Документ подписан простой электронной подписью Информация о владельце:
ФИО: Гарарии Максим — МИНИСТЕ РСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность тестор Дата подмисании: 23:10:2025 09:57.83 ФЕДЕРАЛ БНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Уникальный программы больное государственное образовательное учреждение высшего образования 7708e3-44e6698e-02711b20677778bd24409688 РСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Приложение

к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«Теплотехника»

Направление подготовки / специальность

23.05.03	Подвижной	состав	железных	дорог
_	(код и	наименование)		
	Направленность (профиль)/специа	лизация	
	Грузов	ые ваго	ны	

(наименование)

Оглавление

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (3 семестр – очное обучение, 2 курс – заочное обучение).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-1. Способен решать инженерные задачи в профессиональной	ОПК-1.2. Применяет основные понятия и законы естественных наук для решения предметно-профильных задач
деятельности с использованием методов естественных наук, математического анализа и моделирования	ОПК-1.3. Применяет естественнонаучные методы теоретического и экспериментального исследования объектов, процессов, явлений, проводит эксперименты по заданной методике и анализирует результаты

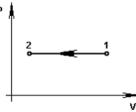
Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
		(семестр <u>3</u> / курс <u>2</u>)
ОПК-1.2. Применяет основные понятия	Обучающийся знает:	Тесты п. 2.1.1
и законы естественных наук для	основные понятия и законы теплотехники:	Вопросы п. 2.1.2
решения предметно-профильных задач	технической термодинамики и тепломассообмена,	
	основ теории горения, и их роль в решении	
	предметно-профильных задач	
	Обучающийся умеет:	Задания п. 2.2.1
	использовать основные понятия и законы	
	теплотехники для решения предметно-профильных	
	задач	
	Обучающийся владеет:	Задания п. 2.3.1
	навыками проведения тепловых расчетов для	
	решения предметно-профильных задач	
ОПК-1.3. Применяет	Обучающийся знает:	Тесты п. 2.1.3
естественнонаучные методы	методы получения, передачи и использования	Вопросы п. 2.1.4
теоретического и экспериментального	теплоты, методы теплосбережения, методику	
исследования объектов, процессов,	проведения и обработки результатов	
явлений, проводит эксперименты по	теплотехнического эксперимента	
заданной методике и анализирует	Обучающийся умеет:	Задания п. 2.2.2
результаты	применять методы теоретического и	
	экспериментального исследования объектов,	
	процессов и явлений, проводить теплотехнические	
	эксперименты по заданной методике и обрабатывать	
	их результаты	
	Обучающийся владеет:	Задания п.2.3.2
	навыками применения методов теоретического и	
	экспериментального исследования объектов,	
	процессов и явлений, навыками проведения	
	теплотехнических экспериментов по заданной	
	методике и навыками обработки их результатов	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций


2.1 Типовые вопросы (задания) для оценки знаний в качестве образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат	
достижения компетенции		
ОПК-1.2. Применяет основные	Обучающийся знает:	
понятия и законы естественных	основные понятия и законы теплотехники: технической термодинамики и	
наук для решения предметно-	тепломассообмена, основ теории горения, и их роль в решении предметно-	
профильных задач	профильных задач	

2.1.1 Примеры тестовых заданий

- 1. Предметом технической термодинамики являются ...
- а) закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях
- b) закономерности взаимного превращения тепловой и механической энергии и масса тел, участвующих в этих превращениях
- с) закономерности взаимного превращения тепловой и механической энергии и объем тел, участвующих в этих превращениях
- d) закономерности взаимного превращения тепловой и механической энергии и сила притяжения тел, участвующих в этих превращениях
- **2.** Если $T_1 = 1000 \text{ K}$, $v_1 = 3 \text{ M}^3/\kappa 2$, $T_2 = 10 \text{ K}$, to $v_1 = \underline{\qquad} \text{M}^3/\kappa 2$.
- a) 0,3
- b) 300
- c) 0,03
- d) 30

- 3. Найдите работу, совершаемую двумя молями идеального газа при его изобарном нагревании на 100°С (Дж). R=8,3Дж/моль•К:
- a) 166
- b) 1660
- c) 830
- d) 0,166

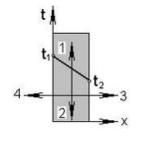
- T #
- 4. Теплота в цикле Ренкина, представленном на графике, отводится в процессе ...
- a) 1–2
- b) 2–3
- c) 6–1
- d) 5-6

- 4/3
- **5.** Отношение массы водяного пара $m_{\text{п}}$, содержащегося во влажном воздухе, к массе сухого воздуха $m_{\text{в}}$ называется ...
- а) влагосодержанием
- b) относительной влажностью
- с) абсолютной влажностью
- d) точкой росы
- **6.** Тепловой двигатель за один цикл получает от нагревателя 100 кДж теплоты и отдает холодильнику 60 кДж. Чему равен КПД этого двигателя (%):
- a) 25
- b) 40
- c) 60
- d) 0,4
- 7. Коэффициент температуропроводности вычисляется по формуле ...

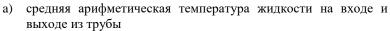
¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

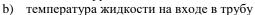
b)
$$a = \frac{c \cdot \rho}{\lambda}$$

c)
$$a = \frac{\lambda}{c \cdot v}$$

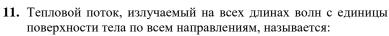

d)
$$a = -\frac{\lambda}{c \cdot \rho}$$

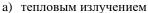
8. Направление вектора теплового потока на рисунке обозначено цифрой ...


d) 3



9. Конвективный теплообмен - это сложный вид теплообмена, при котором совместно протекают процессы:


- а) теплообмена и массообмена
- b) конвекции и теплоотдачи
- с) теплопроводности и конвекции
- d) теплопередачи и конвекции


10. В качестве определяющей температуры при расчете средней теплоотдачи внутри трубы применительно к рисунку принимается ...

- с) температура жидкости на выходе из трубы
- d) средняя арифметическая температура жидкости и стенки трубы

- b) излучательной способностью
- с) интенсивностью излучения
- d) интегральным лучистым потоком

- a) 0,01
- b) 1
- c) 0,1
- d) 22

T =1000 K C_o=5,67 B π I(M^2 K⁴)

13. Если $d_{\text{нар}} = 1$ м, $d_{\kappa p} = 0.9$ м то утолщение теплоизоляции на трубе приводит к _____ суммарного термического сопротивления теплопередачи.

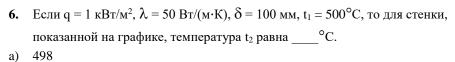
- а) уменьшению
- b) увеличению
- с) увеличению во второй степени
- d) увеличению в геометрической прогрессии

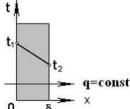
14. Самопроизвольный процесс проникновения одного вещества в другое в направлении установления внутри них равновесного распределения концентраций называют:

- а) потоком массы
- b) конвекцией
- с) диффузией
- d) массообменом

15. В каких теплообменных аппаратах передача теплоты от нагревающей жидкости к нагреваемой происходит сквозь твердую разделительную стенку:

- а) рекуперативных
- b) смешивающих
- с) регенеративных
- d) смесительных


- 1. Параметры состояния. Уравнение МКТ, уравнение состояния.
- 2. Законы идеальных газов.
- 3. Энергетика термодинамической системы.
- 4. Теплоемкость. Зависимость теплоемкости от температуры.
- 5. Термодинамические процессы. Политропный процесс. Уравнение политропного процесса.
- 6. Энтальпия. Изменение энтальпии в термодинамических процессах.
- 7. Энтропия. Изменение энтропии в термодинамических процессах.
- 8. Цикл Карно. Термический КПД цикла Карно. Необратимый цикл Карно.
- 9. Реальные газы Уравнение Ван-Дер-Ваальса.
- 10. Изотермические поверхности. Температурный градиент.
- 11. Теплопроводность в газах, жидкостях, металлах.
- 12. Основной закон теплопроводности.
- 13. Свободная и вынужденная конвекция.
- 14. Основное уравнение теплоотдачи. Коэффициент теплоотдачи
- 15. Горение топлива. Физический процесс горения топлива.
- 16. Вопросы экологии при использовании теплоты.
- 17. Последствия парникового эффекта.


ОПК-1.3. Применяет	Обучающийся знает:
естественнонаучные методы	методы получения, передачи и использования теплоты, методы теплосбережения,
теоретического и	методику проведения и обработки результатов теплотехнического эксперимента
экспериментального	
исследования объектов,	
процессов, явлений, проводит	
эксперименты по заданной	
методике и анализирует	
результаты	

2.1.3 Примеры тестовых заданий

- 1. Сколько льда (кг) растает, если лед массой 5 кг и температурой 0°С опустить в воду массой 10 кг и температурой 0°С:
- a) 1
- b) 10
- c) 0
- d) 5
- **2.** Найдите работу, совершаемую двумя молями идеального газа при его изобарном нагревании на 100° С (Дж). R=8,3Дж/моль·К:
- a) 166
- b) 1660
- c) 830
- d) 83
- **3.** Какой должна быть температура холодильника тепловой машины (°C), чтобы максимальное значение КПД равнялось 50%? Температура нагревателя 327°C:
- a) 260
- b) 27
- c) 327
- d) 300
- **4.** Тепловой двигатель с КПД 50% за один цикл отдает холодильнику 56 кДж теплоты. Какая работа им (кДж) совершается за один цикл:
- a) 40
- b) 27
- c) 56
- d) 17
- 5. Если $\varepsilon = 16$, k = 1,5 то термический КПД карбюраторного ДВС (с подводом теплоты при v = const) равен ...
- a) 0,75
- b) 0,5

a)

b) 500

c) 502

d) 102

7. Если $\lambda_1 = 50 \, \text{Bt/(M·K)}$, $\lambda_2 = 30 \, \text{Bt/(M·K)}$, то плотность теплового потока q в кВт/м² равна ...

a) 377

b) 37700

c) 37,7

d) 3770

8. Если определяющая температура 20° C, $\alpha = 60$ Bt/(м²·K), d = 0.1 м то критерий подобия (число) Нуссельта, согласно таблице, равен ...

a) 10

λ, Bτ/(мK) 0 0,55 20 0,6 0,63 40 0,66

b) 0,1

c) 100

d) 0,01

9. Если излучательная способность серого тела $E = 5000 \text{ Br/m}^2$ то коэффициент излучения тела в $Br/(m^2K^4)$ равен ...

T =1000 K

b) 2 c) 5,67

d) 0,5

10. Если $G_1 = 10$ кг/с, $c'_{p1} = c''_{p1} = 4,2$ кДж/(кг·К), t''_1 70°С, $t'_1 = 80$ °С, то , то тепловой поток, отдаваемый горячим теплоносителем, в кВт равен ...

a) 42

b) 4,2

c) 420

d) 0,42

- 1. Смеси идеальных газов. Способы задания смеси.
- 2. Первое, второе начала термодинамики и его применение.
- 3. Уравнение энергии газового процесса и его применение.
- 4. Методики расчета циклов двигателей внутреннего сгорания.
- 5. Методики расчета циклов двигателей внешнего подвода теплоты.
- 6. Методики расчета циклов газотурбинных установок.
- 7. Водяной пар, методы расчета.
- 8. Влажный воздух, методы расчета.
- 9. Методики расчета циклов паросиловых установок.
- 1. Условия однозначности в процессах теплопроводности.
- 2. Стационарная теплопроводность плоской однослойной стенки при граничных условиях І рода.
- 3. Стационарная теплопроводность плоской многослойной стенки при граничных условиях І рода.
- 4. Стационарная теплопроводность цилиндрической однослойной стенки при граничных условиях І рода.
- 5. Стационарная теплопроводность цилиндрической многослойной стенки при граничных условиях I рода.
- 6. Теория подобия. Критерии подобия.
- 7. Теплопередача через плоскую однослойную стенку.
- 8. Теплопередача через плоскую многослойную стенку.
- 9. Теплопередача через цилиндрическую однослойную стенку.
- 10. Теплопередача через цилиндрическую многослойную стенку.
- 11. Методы расчета теплообменных аппаратов.
- 12. Холодильная установка. Принцип работы.
- 13. Тепловой насос. Принцип работы
- 14. Термотрансформатор. Принцип работы

2.2 Типовые задания для оценки умений в качестве образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат		
индикатора достижения			
компетенции			
ОПК-1.2. Применяет основные	Обучающийся умеет:		
понятия и законы	использовать основные понятия и законы теплотехники для решения предметно-		
естественных наук для	профильных задач		
решения предметно-			
профильных задач			

2.2.1 Примеры задач

- 1. Манометр, установленный на паровом котле, показывает давление 1,8 МПа. Каково абсолютное давление пара в котле, если атмосферное давление равно 0,099 МПа.
- 2. Вакуумметр показывает разрежение 80 кПа. Каково абсолютное давление в сосуде, если атмосферное давление по барометру составляет 0,1 МПа?
- 3. В баллоне содержится 2 килограмма кислорода при давлении 8,3 МПа и температуре 15° С. Вычислить вместимость (емкость) баллона. Величину удельной газовой постоянной для кислорода принять равной R = 259,8 Дж/(кг×К).
- 2. Резервуар вместимостью 4 м3 заполнен углекислым газом. Найти массу этого газа и его вес, если избыточное давление, показываемое манометром, присоединенным к резервуару, равно 40 кПа, температура газа 80° C, а атмосферное (барометрическое) давление равно 102,4 кПа. Удельная газовая постоянная для углекислого газа равна R = 188.9 Дж/(кг×К).
- 3. Компрессор качает воздух в воздухосборник объемом V = 100 л. Перед подкачиванием в воздухосборнике было атмосферное давление 750 мм рт. ст. и температура $t_1 = -10$ °C. После подкачивания давление в воздухосборнике стало $p_2 = 8$ бар по манометру, а температура $t_2 = 25$ °C. Определить массу подкачанного воздуха.
- 4. Задан объемный состав смеси газов ($r_{CO_2} = 10\%$, $r_{CO} = 2\%$, $r_{N_2} = 60\%$, $r_{O_2} = 28\%$). Определить до какого давления по манометру нужно сжать эту смесь, чтобы при температуре $t = 100^{\circ}$ C масса m = 20 кг имела объем V = 1,2 м³. Барометрическое давление 750 мм рт. ст.
- 5. 2 кг кислорода с начальным абсолютным давлением 6 МПа и начальной температурой 17 °C расширяются изотермически до конечного давления 0,1 МПа. Определить объем кислорода в начале и в конце расширения и работу расширения.
- 6. 4 кг воздуха с начальным абсолютным давлением 1,2 МПа и начальной температурой -10°C сжимаются адиабатно до конечного давления 0,2 МПа. Определить объем и температуру воздуха в конце сжатия, работу сжатия и изменение внутренней энергии, если показатель адиабаты 1,4.
- 7. 2 кг воздуха с начальным абсолютным давлением 0,12 МПа и начальной температурой 20 °C сжимаются при постоянном давлении до удельного объема 0,05 м³/кг. Определить работу сжатия, изменение внутренней энергии и количество отведенной теплоты от воздуха.

- 8. До какого давления надо сжать воздух в политропном процессе со средним показателем n=1,3 в цилиндре двигателя внутреннего сгорания (дизеля) при начальном абсолютном давлении 100 кПа и температуре $125\,^{\circ}$ С, чтобы достигнуть температуры воспламенения топлива 650° С? Определить также работу, затрачиваемую на сжатие, и количество отводимой теплоты, отнесённых к $1\kappa z$ воздуха. Теплоёмкость воздуха считать не зависящей от температуры.
- 9. Воздух, имея начальную температуру $t_1 = 27$ °C и абсолютное давление $p_1 = 1$ МПа, изотермически расширяется до давления $p_2 = 0.1$ МПа, а затем нагревается в изохорном процессе до тех пор, пока давление не станет равным p_1 . Требуется определить удельный объем воздуха в конце изохорного подвода теплоты, а также изменения удельных значений внутренней энергии, энтальпии и энтропии в изохорном процессе. Теплоемкость воздуха считать не зависящей от температуры. Изобразить процессы в p-v T-S диаграммах.
- 10. Вычислить плотности теплового потока q через плоскую стенку толщиной $\delta = 110$ мм, выполненную из указанных ниже изоляционных материалов (применяемых в вагоностроении), коэффициенты теплопроводности которых λ , $Bm/(M\cdot K)$, связанных с температурой следующими зависимостями: шевелин $\lambda = 0.060 + 0.002 \cdot t$; мипора $\lambda = 0.035 + 0.002 \cdot t$; полистинол $\Pi C B C$ $\lambda = 0.038 + 0.0036 \cdot t$; полиуретан $\Pi \Pi Y 3C$ $\lambda = 0.004 + 0.0035 \cdot t$. Температуры поверхностей стенки соответственно равны $t_2^{cm} = 21^{\circ}C$ и $t_2^{cm} = -1^{\circ}C$.
- 11. Определить коэффициент теплопроводности кирпичной стенки толщиной 390 мм, если температура на внутренней поверхности 300° C и на наружней 60° C. Потери тепла через стенку $q = 178 \text{ Bt/m}^2$.
- 12. Слой льда на поверхности воды имеет толщину 400 мм, а температура на верхней и нижней поверхностях равны 0° С и -15° С соответственно. Определить тепловой поток через 1 м² поверхности льда, если коэффициент теплопроводности льда равен $\lambda_{\pi} = 2,25$ $Bm/(m\cdot pad)$. Как измениться тепловой поток, если лед покроется слоем снега толщиной 250 мм с коэффициентом теплопроводности $\lambda_{I} = 0,465$ $Bm/(m\cdot pad)$, а температура на поверхности снега 20° С.

ОПК-1.3. Применяет естественнонаучные методы теоретического и экспериментального исследования объектов, процессов, явлений, проводит эксперименты по заданной методике и анализирует результаты

Обучающийся умеет:

применять методы теоретического и экспериментального исследования объектов, процессов и явлений, проводить теплотехнические эксперименты по заданной методике и обрабатывать их результаты

2.2.2 Примеры задач

- 1. Анализ продуктов сгорания показал следующий объёмный состав, %: CO_2 12,2; O_2 7,1; CO 0,4; N_2 80,3. Определить массовый состав входящих в смесь газов, газовую постоянную, удельный объём плотность смеси при абсолютном давлении p = 1 $M\Pi a$ и температуре t = 250 °C. Определить также парциальные давления компонентов смеси
- 2. Воздух, имея начальную температуру $t_1 = 27$ °С и абсолютное давление $p_1 = 0.5$ МПа, изотермически расширяется до давления $p_2 = 0.1$ МПа, а затем нагревается в изохорном процессе до тех пор, пока давление не станет равным p_1 . Требуется определить удельный объем воздуха в конце изохорного подвода теплоты, а также изменения удельных значений внутренней энергии, энтальпии и энтропии в изохорном процессе. Теплоемкость воздуха считать не зависящей от температуры. Изобразить процессы в p-v T-S диаграммах.
- 3. Определить степень сжатия, давление и температуру в переходных точках идеального цикла поршневого двигателя внутреннего сгорания с подводом теплоты при постоянном объёме, а также термический КПД, удельные значения (на 1 кг рабочего тела) полезной работы, подведённой и отведённой теплоты, если известно, что абсолютное давление рабочего тела в начале сжатия p₁ = 95 кПа, а в конце сжатия − p₂ = 0,65 МПа. Отношение давлений рабочего тела в процессе подведения теплоты 3,3. Температура в начале процесса сжатия 50°С. Рабочим телом считать сухой воздух.
- 4. Для теоретического одноступенчатого воздушного компрессора определить секундную работу, затрачиваемую на его привод, если подача компрессора при начальных параметрах воздуха ($p_I = 0.1 \ M\Pi a$ и $t_1 = 17^{0} \ C$) составляет $V = 0.15 \ m^3/c$. Сжатие газа до конечного абсолютного давления $p_2 = 0.5 \ M\Pi a$ протекает по политропе с показателем n = 1.2.
- 5. Пассажирский вагон имеет площадь ограждения кузова $F = 225 \, m^2$. Приведённый коэффициент теплопередачи через ограждение вагона с учётом инфильтрации воздуха $k = 2,5 \, Bm/(m^2 \cdot K)$. Какова будет средняя температура воздуха в вагоне при температуре наружного воздуха $t_{\rm H} = 5\,^{\circ}{\rm C}$, если отопительная система вагона имеет суммарную площадь теплообменной поверхности $F = 25 \, m^2$, её температура $t_{\rm cr} = 40\,^{\circ}{\rm C}$? Средний коэффициент теплоотдачи от теплообменной поверхности системы отопления к воздуху $\alpha = 12 \, Bm/(m^2 \cdot K)$. Суммарная мощность дополнительных источников внутреннего тепловыделения в вагоне $Q_{\rm вн. B} = 2,8 \, \kappa Bm$.
- 6. Стальная стенка теплообменной поверхности парового котла толщиной δ = 20 мм омывается с одной стороны кипящей водой при абсолютном давлении p=0.6 МПа, а с другой стороны дымовыми газами с температурой $t_1=900^{\circ}$ С. Удельная паропроизводительность поверхности нагрева g=21 кг (M^2 - u), сухого насыщенного пара. Определить коэффициент теплопередачи k и перепад температур в стенке $\Delta_{\rm MT}$, если коэффициент теплопроводности стали $\lambda=40$ В $m/(\mathit{M}^2$ - K).

2.3 Типовые задания для оценки навыков в качестве образовательного результата

ОПК-1.2. Применяет основные понятия и законы естественных наук для решения предметнопрофильных задач

Обучающийся владеет:

навыками проведения тепловых расчетов для решения предметно-профильных задач

2.3.1 Примеры заданий

- 1. Как зависит давление насыщенного пара от температуры? Опишите методику определения давления насыщенного пара в лабораторной работе 1. Определите давление насыщенного водяного пара при температуре 45°C, показания пьезометра 4,2 см, если начальная температура 20°C, h₀ = 3,3 см.
- 2. Как определить коэффициент поверхностного натяжения, опишите методику определения коэффициента поверхностного натяжения воды в лабораторной работе №2. Определить коэффициент поверхностного натяжения при температуре 38°C, если показания пьезометра 42 мм.
- 3. Как зависит вязкость жидкости от температуры, опишите методику определения вязкости в лабораторной работе №3. Определить вязкость жидкости при температуре 50 °C, если $h_0 = 103$ мм, $h_1 = 20$ мм, $h_2 = 70$ мм, $\Delta t = 15,7$ с.
- 4. В пароперегревателе котельного агрегата за счёт подведённой теплоты q = 240 к/дж/кг к $l \kappa r$ водяного пара при постоянном давлении $p = 2 \ M\Pi a$ температура пара повысилась до значения $t = 300 \ C$. Определить постоянные пара и его параметры до пароперегревателя (температуру, удельный объём, энтальпию, внутреннюю энергию и энтропию). Решение задачи иллюстрировать i-S диаграммой.
- 5. Какое количество воздуха необходимо пропустить через сушильную камеру, чтобы от материала, помещенного в нее, отвести l m воды? Наружный воздух при барометрическом давлении B = 745 m m m.m., имея температуру $t_1 = 10$ C и относительную влажность $\phi = 50\%$, в калорифере подогревается до температуры $t_2 = 60$ C, а затем воздух поступает в сушильную камеру и выходит из нее при относительной влажности $\phi = 90\%$. Решение задачи иллюстрировать в i-d диаграмме.
- 6. Паротурбинная установка работает по циклу Ренкина с начальными параметрами $p_1 = 15$ бар и $t_1 = 450$ °C. Давление в конденсаторе $p_2 = 4$ кПа. Определить термический КПД цикла Ренкина и сравнить его с термическим КПД цикла Карно в том же интервале температур.
- 7. Воздух, имея давление по манометру $p_I = 0.4$ МПа и температуру $t_I = 130$ °C, вытекает в атмосферу через сопло Лаваля. Массовый расход воздуха G = 0.4 кг/с. Определить теоретическую скорость истечения и основные размеры сопла (изобразить схему сопла в масштабе). Угол конуса расширяющейся части сопла принять равным 10° . Барометрическое давление B = 750 мм рт. ст. Определить также располагаемую мощность струи при истечении. Истечение считать адиабатным, скорость воздуха перед соплом и потери на трение не учитывать.
- 8. Вычислить и показать графически зависимость термического КПД цикла Ренкина паросиловой установки от начальной температуры пара, приняв ее равной 400, 450, 500, 550 и 600 $^{\circ}$ С при одинаковых значениях начального абсолютного давления $p_1 = 20$ бар и конечного давления $p_2 = 5 \, \kappa \Pi a$. Показать также влияние повышения начальной температуры пара в цикле на изменение степени влажности пара, выходящего из парового двигателя. Решение задачи иллюстрировать в i-S диаграмме.
- 9. По данным тепловых измерений тепломером средней удельный тепловой поток через ограждения изотермического вагона при температуре наружного воздуха $t_{\rm H}=1^{\circ}{\rm C}$ и температуре воздуха в вагоне $t_{\rm B}=1^{\circ}{\rm C}$ составил q=8,5 Bm/m^2 . На сколько процентов изменится количество тепла, поступающего в вагон за счёт теплопередачи через ограждения, если при прочих равных условиях на его поверхность наложить дополнительный слой изоляции из пиатерма толщиной $\delta=30$ мм с коэффициентом теплопроводности $\lambda=0,036$ $Bm/(M\cdot K)$?
- 10. Определить требуемую минимальную толщину обмуровки газохода котла, чтобы температура её наружной поверхности не превышала 50 °C при температуре газов в газоходе $t_1 = 300$ °C. Эквивалентный коэффициент теплопроводности обмуровки $\lambda = 0.6$ $Bm/(M \cdot K)$. Суммарный коэффициент теплоотдачи со стороны газов $\alpha_1 = 65$ $Bm/(M^2 \cdot K)$, со стороны воздуха $\alpha_2 = 16$ $Bm/(M^2 \cdot K)$, а температура воздуха $t_2 = 20$ °C.

ОПК-1.3. Применяет естественнонаучные методы теоретического и экспериментального исследования объектов, процессов, явлений, проводит

Обучающийся владеет:

навыками применения методов теоретического и экспериментального исследования объектов, процессов и явлений, навыками проведения теплотехнических экспериментов по заданной методике и навыками обработки их результатов

2.3.2 Примеры заданий

- 1. Как (и во сколько раз) изменится коэффициент теплоотдачи при турбулентном течении газа в трубе (лабораторная работа №7), если при прочих равных условиях за счет шероховатости поверхности трубы коэффициент гидравлического сопротивления ξ уменьшится 1,5 раза?
- 2. При турбулентном течении жидкости в трубе (лабораторная работа №7) теплообмен на стабилизированном участке описывается формулой $Nu = cRe^{0.8}$. Как (и во сколько раз) изменится средний температурный напор между стенкой и жидкостью $\Delta T = T_w T_f$, если при постоянных плотностях теплового потока q_w и температуре жидкости на входе T_f увеличить ее скорость в 2 раза, а диаметр трубы увеличить в 2 раза?
- 3. Что нужно сделать в лабораторной работе №9, чтобы увеличить расход газа при истечении через сужающееся сопло неизменной геометрии в сверхкритической области истечения?
- 4. Сравните плотности потока излучения латунной пластины $\varepsilon = 0.06$ (с прокатанной поверхностью) и пластины $\varepsilon = 0.2$ (обработанной грубым наждаком) при температуре 22°С.
- 5. Определите плотность потока излучения абсолютно черного тела при температуре, для которой длина волны соответствует максимальной спектральной плотности излучения $\lambda_{\text{max}} = 0,48 \cdot 10^{-6}$ м.
- 6. Определите температуру T_2 поверхности наименьшего диаметра стенки калориметра ($F_2=18,84*10^{-3} \text{м}^2$), выполненного из обыкновенного стекла толщиной $\delta=0,3$ мм (коэффициент теплопроводности $\lambda=0,74$ Вт/(м·К)), если средняя температура охлаждающей воды t_2 и поток излучения Q_{1-2} , передаваемого в воду, равны экспериментальным данным. Коэффициент теплоотдачи от стенки к воде $\alpha=1000$ Вт/(м²К). Стенку для расчета принять за плоскую. Оцените расхождение между указанными температурами, если допустить замену T_2 на t_2 .

2.4 Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Основные понятия термодинамики. Уравнение МКТ, уравнение состояния.
- 2. Параметры состояния.
- 3. Законы идеальных газов.
- 4. Смеси идеальных газов. Способы задания смеси.
- 5. Энергетика термодинамической системы.
- 6. Теплоемкость. Зависимость теплоемкости от температуры.
- 7. Термодинамические процессы.
- 8. Политропный процесс. Уравнение политропного процесса.
- 9. Первое и второе начала термодинамики.
- 10. Уравнение энергии газового процесса.
- 11. Энтальпия. Изменение энтальпии в термодинамических процессах.
- 12. Энтропия. Изменение энтропии в термодинамических процессах.
- 13. Термодинамические циклы. Термический КПД цикла.
- 14. Цикл Карно. Термический КПД цикла Карно. Необратимый цикл Карно.
- 15. Обратный цикл Карно.
- 16. Теорема Карно.
- 17. Течение газов Закон обращения воздействия. Сопла, диффузоры.
- 18. Определение скорости истечения газа из сопла. Критические параметры.
- 19. Определение работы идеального одноступенчатого компрессора.
- 20. Многоступенчатый компрессор.
- 21. Реальный компрессор.
- 22. Циклы двигателей внутреннего сгорания.
- 23. Циклы двигателей внешнего подвода теплоты.
- 24. Регенеративные циклы.
- 25. Реальные газы Уравнение Ван-Дер-Ваальса.
- 26. Водяной пар. I-S диаграмма водяного пара.
- 27. Влажный воздух. І-d диаграмма влажного воздуха.
- 28. Химическая термодинамика. Первое начало термодинамики применительно к химическим процессам.
 - 29. Циклы газотурбинных установок.
 - 30. Циклы паросиловых установок.
 - 1. Изотермические поверхности. Температурный градиент.

- 2. Теплопроводность в газах, жидкостях, металлах.
- 3. Основной закон теплопроводности.
- 4. Дифференциальное уравнение теплопроводности.
- 5. Частные случаи дифференциального уравнения теплопроводности.
- 6. Условия однозначности в процессах теплопроводности.
- 7. Физические свойства жидкости (газа).
- 8. Стационарная теплопроводность плоской однослойной стенки при граничных условиях I рода.
- 9. Стационарная теплопроводность плоской многослойной стенки при граничных условиях I рода.
- 10. Стационарная теплопроводность цилиндрической однослойной стенки при граничных условиях I рода.
- 11. Стационарная теплопроводность цилиндрической многослойной стенки при граничных условиях I рода.
 - 12. Свободная и вынужденная конвекция.
 - 13. Основное уравнение теплоотдачи. Коэффициент теплоотдачи
 - 14. Теория подобия. Критерии подобия.
 - 15. Теплопередача через плоскую однослойную стенку.
 - 16. Теплопередача через плоскую многослойную стенку.
 - 17. Теплопередача через цилиндрическую однослойную стенку.
 - 18. Теплопередача через цилиндрическую многослойную стенку.
 - 19. Основное уравнение теплопередачи.
 - 20. Интенсификация теплопередачи путем увеличения коэффициента теплоотдачи.
 - 21. Интенсификация теплопередачи за счет оребрения стенок.
 - 22. Дифференциальное уравнение теплоотдачи.
 - 23. Теплообмен излучением. Законы теплового излучения.
 - 24. Тепломассообменные устройства.
 - 25. Уравнение теплового баланса теплообменного аппарата.
 - 26. Что называют топливом. Его состав. Какие виды топлива вы знаете?
 - 27. Какие используются моторные топлива для поршневых ДВС.
 - 28. Сжигание топлива.
 - 29. Горение топлива. Физический процесс горения топлива.
 - 30. Вопросы экологии при использовании теплоты.
 - 31. Токсичные газы продуктов сгорания.
 - 32. Последствия парникового эффекта.
 - 33. Холодильная установка. Принцип работы. Виды холодильных установок.
 - 34. Эжектор. Принцип работы
 - 35. Тепловой насос. Принцип работы
 - 36. Термотрансформатор. Принцип работы.
 - 37. Криогенная техника.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок; студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, но допустил незначительные ошибки и неточности.

«**Не зачтено**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.