Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 14:05:58

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Математика

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.04 Эксплуатация железных дорог

(код и наименование)

Направленность (профиль)/специализация

Магистральный транспорт

(наименование)

Оглавление

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ ДЛЯ ОЦЕНКИ	
ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ	
УРОВЕНЬ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ	4
3. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРУ И КРИТЕРИИ	
ОЦЕНИВАНИЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПРИ ПРОВЕДЕНИИ	
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	12

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации по очной и заочной форме: 1, 4 семестры — экзамен, контрольная работа, 2, 3 семестр — зачет, контрольная работа.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-1: Способен решать инженерные задачи в профессиональ-	ОПК-1.1: Применяет методы высшей
ной деятельности с использованием методов естественных наук,	математики для решения задач профессио-
математического анализа и моделирования	нальной деятельности

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисци- плине	Оценочные материалы (семестр 1-4)
	Обучающийся знает: основы предметной области: знать основные определения и понятия; основные методы решения задач; способы использования основных формул в стандартных ситуациях.	Задания (№ 1 – № 24)
ОПК-1.1: Применяет методы выс- шей математики для решения задач профессиональной деятельности	Обучающийся умеет: решать задачи предметной области: решать типовые задачи по предложенным методам и алгоритмам; графически иллюстрировать задачу; оценивать достоверность полученного решения; работать с научной литературой и другими источниками научно—технической информации: правильно читать математические символы; воспринимать и осмысливать информацию, содержащую математические термины.	Задания (№ 25 — № 31)
	Обучающийся владеет: методами решения типовых задач по предложенным методам и алгоритмам; может продемонстрировать понимание математических аспектов технической проблемы.	Задания (№ 32 – № 38)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС университета.

2. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИ-АЛЫ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ УРОВЕНЬ СФОР-МИРОВАННОСТИ КОМПЕТЕНЦИЙ

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат

Код и наименование инди-	
катора достижения компе-	Образовательный результат
тенции	
ОПК-1.1: Применяет методы высшей	Обучающийся знает: основы предметной области: знать основные
математики для решения задач про-	определения и понятия; основные методы решения задач; способы ис-
фессиональной деятельности	пользования основных формул в стандартных ситуациях.

Nº	ЗАДАНИЯ	В А Р И А Н Т Ы О Т В Е Т О В
1.	Решите уравнение $ \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \cdot X = \begin{pmatrix} 2 & 2 & 1 \\ -3 & 1 & -2 \end{pmatrix}. $	A. $\begin{pmatrix} 1 & 0 \\ 5 & 8 \end{pmatrix}$; B. $\begin{pmatrix} 1 & 5 & 0 \\ 0 & 8 & -1 \end{pmatrix}$; C. $\begin{pmatrix} 1 & 0 \\ 5 & 8 \\ 0 & -1 \end{pmatrix}$.
2.	1. $\begin{cases} x_1 - 6x_2 - 16x_3 - x_4 = -27; 2 \\ 2x_1 - x_2 + x_3 - 2x_4 = 6 \end{cases} \begin{cases} x_1 + 3x_2 - 4x_3 = -8; 3. \\ 3x_1 + 2x_2 - 3x_3 = -4 \end{cases}$	A. 1, 2; B. 2, 3; C. 3, 1; D. Bce.
3.	(2x - 2y = 0,	A. $2x - y + 1 = 0$ B. $-2x + y + 1 = 0$ C. $2x + y - 1 = 0$ D. $-2x - y - 1 = 0$
4.	Даны координаты вершин треугольника A (2; 1), B (1; 1), C (–3; 3). Найти уравнение высоты, проведенной из точки A .	A. $-2x + 3y + 1 = 0$ B. $-2x - y + 5 = 0$ C. $2x + y - 5 = 0$ D. $-2x + y + 3 = 0$
5.	При каком значении α векторы $\bar{a}=\{1;2;\alpha\}$ и $\bar{b}=\{-7;2;1\}$ будут ортогональны?	A. –7 B. 1 C. 2 D. 3
6.	Наити производную 2-го порядка функции $y = \cos^2 r + r^2$	A. $2\cos x + 2$; C. $2 - 2\cos 2x$; B. $2\cos 2x + 2$; D. $2\sin x + 2$.
7.	Для функции $y = x^3 - 6x^2 + 2x + 11$ точка $M(2; -1)$ является точкои	А. разрыва;С. максимума;В. минимума;D. перегиба.
8.	Наити уравнение вертикальной асимптоты для функции $f(x) = \frac{x+7}{2}.$	A. $x = 2$; C. $y = -1$; B. $y = 2$; D. $x = -7$.

Nº	задания	В А Р И А Н Т Ы О Т В Е Т О В
9.	Найти предел $\lim_{x\to 0} \left(\frac{x+4}{8x-2}\right)^x.$	A. 0; C. e; B. 1; D. ∞.
10.	Найти предел $\lim_{x\to 0} \frac{\mathrm{arctg} 6x^2}{8x},$ используя эквивалентные бесконечно малые.	A. ∞; C. 6 / 8; B. 0; D. 3 / 4.
11.	$\int \frac{x dx}{\sin^2 x}$	A. $u = x$, $dv = \frac{dx}{\sin^2 x}$; B. $u = x$, $dv = \sin^2 x$; C. $u = \sin^2 x$, $dv = xdx$; D. $u = \frac{1}{\sin^2 x}$, $dv = xdx$. A. $t = 1 + \sin x$;
12.	Лля вычисления $\begin{pmatrix} dx \\ \vdots \end{pmatrix}$ используется полстановка	A. $t = 1 + \sin x$; B. $t = \sin x$; C. $t = \operatorname{tg} x$; D. $t = \operatorname{tg} \frac{x}{2}$. A. $\arcsin x = C\sqrt{1-y^2}$;
13.	Решить уравнение	A. $\arcsin x = C\sqrt{1-y^2}$; B. $\arcsin y = C - \sqrt{1-x^2}$; C. $\arcsin y = \frac{C}{\sqrt{1-x^2}}$. A. $x = t^2 - \frac{t^3}{3} + 1$;
14.	Тело движется по оси абсцисс, начиная движение от точки $A(10; 0)$ со скоростью $\upsilon = 2t - t^2$. Найти уравнение движения тела.	A. $x = t^2 - \frac{t^3}{3} + 1$; B. $x = -\frac{t^3}{3} + t^2$; C. $x = -\frac{t^3}{3} + t^2 + 10$.
15.	Записать структуру частного решения y^* ЛНДУ $y'' - 2y' + y = 4e^x.$	A. $y^* = AX^2e^x$; B. $y^* = AXe^x$; C. $y^* = Ae^x$
16.	С первого станка на сборку поступает 40 % деталей, остальные 60 % — со второго. Вероятность изготовления бракованной детали для первого и второго станка соответственно равна 0,01 и 0,04. Найдите вероятность того, что наудачу поступившая на сборку деталь окажется бракованной.	B. 0,024 C. 0,028
17.	M(X) = 3. Используя свойства математического ожидания, найдите $M(2X+3)$.	
18.	$CB\ X$ задана функцией распределения $F(x) = \begin{cases} 0 & \text{при } x \leq 0, \\ 0,4 & \text{при } 1 < x \leq 4, \\ 0,5 & \text{при } 4 < x \leq 5, \\ 0,8 & \text{при } 5 < x \leq 7, \\ 1 & \text{при } x > 7. \end{cases}$	A. 0,4 B. 0,3 C. 0,2 D. 0,1
19.	Какова вероятность того, что <i>X</i> примет значение из интервала (2; 5)? Страхуется 2000 автомобилей; вероятность того, что автомобиль может попасть в аварию, равна 0,1. Какой формулой следует воспользоваться, чтобы найти вероятность того, что число аварий не превысит 300?	С. интегральной формулой Муавра-Лапласа D. формулой Бернулли
20.	Работающее и неработающее население распределено в соотношении 2:3. Случайным образом отбирают 10 человек. Каково математическое ожидание числа работающих? Для выборки 0, 1, 6, 3, 5, 1 найти	A. 2 B. 3 C. 4 D. 5 A. 1; B. 2;

Nº		ВАРИАНТЫ ОТВЕТОВ						
	а) моду; б) медиал дисперсии; д) несме	В. 44 / 9; Д. 88 / 15.	Γ.8/3;					
	При изучении раз	l' '						
	чены следующие да	нные:					A. 431,68;	
22.	Зарплата, усл. ед.	Б. 140; В. 120;						
	Число рабочих	17	33	32	15	3	Γ. 140,8;	
	По распределению <i>а) моду</i> ; <i>б) медиан</i>	·0.	Д. 130.					
	При построении у	равнения	парной ре	грессии у	$y = \alpha + \beta x +$	ε были полу-	A. 0.3:	Б. 1,2;
23.	г. чены следующие результаты: $r_{xy} = 0.5$; $\sigma_x = 2.5$; $\sigma_y = 1.2$. Тогда коэффици-							Γ. 0,24;
	ент регрессии в раво		Д. 1,04.					
24.	Выборочное ураві						A. 0,6;	Б. –2;
∠4.	выборочный коэффі	ициент кој	реляции і	может быт	гь равен		B. −3; I	Г. –0,6; Д. 2.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индика- тора достижения компетенции	Образовательный результат
	Обучающийся умеет: решать задачи предметной области: решать ти-
	повые задачи по предложенным методам и алгоритмам; графически
ОПК-1.1: Применяет методы высшей	иллюстрировать задачу; оценивать достоверность полученного реше-
математики для решения задач профес-	ния; работать с научной литературой и другими источниками научно-
сиональной деятельности	технической информации: правильно читать математические сим-
	волы; воспринимать и осмысливать информацию, содержащую мате-
	матические термины.

Задание 25. Решить систему линейных уравнений

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 6, \\ 2x_1 + x_2 + 6x_3 = 9, \\ 4x_1 + 2x_3 = 6 \end{cases}$$

- а) методом Крамера,
- δ) обратной матрицы,
- в) методом Гаусса.

Задание 26. По четырем заданным точкам $A_1(1; 0; 2)$, $A_2(4; -1; 0)$, $A_3(-2; 0; 5)$, $A_4(0; -1; -3)$. Построить пирамиду и средствами векторной алгебры найти: 1) длину ребра A_1A_2 ; 2) угол между ребрами A_1A_2 и A_1A_4 ; 3) площадь грани $A_1A_2A_3$; 4) объем пирамиды $A_1A_2A_3A_4$; 5) уравнение плоскости $A_1A_2A_3$.

Задание 27. Найти производные первого и второго порядков функций, заданных

$$a$$
) явно,

б) параметрическим б) $x = e^{-6t}$, $y = e^{6t}$; δ) параметрическим, в) неявно.

a)
$$y = e^{-x^4}$$
;

$$(5) x = e^{-6t}, y = e^{6t};$$

$$e) x^3 + y^3 = 5x.$$

Задание 28. Вычислите определенные интегралы по формуле Ньютона-Лейбница

a)
$$\int_{1}^{6} \frac{x+4}{x\sqrt{x+3}} dx$$
;
6) $\int_{-6}^{4} \sqrt{64 - x^2} dx$;

$$\int_{-4}^{-3} \frac{x-2}{2+\sqrt[3]{x+4}} \leftrightarrow dx;$$

$$\int_{-3}^{7} \sqrt{x^2 + 49} \ dx.$$

Задание 29. Найти общее решение дифференциальных уравнений

$$y - xy' = 3(1 + x^2y');$$

$$xy' = y tg \frac{y}{x};$$

$$xy' = y - xe^{\frac{y}{x}};$$
 $y'' + y' = \sin x.$ $x^2y' = 2xy + 3;$ $y'' = \frac{1}{y^3}.$

$$y'' + y' = \sin x$$
$$y'' = \frac{1}{x^3}.$$

Задание 30. Найдите область сходимости данных рядов.

$$\sum_{n=1}^{\infty} \frac{2n+1}{n6^n} x^n,$$

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{10^n},$$

$$\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n+1}.$$

Задание 31. Вероятность появления бракованной детали равна 0, 15. Найти вероятность того, что среди 10 случайно отобранных деталей окажется бракованных: a) 2 детали; b) менее 2 деталей; b0 более 2 деталей.

ОПК-1.1: Применяет методы высшей математики для решения задач профессиональной деятельности

Обучающийся владеет: методами решения типовых задач по предложенным методам и алгоритмам; может продемонстрировать понимание математических аспектов технической проблемы.

Задание 32. Известно, что колебания груза, подвешенного на пружине, под действием возмущающей силы f(t) описываются уравнением

$$my'' + Cy = f(t)$$
,

где y = y(t) – отклонение груза от положения равновесия, m – масса груза, C – жесткость пружины. Требуется найти решение этого уравнения, удовлетворяющее начальным условиям $y(0) = y_0, y'(0) = V_0$.

Задание 33. Завод A нужно соединить шоссейной дорогой с прямолинейной железной дорогой, на которой стоит город B. Расстояние AC завода до железной дороги равно a, расстояние CB от точки C до города по железной дороге равно L. Стоимость перевозок по шоссе в m раз дороже (m > 1) стоимости перевозок по железной дороге. Как провести шоссе AP к железной дороге, чтобы стоимость перевозок от завода к городу была наименьшей?

Задание 34. Вероятность того, что в локомотивном депо расход электроэнергии превысит суточную норму, равна 0,4.1) Какова вероятность того, что за 5 рабочих дней будет зафиксирован перерасход электроэнергии в течение 2 дней (событие A_1)? 2) Найти вероятность того, что перерасхода энергии не будет хотя бы в течение 3 дней (событие A_2).

Задание 35. В течение 100 суток наблюдалось прибытие ж/д составов на станцию для разгрузки. Результаты наблюдений сведены в таблицу. X – число составов, прибывших за одни сутки, Y – время разгрузки, час. Построить корреляционно-регрессионную модель зависимости время разгрузки от числа составов и проверить ее значимость.

y x y	5	15	25	35	45
3	2	2	1	1	
5	3	6	3	2	
7	5	2	10	5	2
10		7	9	4	20
15			1	2	3

Задание 36. В таблице даны сведения о прибыли отделения ж/д за 2012-2019 гг.

No	Год	Прибыль, млн р.
1	2012	159,5
2	2013	167,8
3	2014	165,4
4	2015	178,6
5	2016	178,9
6	2017	184,7
7	2018	184
8	2019	185,5

Необходимо:

- ① используя уравнения линий тренда, получить табличные данные по прибыли предприятия для каждой линии тренда за 2012-2019 гг.;
- 2 вывести на график уравнения полученных линий тренда, а также величины достоверности аппроксимации R^2 для каждой из них;
 - 3 составить прогноз по прибыли предприятия на 2020 и 2021 гг.;
 - ④ сделать выводы.

Задание 37. Установить зависимость между годовым объемом работы по грузообороту (X) и фондоемкостью перевозок (Y).

Объем работы по грузообороту (усл. ед.)	14	11	9	8	4	10	6	7	5	10	13	7
Фондоемкость (усл. ед.)	100	80	60	40	40	60	40	40	40	80	100	60

Для этого надо:

- 🛈 построить регрессионную (линейную) модель;
- 2 построить исходные данные и график линейной регрессии;
- 3 оценить параметры этой модели;
- Ф определить показатели качества модели (коэффициент детерминации, среднюю ошибку аппроксимации);
- \circ осуществить точечный прогноз при значении фактора, равного 120 % от среднего значения факторного признака X;
 - 6 сделать выводы.

Задание 38. Отдел кадров железной дороги устроил конкурсный набор n специалистов на m вакантных должностей. Отдел кадров оценил стоимость назначения новых сотрудников для работы на вакантных должностях. Необходимо распределить сотрудников по должностям наилучшим образом по индивидуальным исходным

данным, приведенным ниже.

Должность Работник	Д1	Д2	Дз	Д4	Д5
P_1	7	5	7	6	7
P_2	6	4	8	4	9
P_3	8	6	4	3	8
P_4	7	7	8	5	7
P_5	5	9	7	9	5
P_6	6	8	6	4	7
P_7	7	7	8	6	4

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

ЭКЗАМЕН

I семестр

1. Линейная алгебра и аналитическая геометрия

- 1. Понятие о матрице. Определители второго и третьего порядков.
- 2. Основные свойства определителей.
- 3. Минор и алгебраическое дополнение.
- 4. Теоремы о разложении определителя по элементам строки или столбца.
- 5. Решение систем линейных уравнений (СЛУ) с помощью определителей. Формулы Крамера.
- 6. Сложение матриц, умножение на число. Нулевая матрица.
- 7. Умножение матрицы на матрицу. Единичная матрица.
- 8. Обратная матрица. Матричный метод решения СЛУ.
- 9. Ранг матрицы и его вычисление. Теорема Кронекера-Капелли.
- 10. Простейшие сведения о векторах. Сложение векторов. Умножение вектора на число.
- 11. Базис и координаты вектора. Проекция вектора на вектор. Разложение вектора в ортогональном базисе. Направляющие косинусы вектора.
 - 12. Скалярное произведение векторов и его свойства. Условие ортогональности векторов.
 - 13. Векторное произведение векторов и его свойства. Условие коллинеарности векторов.
 - 14. Смешанное произведение векторов и его свойства.
 - 15. Линейные пространства. Базис и размерность линейного пространства.
 - 16. Аксиоматическое определение скалярного произведения. Евклидовы пространства.
 - 17. Плоскость. Уравнения плоскости в нормальном виде в векторной и координатной формах.
- 18. Общее уравнение плоскости, приведение его к нормальному виду. Уравнение плоскости, проходящей через данную точку.
 - 19. Частные случаи расположения плоскости относительно системы координат.
- 20. Условия параллельности и перпендикулярности плоскостей. Угол между плоскостями. Расстояние от точки до плоскости.
 - 21. Уравнение плоскости, проходящей через три данные точки. Гиперплоскость.
 - 22. Прямая линия. Векторное, канонические и параметрические уравнения прямой линии.
- 23. Уравнение прямой, проходящей через две точки. Общее уравнение прямой. Взаимное расположение прямых в пространстве.
 - 24. Взаимное расположение прямой и плоскости.
 - 25. Уравнения и свойства кривых второго порядка (эллипса, гиперболы, параболы).
 - 26. Приведение уравнений второго порядка к каноническому виду: поворот осей.
 - 27. Приведение уравнений второго порядка к каноническому виду: перенос осей.
 - 28. Полярная система координат. Уравнения кривых в полярных координатах.

2. Элементы теории множеств

- 1. Множество и подмножество.
- 2. Объединение и пересечение множеств.
- 3. Разность и дополнение множеств.
- 4. Декартово произведение множеств.
- 5. Мощность множеств.

3. Введение в математический анализ

- 1. Числовая функция одной переменной. Классы функций. Свойства графиков функций.
- 2. Основные виды отображений.
- 3. Алгебраическая классификация функций.
- 4. Числовая функция нескольких переменных. Вектор функция скалярного аргумента.
- 5. Последовательность. Числовая последовательность.
- 6. Понятие о метрическом пространстве. Ограниченные, открытые, замкнутые множества, верхняя и нижняя грани числовых множеств. Диаметр множеств.
 - 7. Предел последовательности в метрическом пространстве.
 - 8. Предел отображения.
 - 9. Предел числовой функции одной переменной в точке и бесконечно удаленной точке.
- 10. Бесконечно малая величина (БМ). Ограниченные, бесконечно большие (ББ) и отделимые от нуля величины. Теорема о связи БМ с величиной, имеющей предел.
 - 11. Теорема о связи БМ и ББ величин. Теорема о связи отделимой от нуля и ограниченной величины.
 - 12. Простейшие свойства БМ величин.
 - 13. Простейшие свойства пределов.
 - 14. Сравнение БМ. Эквивалентные БМ.
 - 15. Свойства эквивалентных БМ. Главная часть БМ и ББ величин.
 - 16. Теоремы о предельном переходе в неравенстве и первый признак существования предела.
 - 17. Первый и второй замечательные пределы.
- 18. Функция, непрерывная в точке и на отрезке. Односторонние пределы. Виды точек разрыва для числовой функции одной переменной.
 - 19. Свойства функций, непрерывных в точке.
 - 20. Свойства функций, непрерывных на отрезке.

4. Дифференциальное исчисление

- 1. Дифференциал отображения евклидова пространства в евклидово пространство.
- 2. Дифференциал и производная числовой функции одной переменной. Геометрический смысл.
- 3. Сводка правил для вычисления производных.
- 4. Теорема о связи дифференцируемости и существования производной. Теорема о связи дифференцируемости и непрерывности.
- 5. Полный дифференциал и частные производные числовой функции нескольких переменных. Геометрический смысл.
 - 6. Вычисление производных и дифференциалов сложных функций.
 - 7. Вычисление производных неявных функций.
 - 8. Производные и дифференциалы высших порядков для числовой функции одной переменной.
- 9. Частные производные числовой функции нескольких переменных и полные дифференциалы высших порядков.
 - 10. Свойства функций, дифференцируемых на интервале. Теоремы Ролля, Коши и Лагранжа.
 - 11. Теорема Лопиталя. Раскрытие неопределенностей по правилу Лопиталя.
 - 12. Формула Тейлора для многочлена.
 - 13. Формула Тейлора для функции. Остаточный член формулы Тейлора в форме Лагранжа и Пеано.
 - 14. Разложение функций $f(x) = e^x$, $f(x) = \cos(x)$, $f(x) = \sin(x)$ по формуле Тейлора.
 - 15. Разложение функций $f(x) = \ln(x+1)$, $f(x) = (1+x)^{\alpha}$ по формуле Тейлора.
 - 16. Приложения формулы Тейлора к исследованию функций. Главная часть бесконечно малой.
 - 17. Приложения формулы Тейлора к исследованию функций. Возрастание и убывание функции.
 - 18. Приложения формулы Тейлора к исследованию функций. Экстремумы функции.
 - 19. Приложения формулы Тейлора к исследованию функций. Выпуклость и вогнутость кривой.
 - 20. Приложения формулы Тейлора к исследованию функций. Точки перегиба кривой.
 - 21. Асимптоты кривой.
 - 22. Локальные экстремумы функции нескольких переменных.
- 23. Условные экстремумы числовой функции нескольких переменных. Метод множителей Лагранжа.
 - 24. Глобальные экстремумы числовой функции нескольких переменных.
 - 25. Производная скалярного поля по направлению. Градиент.

5. Элементы теории функции комплексной переменной

- 1. Комплексные числа в алгебраической форме и действия над ними.
- 2. Комплексные числа в тригонометрической и показательной формах. Формулы Муавра.
- 3. Разложение многочлена на множители в случае действительных и мнимых корней.

II семестр

1. Интегральное исчисление

- 1. Первообразная и неопределенный интеграл.
- 2. Основные свойства неопределенного интеграла.
- 3. Интегрирование подстановкой и по частям.
- 4. Интегрирование некоторых функций, содержащих квадратный трехчлен.
- 5. Рациональные дроби. Простейшие рациональные дроби и их интегрирование.
- 6. Понятие определенного интеграла как предела интегральной суммы.
- 7. Формула Ньютона-Лейбница.
- 8. Основные свойства определенного интеграла.
- 9. Оценки определенного интеграла.
- 10. Теорема о среднем значении.
- 11. Вычисление определенного интеграла с помощью подстановки и по частям.
- 12. Вычисление площадей плоских областей, объема и площади поверхности тела вращения с помощью определенного интеграла.
 - 13. Вычисление длины дуги плоской кривой с помощью определенного интеграла.
 - 14. Вычисление объема и площади поверхности тела вращения.
 - 15. Несобственные интегралы с бесконечными пределами интегрирования.
 - 16. Несобственные интегралы от разрывных функций.
 - 17. Теоремы о сходимости несобственных интегралов.
 - 18. Определенный интеграл как функция пределов интегрирования.
- 19. Понятие о специальных функциях, определяемых интегралами с переменным верхним пределом.
 - 20. Понятие об интегралах, зависящих от параметра.
- 21. Понятие об интеграле по мере. Двойной интеграл. Его вычисление двукратным интегрированием.
 - 22. Вычисление площади и объема посредством двойного интеграла.

2. Обыкновенные дифференциальные уравнения

- 1. Понятие о дифференциальном уравнении (ДУ). Задача Коши для ДУ первого порядка.
- 2. Уравнение с разделяющимися переменными. Линейное ДУ.
- 3. Однородное дифференциальное уравнение первого порядка.
- 4. Уравнения в полных дифференциалах.
- 5. Задача Коши для дифференциальных уравнений высших порядков.
- 6. Уравнения, допускающие понижение порядка.
- 7. Линейные однородные уравнения. Определения и свойства.
- 8. Решение линейных однородных уравнений с постоянными коэффициентами.
- 9. Структура решения линейного неоднородного уравнения.
- 10. Нахождение частного решения линейного неоднородного уравнения с постоянными коэффициентами и с правой частью специального вида.
 - 11. Метод вариации произвольных постоянных.
- 12. Нормальные системы ДУ. Решение систем ДУ с постоянными коэффициентами методом исключения.

IV семестр

Математическая статистика

- 1. Генеральная совокупность и выборка. Статистическая функция распределения. Статистическая плотность вероятности. Числовые характеристики статистических распределений.
- 2. Основные понятия о точечных оценках параметров распределения. Оценка математического ожидания.
 - 3. Методы построения законов распределения по опытным данным: метод моментов.

- 4. Принцип максимального правдоподобия.
- 5. Доверительные интервалы и доверительная вероятность. Доверительный интервал для математического ожидания при большом объеме выборки.
 - 6. Доверительный интервал для математического ожидания при малом объеме выборки.
 - 7. Понятие о статистических гипотезах.
 - 8. Виды гипотез. Критерий Пирсона χ^2 .
- 9. Гипотеза о дисперсиях двух нормальных случайных величинах (СВ) (при неизвестных средних). Гипотеза о дисперсиях двух нормальных СВ (при известных средних).
 - 10. Многомерные СВ. Функция и плотность распределения двумерной СВ.
 - 11. Условные законы распределения. Моменты двумерной СВ.
 - 12. Нормальный закон на плоскости. Условные математические ожидания.
 - 13. Линейная регрессия.
- 14. Корреляционно-регрессионный анализ. Функциональная, стохастическая и корреляционная зависимости.
 - 15. Определение формы парной корреляционной зависимости.
 - 16. Регрессионный анализ парной линейной зависимости.
 - 17. Корреляционный анализ парной линейной зависимости.
- 18. Множественный регрессионный анализ. Статистический коэффициент множественной линейной корреляционной зависимости и его свойства.
- 19. Понятие об однофакторном дисперсионном анализе. Общая, факторная и остаточная суммы квадратов отклонений. Сравнение нескольких средних методом дисперсионного анализа.

3AYET III cemectp

1. Числовые и функциональные ряды

- 1. Ряд. Сумма ряда.
- 2. Общие свойства сходящихся рядов.
- 3. Сравнение рядов с положительными членами.
- 4. Признак сходимости Даламбера для положительных рядов.
- 5. Радикальный признак сходимости Коши для положительных рядов.
- 6. Интегральный признак сходимости Коши для положительных рядов.
- 7. Знакочередующиеся ряды. Теорема Лейбница.
- 8. Знакопеременные ряды. Абсолютная и условная сходимости.
- 9. Функциональные ряды и их свойства.
- 10. Степенные ряды. Теорема Абеля.
- 11. Свойства степенных рядов.
- 12. Ряд Тейлора.
- 13. Экспоненциальный ряд.
- 14. Ряды Тейлора для синуса и косинуса.
- 15. Вычисление значения функции путем разложения в степенной ряд.
- 16. Вычисление интегралов путем разложения в степенной ряд.
- 17. Приближенной решение дифференциальных уравнений с помощью рядов.
- 18. Тригонометрические ряды.

2. Теория вероятностей

- 1. Основные понятия и определения. Случайные события. Классическое и статистическое определения вероятности события.
 - 2. Основные теоремы теории вероятностей. Полная группа событий.
 - 3. Зависимые и независимые события. Условная вероятность. Теорема умножения вероятностей.
 - 4. Формула полной вероятности. Вероятность гипотез (формула Байеса.
 - 5. Случайная величина (СВ). Закон распределения СВ. Функция распределения, ее свойства.
 - 6. Функция плотности, ее свойства. Характеристики СВ.
 - 7. Биномиальный закон распределения СВ, его свойства, характеристики.
 - 8. Распределение Пуассона, его характеристики.
 - 9. Равномерное и показательное распределения непрерывной СВ.
- 10. Нормальный закон распределения СВ. Функция плотности. Нормированное нормальное распределение. Интеграл вероятностей (функция Лапласа.
 - 11. Вероятность попадания в заданный интервал. Правило трех сигм. Асимметрия и эксцесс.

- 12. Вероятность наступления событий при независимых испытаниях (формулы Бернулли, Пуассона, локальная теорема Лапласа.
- 13. Закон больших чисел. Теорема Чебышева, частный случай теоремы. Теорема Бернулли. Понятие о теореме Ляпунова.
 - 14. Понятие о случайных процессах и их характеристиках.

3. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРУ И КРИТЕРИИ ОЦЕНИВАНИЯ СФОРМИРОВАННОСТИ КОМПЕТЕН-ЦИЙ ПРИ ПРОВЕДЕНИИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- \triangleright оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100-90 % от общего объёма заданных вопросов;
- \triangleright оценка «**хорошо**» выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- \triangleright оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично / зачтено» — ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо** / **зачтено**» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно / зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2 / 3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«Неудовлетворительно / не зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- ✓ грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- ✓ негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- ✓ недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок.

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по зачету

«Зачтено» — студент демонстрирует знание основных разделов программы изучаемого курса, его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, не допустил фактических ошибок при ответе, последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» — студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса, его базовых понятий и фундаментальных проблем; слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии.