформатора. Параметры схемы.
- 9. Определение параметров трансформатора из опытов холостого хода и короткого замыкания.
- 10. Режимы работы трансформатора. Потери и КПД трансформатора.
- 11. Принцип действия и устройство электрической машины постоянного тока.
- 12. Генераторы постоянного тока. Классификация по способу возбуждения.
- 13. Электрический двигатель постоянного тока. Классификация по способу возбуждения. Принцип обратимости электрических машин.
- 14. Асинхронный двигатель с короткозамкнутым ротором, конструкция, принцип действия.
- 15. Асинхронный двигатель с фазным ротором, конструкция, принцип действия.
- 16.Синхронная машина, конструкция, принцип действия.
- 17. Безопасность обслуживания электроустановок. Условия поражения человека электрическим током. Меры защиты от поражения электрическим током.
- 18. Электроника, ее роль и значение в современном обществе, науке, технике и производстве. Элементная база современных электронных устройств..
- 19.Понятие о четырехполюсниках. Системы уравнений пассивного четырехполюсника. Коэффициенты передачи напряжения и тока.
- 20. Природа электрического тока в полупроводниках. Примесные и беспримесные полупроводники.
- 21. Электрический ток в полупроводниках р- и п-типа. Лавинный пробой.
- 22.р-п переход в полупроводниках, потенциальный барьер.
- 23.Полупроводниковые диоды: точечные и плоскостные. Вольт-амперная характеристика. Обратные токи.
- 24. Стабилитрон. Вольт-амперная характеристика. Схема стабилизатора напряжения.
- 25. Принцип действия биполярного транзистора и его основные параметры.
- 26.Схема замещения транзистора. Определение параметров транзистора по вольт-амперным характеристикам.
- 27. Полевые транзисторы с управляющим р-п переходом, устройство и принцип действия.
- 28.Схема замещения полевого транзистора, его параметры и статические вольт-амперные характеристики.
- 29. Диодный тиристор, устройство, принцип действия, вольт-амперные характеристики.
- 30. Триодный тиристор, устройство, принцип действия, вольт-амперные характеристики.
- 31. Источники питания. Структурная схема. Общие сведения.
- 32.Однофазный двухполупериодный выпрямитель. Принцип действия схемы. Основные соотношения.
- 33. Генератор синусоидальных колебаний. Условия возникновения колебаний.
- 34.RC автогенератор. Принцип действия схемы. Основные соотношения.
- 35. Импульсный режим работы операционного усилителя. Принцип действия схемы. Компараторы.
- 36.Мультивибратор. Принцип действия схемы. Схема замещения. Основные соотношения. Формы сигналов в контрольных точках.
- 37. Генератор линейно изменяющегося напряжения. Принцип действия схемы. Эпюры входных и выходных напряжений.
- 38. Усилители. Общие сведения. Классификация усилителей.
- 39.Обратная связь в усилителях: положительная, отрицательная, по напряжению и току, последовательная и параллельная, по переменной или постоянной составляющей.
- 40.Усилительный каскад с общим эмиттером (ОЭ). Принцип действия схемы. Схемы замещения по постоянному току и для переменных сигналов.
- 41. Усилительный каскад на полевом транзисторе с общим истоком (ОИ). Принцип действия схемы. Схема замещения. Основные соотношения.
- 42.Операционный усилитель. Схема замещения. Принцип работы. Амплитудно-частотная характеристика (АЧХ).

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Экзамен и зачет по дисциплине проводится в устной форме. Экзаменационные билеты должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно быть определено с учетом количества студентов в экзаменуемых группах плюс пять билетов дополнительно. К экзамену допускаются обучающиеся, выполнившие следующие требования: выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу по билету обучающемуся дается 45 минут.

Экзаменационный билет состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведение тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение, формулу, точку на механической характеристике или саму графическую зависимость. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный так и ошибочный ответ.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных ситуаций, где могут быть использованы электрические цепи или электрические машины со схемами управления. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) — получают студенты с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 89-70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69 - 40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧИ

Оценку «зачтено» — получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «не зачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических машин и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических машин, правильно выполнившие все необходимые измерения и дополнительные расчеты при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «не зачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических машин, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических машин, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЗАЧЕТУ

Оценку «отлично» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 95 % от общего объёма заданных вопросов.

Оценку «хорошо» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 75 % от общего объёма заданных вопросов.

Оценку «удовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 50 % от общего объёма заданных вопросов.

Оценку «неудовлетворительно» — получают обучающиеся с правильным количеством ответов на задаваемые вопросы — менее 50 % от общего объёма заданных вопросов.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЭКЗАМЕНУ

Оценка «Отлично» (5 баллов) — студент демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

Оценка «Хорошо» (4 балла) — студент демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

Оценка «Удовлетворительно» (3 балла) — студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

Оценка «Неудовлетворительно» (0 баллов) — выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.