Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 09:31:35

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Общий курс железных дорог

(наименование дисциплины (модуля)

Направление подготовки / специальность _23.05.03Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация

"Электрический транспорт железных дорог"

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации— оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (по очной форме -3 семестр; по заочной форме -2 курс)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-3 Способен принимать решения в области профессиональной деятельности, применяя нормативную правовую базу, теоретические основы и опыт производства и эксплуатации транспорта	ОПК-3.3

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

projessi	тами освосния образовательной программы	
Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
		(семестр 3 офо;
		курс 2 зфо)
ОПК-3.3 Использует	Обучающийся знает: основные понятия	Вопросы(№ 1 -
теоретические основы и опыт	производства для принятия решений в	№ 5)
производства для принятия	области эксплуатации железнодорожного	
решений в области эксплуатации	транспорта	
железнодорожного транспорта	Обучающийся умеет: решать типовые	Задания (№1 -
	задачи используя теоретические основы и	№ 3)
	опыт производства для принятия решений в	
	области эксплуатации железнодорожного	
	транспорта	
	Обучающийся владеет: навыками решения	Задания (№4 -
	типовых задач используя теоретические	№ 6)
	основы, применяя нормативно-правовую	
	базу и опыт производства для принятия	
	решений в области эксплуатации	
	железнодорожного транспорта	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Проверяемый образовательный результат (3 семестр):

Код и наименование	Образовательный результат				
индикатора достижения					
компетенции					
ОПК-3.3 Использует	Обучающийся знает: основные понятия производства для принятия				
теоретические основы и	решений в области эксплуатации железнодорожного транспорта				
опыт производства для					
принятия решений в					
области эксплуатации					
железнодорожного					
транспорта					

Примеры вопросов/заданий

Вопрос 1: На железнодорожном переезде преимущественное право движения через переезд имеет

- а) человек
- б) поезд
- в) автомобиль

Вопрос 2: Возможная пропускная способность по перегонам устанавливается на основании:

- 1) построения графика движения поездов;
- 2) определения скорости движения поездов;
- 3) установленной массы состава.

Вопрос 3: Светофоры, которые запрещают или разрешают проследовать с одного района станции в другой, называются:

- 1) маршрутными;
- 2) проходными;
- 3) предупредительными.

Вопрос 4: Маневровой работой на станциях называется:

- 1) техническое обслуживание локомотивов
- 2) перевод локомотива с одного главного пути на другой
- 3) работа, связанная с передвижением при расформировании и формировании составов, подаче вагонов к местам погрузки-выгрузки, подаче поездных локомотивов к составам

Вопрос 5: В состав парка грузовых вагонов входят:

- 1) вагоны для перевозки сыпучих грузов
- 2) вагоны для перевозки жидких нефтепродуктов
- 3) крытые вагоны, платформы, полувагоны, цистерны, изотермические вагоны и вагоны специального назначения

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат (3 семестр):

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-3.3 Использует	Обучающийся умеет: решать типовые задачи используя
теоретические основы и опыт	теоретические основы и опыт производства для принятия
производства для принятия	решений в области эксплуатации железнодорожного транспорта
решений в области эксплуатации	
железнодорожного транспорта	

Задание 1. «Определение норм массы и длины состава грузового поезда»

Требуется:

- 1. Определить массу и длину состава грузового поезда.
- 2. Определить необходимую длину приемоотправочных путей.
- 3. На основе сравнения расчетной (необходимой) длины приемоотправочных путей станции с заданной проанализировать возможность увеличения (необходимость уменьшения) длины и массы поезда.
- 4. Определить экономию (дополнительные затраты) эксплуатационных средств при увеличении (уменьшении) средней массы грузовых поездов на дороге.
 - 5. Сделать вывод о полученных результатах.

Исходные данные

Серия локомотива - 2ТЭ10Л

Масса локомотива, T - 258

Длина локомотива, м - 34

Расчётная сила тяги, кгс - 50600

Сила тяги при трогании с места, кгс - 76500

Основное удельное сопротивление локомотива, кгс/т - 2,29

Основное удельное сопротивление вагонов, кгс/т - 1,5

Руководящий уклон участка, ‰- 10

Наибольший уклон путей раздельного пункта, ‰ - 2,5

Удельное сопротивление поезда при трогании с места, кгс/т -4

Средняя длина вагона, м - 15,75

Масса брутто грузового вагона, т - 69

Длина станционных приемоотправочных путей, м - 1050

Экономия эксплуатационных расходов на дороге при увеличении массы грузовых составов на 1 т, млн. руб./roд - 0.48

Методические указания к решению задачи

Масса состава грузового поезда брутто определяется исходя из условия движения его с установившейся скоростью по руководящему уклону. Расчетная формула имеет следующий вид:

$$Q = \frac{F_{\kappa} - P(w_0^{'} + i_p)}{w_0^{''} + i_p},$$
 (1.1)

где: F_{κ} -сила тяги локомотива при расчетной скорости, кгс;

P - масса локомотива, т;

 $w_0^{'}$, $w_0^{''}$ - основное удельное сопротивление локомотива и вагонов при расчётной скорости, кгс/т; i_p - величина расчётного уклона, %**0**.

Рассчитав по формуле (1.1) массу состава грузового поезда, необходимо произвести проверку на условие его трогания с места на раздельных пунктах:

$$Q^{mp} = \frac{F_{mp}}{w_{mp} + i_{mp}} - P, (1.2)$$

где: F_{mp} - сила тяги локомотива при трогании с места грузового состава, кгс;

 $w_{\it mp}$ - удельное сопротивление поезда при трогании с места, кгс/т;

 i_{mp} - уклон путей раздельного пункта, %0.

Из величин
$$Q$$
 и Q^{mp} за норму массы грузового поезда брутто $Q_{\delta p}$ принимают наименьшую:
$$Q_{\delta p} = \begin{cases} Q, \ ecnu \ Q \leq Q^{mp}; \\ Q^{mp}, \ ecnu \ Q \geq Q^{mp}. \end{cases}$$
 (1.3)

Рассчитанное значение принятой нормы массы поезда округляют кратно 50 т.

На основе рассчитанной нормы массы грузового поезда и данных о средней массе вагона брутто определяется количество вагонов m_c в составе грузового поезда:

$$m_c = \frac{Q_{\delta p}}{q_{\delta p}},\tag{1.4}$$

где: $q_{\delta p}$ - средняя масса вагона брутто, т.

Необходимая длина приемоотправочных путей на станциях для возможности размещения поезда рассчитанной массы определяется по формуле:

$$l_n = m_c l_{gae} + l_{nok}, \tag{1.5}$$

где: $l_{\it Baz}$ - средняя длина вагона, м;

 $l_{no\kappa}$ - длина локомотива, м.

Необходимая длина приемоотправочных путей на станции с учетом поправки на неточность установки поезда, равной 10м, определяется:

$$l_{pacy} = l_p + 10. (1.6)$$

После определения расчетной (необходимой) длины приемоотправочных путей производится ее сравнение с заданной длиной путей.

При $l_{pac^q} = l_{nymu}$ возможно размещение поезда рассчитанной массы на станционных приемоотправочных путях. При $l_{pac^q} < l_{nymu}$ имеется резерв, который позволяет увеличить длину поезда. При $l_{pac^q} > l_{nymu}$ необходимо уменьшить длину состава. Величина уменьшения (увеличения) длины поезда:

$$\Delta l_n = l_{nvmu} - l_{pacy}. \tag{1.7}$$

При $\Delta l > 0$ имеется возможность увеличить длину поезда, что в свою очередь позволяет увеличить его массу.

В случае $\Delta l < 0$ уменьшение длины состава приводит к уменьшению массы поездаисоответственно к увеличению количества поездов, что в свою очередь приводит к дополнительным эксплуатационным расходам.

Изменение (увеличение, уменьшение) массы поезда рассчитывается по формуле:

$$\Delta Q_{\delta p} = \frac{|\Delta l_n|}{l_{eq2}} q_{\delta p}, \text{ T.}$$
(1.8)

Годовая экономия (дополнительные затраты) эксплуатационных расходов при увеличении (уменьшении) массы поезда составит:

$$\Delta \mathcal{I} = \Delta Q_{\delta p} C_{\delta p} 10^3$$
, тыс. руб./год, (1.9)

где: $C_{\delta p}$ – годовая экономия эксплуатационных расходов при увеличении (уменьшении) массы всех грузовых поездов на дороге.

Задание 2.

«Выбор рациональной конструкции пути и экономии расходов на ее содержание и ремонт»

Исходные данные для решения задачи приведены в таблице1.

Таблица 1

Исходные данные для расчета расходов на содержание и ремонт пути

№	Две последние цифры	Грузонапряженность линии, Г, млн.	Пропущенный тоннаж до капитального ремонта, Т, млн. т брутто
варианта	учебного шифра	т•км бр./км в год	
1	00 20 40 60 80	10	300

Таблица 2

Нормы периодичности ремонтов пути

Тип верхнего строения пути Пропущенный тоннаж, млн. т брутто	

	a	ь	С	d
	1-й подъемочный ремонт	средний ремонт	2-й подъемочный ремонт	капитальный ремонт
Особо тяжелый - рельсы типа Р 75	180	340	500	650
Тяжелый - рельсы типа P 65	150	280	400	500
Нормальный - рельсы типа Р 50	110	200	280	350

Одним из критериев назначения ремонта является фактическое состояние элементов верхнего строения пути. В настоящее время основным элементом верхнего строения, состоянием которого оценивается состояние пути, являются рельсы. Состояние рельсов определяется величиной удельного (среднего на 1 км длины участка) одиночного выхода рельсов по различным дефектам. Установлено, что капитальный ремонт необходимо выполнять по достижении суммарного удельного одиночного изъятия 7 шт./км для рельсов Р 50; 4 шт./км - рельсов Р 65; 3 шт./км - Р 75.

На рис 1. представлены зависимости одиночного выхода для различных типов рельсов.

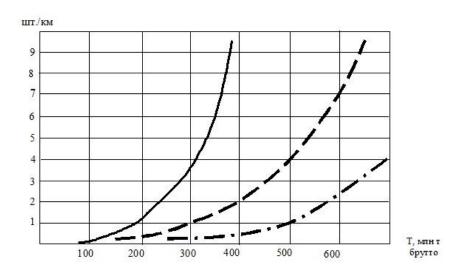


Рис. 1. Графики суммарного одиночного выхода рельсов от пропущенного тоннажа: — P50; ---- P75

При разработке оптимальной системы ремонтов пути необходимо учитывать экономические показатели, т.е. стоимость производства работ при различных конструкциях железнодорожного пути.

В табл.3 приведены среднесетевые стоимости производства ремонтов пути при различных типах верхнего строения.

Таблица 3 Стоимость произволства 1 км ремонта пути

CTOMMOCIB IIPONSBOACIBA I KM PEMONIA IIYIN									
Тип ворушего отворица пути	Капитальный ремонт,	Средний ремонт,	Подъемочный ремонт,						
Тип верхнего строения пути	руб.	руб.	руб.						
Особо тяжелый - рельсы Р 75	906680	129433	60926						
Тяжелый – рельсы P 65	650610	120249	57039						
Нормальный - рельсы Р 50	590700	121977	55597						

Например, необходимо выбрать оптимальный тип верхнего строения пути, рациональную систему ведения путевого хозяйства и определить величину амортизационных отчислений при следующих исходных данных: грузонапряженность участка 90 млн. т·км бругто/км в год,

планируемый объём пропущенного по пути тоннажа до назначения капитального ремонта пути - 650 млн. т брутто.

Решение включает следующие этапы.

- 1. Выбор типов верхнего строения пути, позволяющих пропустить заданный тоннаж.
- 2. Сравнение вариантов конструкции пути по величине суммарного удельного выхода рельсов по графикам рис. 1
 - 3. Определение количества и периодичности выполнения ремонтов.
 - 4. Определение стоимости выполнения ремонтных работ.
- 5. Определение величины амортизационных отчислений на производство ремонтных работ. Величина амортизационных отчислений может быть определена из выражения:

$$A = \frac{C \cdot \Gamma}{T}$$
, руб/год на 1 км пути (1)

где: С - стоимость выполнения ремонтных работ, руб.;

 Γ - грузонапряженность участка, млн. т брутто/ км в год;

Т - пропущенный тоннаж, млн.т. брутто.

- 6. Вывод по выбор конструкции верхнего строения пути.
- 7. Привести перечень конкретных организационно-технических мероприятий, направленных на усиление конструкции верхнего строения пути, повышение качества выполнения ремонтных работ, а также улучшение текущего содержания пути.

Задание 3.

На схеме необходимо показать полезную длину. Для сквозного и тупикового пути показывается полная длина

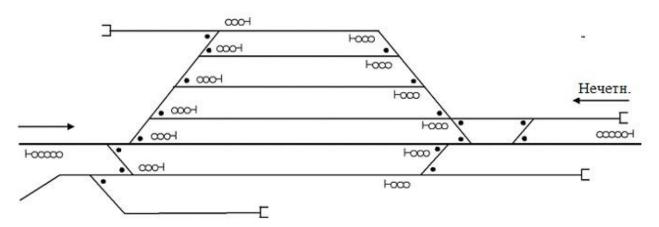
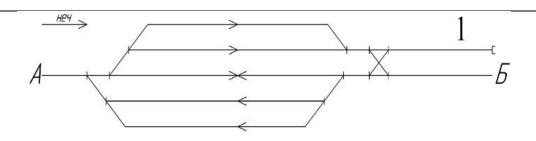


Рисунок 1 – Схема раздельного пункта для определения полной и полезной длины путей:

I – главный (сквозной) путь, 2, 3, 4, 5, 6 – приемоотправочные пути, 7, 8, 9, 10 – тупиковые пути

ОПК-3.3 Использует теоретические основы и опыт производства для принятия решений в области эксплуатации железнодорожного транспорта


Обучающийся владеет: навыками решения типовых задач используя теоретические основы, применяя нормативно-правовую базу и опыт производства для принятия решений в области эксплуатации железнодорожного транспорта

Примеры заданий

Задание 4.

На схеме станции необходимо указать:

- специализацию главных и приемоотправочных путей (стрелками помечается направление движения поездов),
- нумерацию путей, стрелочных переводов, светофоров, места установки предельных столбиков, входных и выходных сигналов.

Задание 5.

- 1.Составить путь следования поезда при показаниях входного светофора (по варианту табл.1), указать название следующего по ходу движения поезда светофора и обозначить сигнал на нем.
- 2.Составить путь следования поезда при показаниях выходного светофора (по варианту табл. 1) указать название следующего по ходу движения поезда светофора и обозначить сигнал на нем.

Таблица 1

Варианты индивидуальных заданий

	1 11 11							
	Вариант	Схемы пути сле	едования поезда					
(последняя цифра	ора Показания светофора						
7	учебного шифра)	входного	выходного					
	1	Один зеленый огонь.	Два желтых огня, из них верхний					
			— мигающий.					

Задание 6.

«Выбор рационального типа подвижного состава для перевозки грузов»

Требуется:

- 1.Выбрать соответствующие типы вагонов под погрузку конкретных грузов, изучить и проанализировать технические нормы загрузки вагонов заданными грузами.
- 2.Для выбранных типов вагонов рассчитать следующие показатели: коэффициент удельной грузоподъемности k_c , погрузочный коэффициент тары k_m , коэффициент использования грузоподъемности λ , производительность вагона W_a , потребность в вагонном парке n для осуществления погрузки.
- 3.Выбрать рациональный тип вагонов для осуществления перевозок заданных грузов, обеспечивающий сокращение потребности в вагонном парке.
- 4. Привести конкретные мероприятия, позволяющие улучшить использование грузоподъемности и вместимости вагонов при перевозках заданных грузов.

Методические указания к решению задачи

Парк грузовых вагонов железных дорог состоит из разных типов вагонов, которые различаются конструкцией, грузоподъемностью, числом осей и приспособленностью для перевозки различных грузов. В зависимости от назначения, грузовые вагоны подразделяются на следующие основные группы: крытые, полувагоны, платформы, изотермические и специальные. Основными технико-эксплуатационными характеристиками вагонов являются; грузоподъемность, количество осей, вес тары, объем кузова, габаритные размеры кузова, площадь пола платформ, нагрузка на ось вагона, нагрузка на рельс от колесной пары, нагрузка на один погонный метр пути и другие.

При выборе наиболее рационального (экономичного) типа вагона необходимо исходить из обеспечения сохранности груза, приспособленности отдельных типов вагонов к перевозке, возможности механизированной погрузки и выгрузки конкретных грузов, а также обеспечения максимальной загрузки вагона с учетом его удельной грузоподъемности и объемного веса груза. При осуществлении перевозок и выполнении погрузочно-разгрузочных работ должна быть обеспечена охрана окружающей среды и техника безопасности обслуживающего персонала.

Тип вагона выбирается на основании характера и рода груза, анализа технических норм загрузки вагонов заданным грузом и изучения эксплуатационных характеристик вагонов. Повышение загрузки вагонов сокращает потребность в вагонах и является резервом улучшения использования вагонного парка и снижения издержек перевозок.

При выборе типа вагона следует учитывать, что заданный груз может перевозиться только в одном типе вагонов (в крытом, в полувагоне, на платформе и т.д.) или в вагонах

разных типов (платформа и полувагон и т.д.). В первом случае при выборе рационального типа вагона сравниваются показатели использования одного типа вагонов, имеющих различные эксплуатационные характеристики (объем кузова, грузоподъемность, число осей и т.д.). Во втором случае сравниваются характеристики различных типов вагонов.

Результаты выбора наиболее рационального подвижного состава рекомендуется свести в табл. 2. Потребное число вагонов для перевозки заданного груза определяется по формуле:

$$n = \frac{365Q_{cym}}{P_m} \text{ Bar}, \tag{1}$$

где

 Q_{cym} – суточная погрузка, т;

 $P_{\it m}$ — техническая норма загрузки грузового вагона, т.

Производительность вагонов является комплексным показателем для оценки их использования. Производительность вагона по каждому из сравниваемых типов можно определить из выражения:

$$W = \frac{S_{e}P_{m}}{I + \alpha_{nop}}$$
 т км нетто/сутки, (2)

где S_{θ} - среднесуточный пробег вагона, км/сутки;

 α_{nop} — коэффициент порожнего пробега.

Коэффициент удельной грузоподъемности k_{ℓ} позволяет сделать вывод о возможности повышения технической нормы загрузки вагонов. Наиболее полно грузоподъемность и вместимость используется, если удельный вес груза q равен k_{ℓ} . Если $q > k_{\ell}$, грузоподъемность вагона использована полностью, а вместимость - нет. В том случае, когда $q < k_{\ell}$ грузоподъемность вагона будет недоиспользована, а объем вагона занят грузом полностью.

Данные заполненной таблицы необходимо проанализировать и обосновать преимущества типа вагона, выбранного для перевозки.

Далее в работе необходимо кратко изложить основные мероприятия, позволяющие улучшить использование грузоподъемности и грузовместимости вагонов при перевозках заданного груза.

Исходные данные:

Род груза-бумага газетная

Суточное отправление груза-400т

Таблица 2

Результаты определения рационального типа подвижного состава

Род груза	Типы сравн- иваемых вагонов (модель)	57772777	1000000000	57772377	Xaj	Характеристика вагонов			Показатели использования вагонов при погрузке			Коэффициент удельной	Суточное отправление	Годовая потреб-	Производительность вагона, W_{ϕ}
		Число осей	Объем кузова, <i>V</i> _x , м ³	Грузо- подъ- емность, Р _{пс} , т	Вес тары, q _т , т	Техни- ческая норма загруз- ки, P_m , т	Коэффициент использования грузоподьемности, $\lambda = P_m/P_{nc}$	Погру- зочный коэффи- циент тары, $k_m = q_m/P_m$	грузоподъемности, $k_e = P_{no}/V_K$	груза, <i>Q</i> _{сужь} т	в вагонах, п, ваг.	ткм нетто/сут.			
1	2	3	4	5	6	7	8	9	10	11	12	13			

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Значение транспорта для государства, населения и обороноспособности страны. Основные показатели его работы.
- 2. Виды транспорта и их особенности. Роль железных дорог в единой транспортной системе страны. Технико-экономическая характеристика видов транспорта.

- 3. Технические средства обеспечения перевозочного процесса и безопасности движения на железнодорожном транспорте.
- 4. Основные железнодорожные устройства и хозяйства. Структура управления железнодорожным транспортом.
- 5. Сооружения и устройства железнодорожного транспорта.
- 6. Габариты на железных дорогах.
- 7. Основные руководящие документы по обеспечению четкой работы железных дорог и безопасности движения поездов.
- 8. Основные экономические показатели работы железных дорог.
- 9. Основные сведения о категориях железнодорожных линий, их трассе, плане и продольном профиле.
- 10. Общие принципы и стадии проектирования железных дорог. Экономические и технические изыскания. Основы технико-экономического сравнения вариантов.
- 11. Организация строительных работ железнодорожных линий и краткие сведения об их механизации.
- 12. Общие сведения о железнодорожном пути.
- 13. Земляное полотно и его поперечные профили. Водоотводные сооружения.
- 14. Искусственные сооружения, их виды и назначение. Трубы, тоннели, подпорные стены, регуляционные сооружения и др.
- 15. Назначение, составные элементы и типы верхнего строения пути. Балластный слой, шпалы, рельсы, рельсовые скрепления, противоугоны. Бесстыковой путь и его преимущества.
- 16. Устройство рельсовой колеи. Общие сведения. Особенность устройства пути в кривых, на мостах и в тоннелях, на электрифицированных линиях.
- 17. Стрелочные переводы, назначение, типы, устройство.
- 18. Съезды, глухие пересечения, стрелочные улицы, конечные соединения.
- 19. Сооружения и устройства электроснабжения. Схема электроснабжения железных дорог. Системы тока и напряжение в контактной сети.
- 20. Общие сведения о тяговом подвижном составе. Сравнение различных видов тяги. Классификация тягового подвижного состава.
- 21. Электрический подвижной состав. Общие сведения. Механическая часть электровоза.
- 22. Электрическое оборудование электровозов постоянного и переменного тока. Электропоезда.
- 23. Дизельные поезда, автомотрисы, мотовозы, газотурбовозы. Принцип работы паровоза
- 24. Основные понятия о взаимодействии пути и локомотива.
- 25. Локомотивное хозяйство. Общие сведения. Обслуживание локомотивов и организация их работы.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

«Отлично/зачтено» - выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 – 90% от общего объёма заданных вопросов;

«Хорошо/зачтено»- выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;

«Удовлетворительно/зачтено» - выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;

«**Неудовлетворительно**/ **не зачтено**»- выставляется обучающемуся, если количество правильных ответов – менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«Хорошо/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы. Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок или незначительные ошибки и неточности.

«**He** зачтено» — обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены существенные или грубые ошибки.