Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 21.10.2025 11:36:52 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение

к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«Гидравлика»

Направление подготовки / специальность

23.05.01 Наземные транспортнотехнологические средства

(код и наименование)

Направленность (профиль)/специализация

Подъемно-транспортные, строительные, дорожные средства и оборудование

(наименование)

Оглавление

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (5 семестр)

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-1 Способен ставить и решать	ОПК-1.9 Дает описание технологическим процессам на основе знаний
инженерные и научно-технические	о течении жидкости
задачи в сфере своей	
профессиональной деятельности и	
новых междисциплинарных	
направлений с использованием	
естественнонаучных, математических	
и технологических моделей	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
		(семестр <u>5</u>)
ОПК-1.9 Дает описание	Обучающийся знает:	Вопросы п. 2.1.1
технологическим процессам на	основные понятия, законы и методы механики	Тесты 2.1.2
основе знаний о течении жидкости	жидкости и основы гидропривода для описания	
	технологических процессов	
	Обучающийся умеет:	Задания п. 2.2.1
	использовать основные понятия, законы и	
	методы механики жидкости и основы	
	гидропривода для описания технологических	
	процессов	
	Обучающийся владеет:	Задания п. 2.2.2
	навыками применения основных понятий,	
	законов и методов механики жидкости и основы	
	гидропривода для описания технологических	
	процессов	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-1.9 Дает описание	Обучающийся знает:
технологическим процессам на	основные понятия, законы и методы механики жидкости и основы гидропривода
основе знаний о течении	для описания технологических процессов
жидкости	

2.1.1 Примеры вопросов

- 1. Основное уравнение гидростатики и его применение.
- 2. Основное уравнение неразрывности и его применение
- 3. Уравнение Бернулли и его применение
- 4. Способы описания движения жидкости
- 5. Режимы течения жидкости.
- 6. Гидромеханическое подобие.
- 7. Равномерное и неравномерное движение жидкости в открытых руслах.

2.1.2 Примеры тестов

- 1. Какие частицы жидкости испытывают наибольшее напряжение сжатия от действия гидростатического давления?
- а) находящиеся на дне резервуара
- b) находящиеся на свободной поверхности
- с) находящиеся у боковых стенок резервуара
- d) находящиеся в центре тяжести рассматриваемого объема жидкости
- 2. Выберите правильный вариант указания поверхностных сил.
- а) сила тяжести и сила инерции
- b) силы инерции и поверхностные силы давления
- с) гравитационные и касательные к поверхности силы трения
- d) нормальные и поверхностные силы давления
- 3. По какой формуле определяется коэффициент температурного расширения?

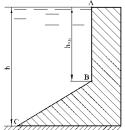
a)
$$\beta_V = \frac{\Delta V}{V \cdot \Delta T}$$
 b) $\beta_V = -\frac{\Delta V}{V \cdot \Delta p}$ c) $\beta_V = \frac{V}{\Delta V \cdot \Delta T}$ d) $\beta_V = \frac{V}{\Delta V \cdot \Delta p}$

- 4. Как формулируется закон Паскаля?
- а) «Внешнее давление, производимое на жидкость, заключенную в замкнутом сосуде, передается этой жидкостью во все стороны без изменения»
- b) «Тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость»
- с) «Давление в любой точке покоящейся жидкости по всем направлениям одинаково и не зависит от ориентации площадки, на которую оно действует»
- 5. Напорная линия при движении реальной жидкости вдоль потока ...
- а) всегда падает
- b) горизонтальна
- с) поднимается и опускается в зависимости от вида трубопровода
- d) всегда поднимается

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 6. Уравнение Бернулли для потока реальной жидкости можно определить по наличию ...
- а) отличий в написании нет
- b) потерь напора по длине и местных потерь
- с) средней скорости и максимальной скорости
- d) корректива скорости α и потерь напора
- 7. Для динамически подобных систем масштаб коэффициентов гидравлического трения λ и Шези С равны ...
- а) масштабу сил а_f
- b) масштабу скоростей a_v
- с) масштабу длин а
- d) 1 (единице)
- 8. Потери напора по длине при турбулентном режиме в области гидравлически гладких труб пропорциональны скорости в (во) ... (степени).
- а) степени 1,75
- b) 2-й степени
- c) 1,75 ... 2,0
- d) 1-й степени
- 9. Для практического определения местных потерь на резкое расширение при вычислении их по формуле Борда не используют такой показатель как ...
- а) диаметр трубопровода до расширения
- b) диаметр трубопровода после расширения
- с) длина водоворотной зоны

расход жидкости


- 10. Основной особенностью гидравлического расчета трубопроводов с последовательным соединением участков является то, что ...
- а) расход и потери напора на всех участках одинаковы;
- b) расходы на участках суммируются, а потери на участках одинаковы;
- с) расход и потери напора на всех участках суммируются;
- d) расход на участках одинаков, а потери на участках суммируются
- 11. Определение диаметров труб участков магистрали при расчете разветвленного тупикового трубопровода выполняются следующим образом:
- а) диаметры выбираются максимально возможными для уменьшения потерь напора в трубопроводной сети
- b) диаметры определяются в зависимости от расхода путем задания экономической скорости, при которой общая стоимость всех сооружений и расходов на их эксплуатацию будет минимальной
- с) диаметры участков принимаются одинаковыми и определяются путем задания экономической скорости, при которой общая стоимость всех сооружений и расходов на их эксплуатацию будет минимальной
- d) диаметры выбираются минимально возможными для уменьшения стоимости трубопроводной сети
- 12. К машинам трения относится следующая группа динамических машин
- а) центробежные и осевые насосы
- b) вентиляторы и компрессоры
- с) вихревые насосы
- 13. Насос, в котором жидкость перемещается под действием центробежных сил, называется
- а) лопастной центробежный насос;
- b) лопастной осевой насос;
- с) поршневой насос центробежного действия;
- d) дифференциальный центробежный насос.
- 14. В поворотно-лопастных насосах поворотом лопастей регулируется
- а) режим движения жидкости на выходе из насоса;
- b) скорость вращения лопастей;
- с) направление подачи жидкости;
- d) подача жидкости.
- 15. Дайте определение гидромашины.
- а) устройство для создания потока жидкости;
- b) устройство для привода механизмов;в) устройство, преобразующее механическую энергию в энергию потока жидкости;
- с) устройство, преобразующее механическую энергию в энергию потока жидкости и наоборот (энергию потока жидкости в механическую энергию).

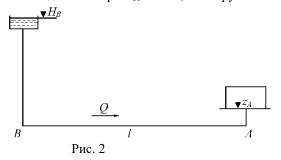
2.2 Типовые задания для оценки навыкового образовательного результата

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-1.9 Дает описание	Обучающийся умеет:
технологическим процессам	использовать основные понятия, законы и методы механики жидкости и основы
на основе знаний о течении	гидропривода для описания технологических процессов
жидкости	

2.2.3 Примеры заданий

1. Построить эпюры избыточного гидростатического давления воды на стенки плотины ломаного очертания, изображенной на рисунке. Определить силы давления на 1 метр ширины вертикальной и наклонной частей плотины и точки их приложения, если глубина воды h = 7 м, высота вертикальной части стены AB $h_{AB} = 4$ м; угол наклона стены ВС к горизонту 30°.

2. Из открытого резервуара, в котором поддерживается постоянный уровень, по стальному трубопроводу (эквивалентная шероховатость $\Delta = 0.1$ мм), состоящая из труб разного диаметра d и различной длины l ($d_{1} = 50$ мм, $l_{1} = 5$ м, $d_2 = 100$ мм, $l_1 = 2,5$ м, $d_3 = 75$ мм, $l_1 = 3$ м) вытекает в атмосферу вода, расход которой Q = 10 л/с, температура t =60°С (рис.1).


Требуется: 1. Определить скорости движения воды и потери напора (по длине и местные) на каждом участке трубопровода;

- 2. Установить величину напора H в резервуаре;
- 3. Построить напорную и пьезометрическую линии.

рис. 1

- 3. Определить диаметр трубопровода для подачи 15 π/c воды от водонапорной башни B до предприятия A(рис. 2) при длине трубопровода l=1000 м, отметке уровня воды в башне $H_B=32$ м, геодезической отметке в конце трубопровода $z_A = 2$ м и свободном напоре $H_{ce} \ge 12$ м, если трубы:
 - а) стальные:
 - б) полиэтиленовые;
 - в) асбестоцементные.

- 4. Центробежный насос, характеристика которого описывается уравнением $H = H_0$ $k \cdot Q^2$, нагнетает жидкость в трубопровод, требуемый напор для которого определяется по формуле $H_{\text{тp}} = H_{\Gamma} + S \cdot Q^2 (H_{\Gamma} - H_{\Gamma})$ геометрическая высота подачи жидкости; *S* - коэффициент сопротивления трубопровода). Требуется:
 - Определить подачу насоса и его напор, если $H_0 = 20$ м, $H_z = 10$ м, $k = 1.25 \cdot 10^4$ $c^2/\text{м}^5$ и $S = 154 \cdot 10^3$ $c^2/\text{м}^5$. Установить, как изменятся напор и подача, если к заданному насосу присоединить другой насос такой же марки сначала последовательно, а затем параллельно.
- Гидравлическое реле времени, служащее для включения и выключения различных устройств через фиксированные интервалы времени, состоит из цилиндра, в котором помещен поршень диаметром $D_1 = 80$ мм, со штоком-толкателем диаметром $D_2 = 40$ мм.

Цилиндр присоединен к емкости с постоянным уровнем жидкости $H_0 = 0.9$ м. Под действием давления, передающегося из емкости в правую полость цилиндра, поршень перемещается, вытесняя жидкость из левой полости в ту же емкость через трубку диаметром d = 10 мм (рис. 3).

Требуется:

Вычислить время T срабатывания реле, определяемое перемещением поршня на расстояние S = 100 мм из начального положения до упора в торец цилиндра.

Движение поршня считать равномерным на всем пути, пренебрегая незначительным временем его разгона.

В трубке учитывать только местные потери напора, считая режим движения жидкости турбулентным. Коэффициент сопротивления колена $\zeta_{\rm K}=1.5$ и дросселя на трубке $\zeta_{\rm Z}=22$. Утечками и трением в цилиндре, а также скоростными напорами жидкости в его полостях пренебречь.

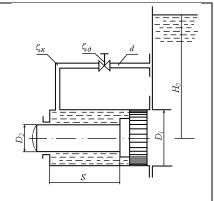


Рис. 3

ОПК-1.9 Дает описание технологическим процессам на основе знаний о течении жидкости

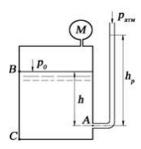
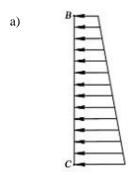
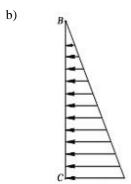
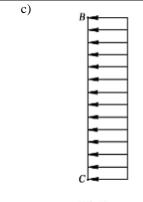
Обучающийся владеет:

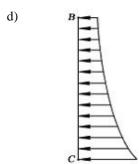
навыками применения основных понятий, законов и методов механики жидкости и основы гидропривода для описания технологических процессов

2.2.2 Примеры заданий

Кейс - задание 1.

Подзадача 1

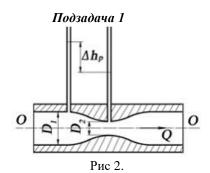






Рис.1

Манометр на поверхности закрытого сосуда, наполненного водой плотностью $\rho=1000~{\rm kr/m^3}$ показывает давление $p_M=0.06~{\rm krc/cm^2}$. На глубине $h=1.4~{\rm m}$ к сосуду присоединен пьезометр с атмосферным давлением $p_{\rm arm}=10^5~{\rm Ha}$ на свободной поверхности. Ускорение свободного падения принять равным $10~{\rm m/c^2}$. Эпюра избыточного давления на плоскую вертикальную стенку BC имеет вид:

Подзадача 2

Манометр на поверхности закрытого сосуда, наполненного водой плотностью $\rho=1000~{\rm kr/m^3}$ показывает давление $p_M=0.06~{\rm krc/cm^2}$. На глубине $h=1.4~{\rm m}~{\rm k}$ сосуду присоединен пьезометр с атмосферным давлением $p_{\rm atm}=10^5~\Pi a$ на свободной поверхности. Ускорение свободного падения принять равным $10~{\rm m/c^2}$.


Абсолютное давление в точке А (рис. 1) составляет ______ МПа. Ответ ввести с точностью до сотых.

Подзадача 3

Манометр на поверхности закрытого сосуда, наполненного водой плотностью $\rho=1000~{\rm kr/m^3}$ показывает давление $p_M=0.06~{\rm krc/cm^2}$. На глубине $h=1.4~{\rm m}~{\rm k}$ сосуду присоединен пьезометр с атмосферным давлением $p_{\rm atm}=10^5~\Pi a$ на свободной поверхности. Ускорение свободного падения принять равным $10~{\rm m/c^2}$.

Высота поднятия воды hp в пьезометре (рис. 1) составляет ______ м. Ответ ввести с точностью до целого числа.

Кейс – задание 2.

Перепад уровней в пьезометрах до сужения ($D_1 = 0.1 \text{ м}$) и в узкой горловине ($D_2 = 0.05 \text{ м}$) в трубе круглого сечения, в которой установлен водомер Вентури, составляет 0,4 м. Ускорение свободного падения принять равным 10 м/c^2 , $\pi = 3.14$. При входе в узкую горловину водомера, приведенного на рис. 2,

- а) часть потенциальной энергии потока жидкости переходит в кинетическую;
- b) часть кинетической энергии потока жидкости переходит в потенциальную;
- с) механическая энергия потока жидкости существенно возрастает;
- d) не происходит изменения механической энергии потока жидкости.

Подзадача 2

Перепад уровней в пьезометрах до сужения ($D_1 = 0.1$ м) и в узкой горловине ($D_2 = 0.05$ м) в трубе круглого сечения, в которой установлен водомер Вентури, составляет 0.4 м. Ускорение свободного падения принять равным 10 м/c^2 , $\pi = 3.14$. На рис. 2 постепенное расширение называется...

(написать ответ)

Подзадача 3

Перепад уровней в пьезометрах до сужения ($D_1 = 0.1 \text{ м}$) и в узкой горловине ($D_2 = 0.05 \text{ м}$) в трубе круглого сечения, в которой установлен водомер Вентури, составляет 0.4 м. Ускорение свободного падения принять равным 10 м/c^2 , $\pi = 3.14$. Найти расход жидкости в трубе, ответ записать в π/c , с точностью до десятых.

Кейс – задание 3.

Подзадача 1

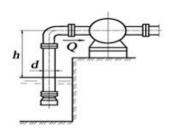


Рис 3

Насос производительностью $Q=0.03\,$ м/с³ забирает воду из бассейна. Длина всасывающей трубы насоса l=10м, диаметр трубы $d=200\,$ мм, давление на входе в насос $p_{\rm вак}=0.06\,$ МПа. Трубопровод содержит приемный клапан с сеткой ($\xi_{\rm кл}=6$) и одно сварное колено ($\xi_{\rm кол}=2$). Коэффициент сопротивления $\lambda=0.02$. Ускорение свободного падения принять равным $10\,$ м/с², $\pi=3.14$, плотность воды $1000\,$ кг/м³.

В сечении приведенного на рис. 3 трубопровода, расположенном непосредственно перед насосом, давление:

- а) меньше атмосферного;
- b) больше атмосферного;
- с) равно атмосферного;
- d) равно 0.

Подзадача 2

Насос производительностью $Q=0.03\,$ м/с 3 забирает воду из бассейна. Длина всасывающей трубы насоса l=10м, диаметр трубы $d=200\,$ мм, давление на входе в насос $p_{\rm вак}=0.06\,$ МПа. Трубопровод содержит приемный клапан с сеткой ($\xi_{\rm кл}=6$) и одно сварное колено ($\xi_{\rm кол}=2$). Коэффициент сопротивления $\lambda=0.02$. Ускорение свободного падения принять равным $10\,$ м/с 2 , $\pi=3.14$, плотность воды $1000\,$ кг/м 3 .

Насос, представленный на рис. 3, поднимает жидкость из резервуара за счет ______ во всасывающем патрубке. Вписать правильный ответ.

Подзадача 3

Насос производительностью $Q=0.03\,$ м/с 3 забирает воду из бассейна. Длина всасывающей трубы насоса l=10м, диаметр трубы $d=200\,$ мм, давление на входе в насос $p_{\rm gar}=0.06\,$ МПа. Трубопровод содержит приемный клапан с сеткой ($\xi_{\rm кл}=6$) и одно сварное колено ($\xi_{\rm кол}=2$). Коэффициент сопротивления $\lambda=0.02$. Ускорение свободного падения принять равным $10\,$ м/с 2 , $\pi=3.14$, плотность воды $1000\,$ кг/м 3 .

Допустимая высота установки насоса над уровнем воды в бассейне равна _____ м. Ответ ввести с точностью до десятых.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Основные физические свойства жидкостей. Сжимаемость жидкости. Вязкость и внутреннее трение в жидкости.
 - 2. Гидростатическое давление и его свойства.
 - 3. Основное уравнение гидростатики и его геометрический и энергетический смысл.
- 4. Абсолютное, избыточное и вакуумметрическое давление. Пьезометрический, гидростатический напор.
- 5. Модель идеальной (невязкой) жидкости. Абсолютный и относительный покой (равновесие) жидких сред.
 - 6. Сила давления жидкости на плоские поверхности.
 - 7. Сила давления жидкости на криволинейные поверхности.
 - 8. Надводное плавание тел. Остойчивость плавающих тел, центр давления.
- 9. Понятие об установившемся и неустановившемся движении жидкости. Линия тока и элементарная струйка.
 - 10. Потоки жидкости, расход и средняя скорость потока.
 - 11. Уравнение неразрывности несжимаемой жидкости.
 - 12. Уравнение Бернулли для идеальной жидкости.
 - 13. Уравнение Бернулли для вязкой жидкости.
- 14. Геометрический и энергетический смысл уравнения Бернулли для реальной жидкости.
- 15. Понятие о равномерном и неравномерном движениях напорном и безнапорном движениях жидкости.
- 16. Гидравлические сопротивления. Гидравлические элементы потока. Гидравлический уклон.
 - 17. Основное уравнение равномерного движения жидкости.
 - 18. Режимы движения жидкости. Критическое число Рейнольдса.
 - 19. Подобие гидромеханических процессов.
- 20. Расход и средняя скорость ламинарного потока. Распределение скоростей. Потери напора на трение при ламинарном режиме.
- 21. Распределение скоростей и потери напора по длине при турбулентном режиме в гидравлически гладких трубах.
 - 22. Потери напора на трение при турбулентном режиме с учетом шероховатости.
 - 23. Вычисление коэффициента Дарси.
 - 24. Местные гидравлические сопротивления.
 - 25. Уравнение Шези. Коэффициент Шези.
 - 26. Истечение жидкости из отверстий и насадок при постоянном напоре.
 - 27. Истечение жидкости из отверстий при переменном напоре.

- 28. Движение жидкости в напорных трубопроводах при последовательном соединении.
 - 29. Движение жидкости в напорных трубопроводах при параллельном соединении.
 - 30. Расчет сифона.
 - 31. Расчет кольцевого трубопровода.
 - 32. Неустановившееся движение жидкости, гидравлический удар.
 - 33. Работа гидравлического тарана.
 - 34. Классификация насосов. Устройство, принцип действия центробежного насоса.
 - 35. Расчет высоты всасывания.
 - 36. Основы подобия лопастных насосов.
 - 37. Пересчет рабочих характеристик лопастных насосов на другое число оборотов.
 - 38. Параллельная работа насосов.
 - 39. Последовательная работа насосов.
- 40. Насосы объемного действия, классификация, принцип действия и их характеристики.
 - 41. Роторные гидромашины.
 - 42. Пластинчатые гидромашины (шиберные).
 - 43. Шестеренные насосы.
 - 44. Поршневые гидромашины.
 - 45. Основные понятия и определения, принцип действия гидроприводов.
- 46. Гидропривод дроссельного регулирования с последовательным соединением дросселя.
- 47. Гидропривод дроссельного регулирования с параллельным соединением дросселя.
 - 48. Гидроаппаратура гидроприводов.
- 49. Гидрораспределители, классификация. Гидродроссели и дросселирующие гидрораспределители.
- 50. Гидравлические клапаны. Типы клапанов: переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» — ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Критерии формирования оценок по зачету

«Зачтено» – обучающийся приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок или незначительные ошибки и неточности.

«**Не зачтено**» – обучающийся демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены существенные или грубые ошибки.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.