Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 22.10.2025 18:00:49 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Надежность измерительных устройств и систем

(наименование дисциплины (модуля)

Направление подготовки / специальность

27.03.01 Стандартизация и метрология

(код и наименование)

Направленность (профиль)/специализация

«Метрология и метрологическое обеспечение»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (6 семестр), экзамен (7 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-3: Способен осуществлять надзор и контроль за состоянием и эксплуатацией оборудования, выявлять резервы, определять причины существующих недостатков и неисправностей в его работе, принимать меры по их устранению и повышению эффективности использования	ПК-3.3: Использует правила выполнения чертежей, установленные государственными стандартами ЕСКД, методы обеспечения надежности СИ при конструировании и изготовлении, методы и средства поверки, калибровки, юстировки СИ, анализирует основные причины отказов измерительной техники
ПК-5: Способен производить сбор и анализ исходных информационных данных для проектирования средств измерения, контроля и испытаний с применением современных информационных технологий	ПК-5.1: Применяет методы структурного анализа и синтеза измерительных приборов и систем, методы формирования первичных диагностических признаков объектов, навыки сбора, обработки и анализа информации о надежности средств измерений

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ПК-3.3: Использует правила выполнения чертежей, установленные государственными стандартами ЕСКД, методы обеспечения надежности СИ при	Обучающийся знает: понятия и методику оценки уровня брака Обучающийся умеет: производить оценку	(семестр 6, 7) Вопросы (№1 - №10) Задания (№ 1 - № 5)
конструировании и изготовлении, методы и средства поверки, калибровки, юстировки СИ, анализирует основные причины отказов измерительной техники	уровня брака Обучающийся владеет: методами и навыками работ по оценке уровня брака	Задания (№11 - №13)
ПК-5.1: Применяет методы структурного анализа и синтеза измерительных приборов и систем,	Обучающийся знает: методику экспертизы технической документации Обучающийся умеет: проводить экспертизу	Вопросы (№11 - №20) Задания (№ 6 - №10)
методы формирования первичных диагностических признаков объектов, навыки сбора, обработки и анализа	технической документации и контроль состояния оборудования.	
информации о надежности средств измерений	Обучающийся владеет: методами и навыками по выявлению резервов, определению причин существующих	Задания (№14 - №16)
	недостатков в его работе; формировать целевые функции по устранению брака.	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС Университета.

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС Университета.

2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

	1 0
Код и наименование	Образовательный результат
компетенции	
ПК-3.3: Использует правила выполнения чертежей, установленные государственными стандартами ЕСКД, методы обеспечения надежности СИ при конструировании и изготовлении, методы и средства поверки, калибровки, юстировки СИ, анализирует основные причины отказов измерительной техники	Обучающийся знает: понятия и методику оценки уровня брака.

Примеры вопросов/заданий

- 1. Выберете правильное определение отказа объекта
- 1. это событие, состоящее в достижении объектом предельного состояния;
- 2. это событие, состоящее в нарушении исправности объекта
- 3. это событие, состоящее в нарушении работоспособности объекта;
- 2. Дайте определение сбоя. Сбой это:
- 1. отказ, возникающий в результате кратковременного скачкообразного изменения значения основного параметра объекта без выхода з область работоспособных состояний;
- 2. отказ, возникающий в результате кратковременного скачкообразного изменения значения основного параметра объекта с выходом за область работоспособных состояний;
- 3. самоустраняющийся отказ, приводящий к кратковременной утрате работоспособности (работоспособность объекта восстанавливается без вмешательства извне)
- 3. Объект это:
- 1. это техническое изделие определенного целевого назначения, рассматриваемый в период эксплуатации;
- 2. это техническое изделие определенного целевого назначения, рассматриваемый в период испытаний и эксплуатации;
- 3. это техническое изделие определенного целевого назначения, рассматриваемый в периоды проектирования, производства, испытаний и эксплуатации;
- 4. Функция надёжности это:
- 1. это вероятность того, что объект проработает безотказно на заданном интервале времени (0, t);
- 2. это вероятность того, что объект проработает безотказно на заданном интервале времени (t1, t2);
- 3. это вероятность того, что объект проработает безотказно на заданном интервале времени (t1, t2) при условии, что на интервале (0, t1) отказов не было;
- 5.Выберете правильный вариант формулы для определения интенсивности отказов объекта: 1) $\gamma_{-}((t))=(P^{\wedge},(t))/(P(t))$, 2) $\gamma(t)=-P^{\wedge},(t)$, 3) $\gamma_{-}((t))=(P^{\wedge},(t))/(P(t))$,
- 1. 3);
- 2. 1):
- 3.2);

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 6. Частота отказов объекта это:
- 1. интегральная характеристика объекта;
- 2. интервальная характеристика объекта;
- 3. точечная характеристика объекта;
- 7. Чему равно среднее время работы до отказа (наработка на отказ) при экспоненциальном законе надежности:
- 1. T= $1/\gamma^2$;
- 2. T= $1/\gamma^{\wedge}$;
- 3. T=γ
- 8. Невосстанавливаемый объект это:
- 1. объект, не пригодный к произведению ремонта;
- 2. объект, работоспособность которого не подлежит восстановлению после наступления отказа;
- 3. объект, работоспособность которого подлежит восстановлению после наступления отказа, н все характеристики надежности определяются для первого этапа функционирования;
- 9. Нестационарный коэффициент готовности это вероятность того, что объект:
- 1 работоспособен на единичном интервале времени t;
- 2. работоспособен в произвольный момент времени t;
- 3. работоспособен на заданном интервале времени t;
- 10. При определении характеристик надежности восстанавливаемого объекта (модель мгновенного восстановления работоспособности) исследуются характеристики потока:
- 1 отказов:
- 2. восстановлений;
- 3. без разницы, т.к. это одинаковые потоки;

Обучающийся	знает:	методику	экспертизы	технической
документации				
	документации	документации	документации	документации

Примеры вопросов/заданий

- 11. Стационарный коэффициент простоя восстанавливаемого объекта (модель конечного восстановления работоспособности) показывает:
- 1 долю того времени, в течении которого объект находится в неработоспособном состоянии;
- 2. долю того времени, в течении которого объект находится в работоспособном состоянии;
- 3. среднее время его функционирования;
- 12. Для определения показателей надежности системы необходимо иметь следующую информацию:
- а) показатели надежности всех элементов системы;
- б) структурную схему надежности системы;
- в) взаимосвязь между отказами системы и отказами всех её элементов:
- 1. необходимо владеть всей информацией а), б), в);
- 2. достаточно знать а) и б);
- 3. достаточно знать а)
- 13. Метод «особого элемента используется для»:
- 1. определения показателей надежности системы со структурной схемой надежности, не приводимой к простейшим;

- 2. упрощения структурной схемы надежности;
- 3. определения показателей надёжности системы с произвольной структурной схемой надежности;
- 14. При резервировании системы с временной избыточностью:
- 1. в состав системы вводятся дополнительные элементы, на обеспечение работоспособности которых тратиться дополнительное время;
- 2. системе выделяется дополнительное время для повторения в случае отказа наиболее важных её функций;
- 3. в систему вводятся дополнительные средства дублирования информации и на это затрачивается дополнительное время;
- 15. Выберете определение. Резервирование это:
- 1. введение в систему дополнительных элементов для повышения её надежности;
- 2. введение в систему дополнительных функций для повышения её надежности;
- 3. введение в систему дополнительных средств и/или возможностей для повышения её надежности;
- 16. Мажоритарный элемент при неадаптивном резервировании выполняет:
- 1. функцию контроля числа работоспособных входных элементов;
- 2. функцию голосования по большинству голосов;
- 3. функцию голосования по меньшинству голосов;
- 17. Надежность это сложное свойство. Его нужно определять через указанные понятия: а) безотказность; б) ремонтопригодность; в) долговечность; г) сохраняемость
- 1. a);
- 2. все понятия;
- 3. а) и б);
- 18. Система это:
- 1. объект, представляющий собой совокупность элементов, взаимодействующих в процессе выполнения определенного круга задач и взаимосвязанных функционально;
- 2. объект, представляющий собой совокупность независимых элементов, взаимодействующих в процессе выполнения определенного круга задач;
- 3. объект, представляющий собой совокупность элементов, взаимодействующих в процессе выполнения определенного круга задач и невзаимосвязанных функционально;
- 19. Экспоненциальный закон надежности является математической моделью объекта в следующих случаях, когда: а) отказы носят внезапный характер; б) основной параметр объекта стационарный случайный процесс; в) объект является высоконадежным:
- 1. B);
- 2. a);
- 3. ₆);
- 20. Восстанавливаемый объект это:
- 1. объект, пригодный к произведению ремонта;
- 2. объект, работоспособность которого подлежит восстановлению после наступления отказа, при этом количество отказов может быть неограниченным;
- 3. объект, работоспособность которого подлежит восстановлению после наступления отказа, при этом отказ может быть только один;

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат

ПК-3.3: І	Іспользует	правила
выполнения		чертежей,
установленн	ные государс	твенными
стандартами	в ЕСКД,	методы
обеспечения	надежност	и СИ при
конструирог	вании и изго	товлении,
методы и	средства	поверки,
калибровки,	юстиров	ки СИ,
анализирует	основные	причины
отказов изм	ерительной т	ехники

Обучающийся умеет: производить оценку уровня брака

- 1. Охарактеризовать определение показателей надежности объектов систем автоматики и телемеханики железнодорожного транспорта.
- 2. Описать специфику определения структурной надежности объектов систем автоматики и телемеханики железнодорожного транспорте.
- 3. Объяснить ход расчета показателей надежности невосстанавливаемых систем при различных способах резервирования.
- 4. Описать влияние надежности систем автоматики и телемеханики железнодорожного транспорта на обеспечение запасными частями.
- 5. Анализировать надежности резервированных восстанавливаемых систем.

ПК-5.1: Применяет методы структурного анализа и синтеза измерительных приборов и систем, методы формирования первичных диагностических признаков объектов, навыки сбора, обработки и анализа информации о надежности средств измерений

Обучающийся умеет: проводить экспертизу технической документации и контроль состояния оборудования.

- Охарактеризовать определение показателей надежности одно- и многоструктурных САР.
- 7. Описать специфику определения показателей надежности восстанавливаемых объектов систем автоматики и телемеханики железнодорожного транспорта.
- 8. Объяснить ход расчета надежности схем сигнализации и защиты оборудования.
- 9. Охарактеризовать синтез резервирования систем с заданным уровнем надежности.
- 10. Объяснить синтез измерительных каналов АСУ ТП с заданным уровнем надежности.

ПК-3.3: Использует правила выполнения чертежей, установленные государственными стандартами ЕСКД, методы обеспечения надежности СИ при конструировании и изготовлении, методы и средства поверки, калибровки, юстировки анализирует основные причины отказов измерительной техники

Обучающийся владеет: методами и навыками работ по оценке уровня брака

11. Были произведены измерения некоторой физической величины. Было сделано 10 измерений. Определите доверительный интервал для оценки с надежностью Р истинного значения измеряемой величины, если известно, что результаты наблюдения подчиняются нормальному закону. Исходные данные представим в таблице.

Исходные данные:

№ n/n	\mathbf{x}_i	
1	11,66 11,94	
2		
3	11,77	
4	11,88	
5	11,83	
6	11,81	
7	11,52	
8	12,17	
9	11,79	
10	12,11	

12. При проведении измерений различных физических величин были получены результаты. При помощи критерия Романовского проверить, являются ли указанные значения грубой погрешности.

№ п/п	x _i
1	25,25
2	25,15
3	25,23
4	25,2
5	25,26
6	25,22
7	25,35
8	25,22

13. Определить величину брака, потери от брака, процент брака, процент потерь от брака в отчетном и предыдущем годах. Рассчитать удельный вес потерь от брака в себестоимости продукции. Сделать сравнительный анализ. Составить выводы и предложения.

Показатели	Прошлый год	Отчетный год
1 Себестоимость окончательно забракованных изделий	1,2	1,5
2 Затраты на исправление брака	0,6	0,5
3 Стоимость брака по цене его возможного использования	0,3	0,2
4 Сумма вычетов с виновников брака	0,9	0,7
5 Производственная себестоимость изделий	175,6	180,8

ПК-5.1: Применяет методы структурного анализа и синтеза измерительных приборов и систем, методы формирования первичных диагностических признаков объектов, навыки сбора, обработки и анализа информации о надежности средств измерений

Обучающийся владеет: методами и навыками по выявлению резервов, определению причин существующих недостатков в его работе; формировать целевые функции по устранению брака.

14.

Для прибора с заданным классом точности рассчитать зависимость абсолютных погрешностей от результата измерений. Результаты представить в виде графика. Исходные данные:

класс точности прибора-0,4; результаты измерения:0, 100; 200; 400; 500; 600; 800; 1000. 15.

Для цифрового измерительного прибора рассчитать зависимость абсолютных и относительных основных погрешностей от результата измерений; результаты представить в виде таблицы. Исходные данные: класс точности 0,25/0,1 диапазон -100...+100 С. Если в работе прибора существуют недостатки, определите причины их устранения. 16.

Время работы радиоэлемента средства измерений до отказа подчинено усеченному нормальному закону с параметрами T1 и σ. Необходимо вычислить количественные характеристики вероятности безотказной работы, интенсивность отказов и среднюю наработку до первого отказа для времени t1, t2, t3, t4. Для выполнения задания студент выбирает исходные данные из таблицы по последней цифре собственного шифра.

Последняя цифра шифра				Исходные данны	e	
	T_I	σ	t, час			
	2023		t ₁	t ₂	t ₃	t ₄
0	8000	1500	4000	6000	8000	10000
1	8100	1600	4100	6100	8100	10100
2	8200	1700	4200	6200	8200	10200
3	8300	1800	4300	6300	8300	10300
4	8400	1900	4400	6400	8400	10400
5	8500	2000	4500	6500	8500	10500
6	8600	2100	4600	6600	8600	10600
7	8700	2200	4700	6700	8700	10700
8	8800	2300	4800	6800	8800	10800
9	8900	2400	4900	6900	8900	10900

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Надежность: основные понятия и определения
- 2. Показатели надежности
- 3. Основные показатели безотказности объектов
- 4. Вероятность безотказной работы
- 5. Средняя наработка до отказа
- 6. Интенсивность отказов
- 7. Средняя наработка на отказ
- 8. Параметр потока отказов
- 9. Основные показатели долговечности
- 10. Средний срок службы (математическое ожидание срока службы)
- 11. Средний ресурс (математическое ожидание ресурса)
- 12. Основные показатели ремонтопригодности
- 13. Среднее время восстановления
- 14. Интенсивность восстановления
- 15. Комплексные показатели надежности
- 16. Коэффициент готовности
- 17. Коэффициент оперативной готовности
- 18. Коэффициент технического использования
- 19. Основные математические модели, наиболее часто используемые в расчетах надежности
- 20. Распределение Вейбулла
- 21. Экспоненциальное распределение
- 22. Распределение Рэлея
- 23. Нормальное распределение (распределение Гаусса)
- 24. Примеры использования законов распределения в расчетах надежности

Вопросы для подготовки к экзамену

- 1. Надежность: основные понятия и определения
- 2. Показатели надежности
- 3. Основные показатели безотказности объектов
- 4. Вероятность безотказной работы
- 5. Средняя наработка до отказа
- 6. Интенсивность отказов
- 7. Средняя наработка на отказ
- 8. Параметр потока отказов
- 9. Основные показатели долговечности
- 10. Средний срок службы (математическое ожидание срока службы)
- 11. Средний ресурс (математическое ожидание ресурса)
- 12. Основные показатели ремонтопригодности
- 13. Среднее время восстановления
- 14. Интенсивность восстановления
- 15. Комплексные показатели надежности
- 16. Коэффициент готовности
- 17. Коэффициент оперативной готовности
- 18. Коэффициент технического использования
- 19. Основные математические модели, наиболее часто используемые в расчетах надежности
- 20. Распределение Вейбулла
- 21. Экспоненциальное распределение
- 22. Распределение Рэлея
- 23. Нормальное распределение (распределение Гаусса)
- 24. Примеры использования законов распределения в расчетах надежности
- 25. Определение показателей надежности при экспоненциальном законе распределения
- 26. Определение показателей надежности при распределении Рэлея
- 27. Определение показателей схемы при распределении Гаусса

- 28. Пример определения показателей надежности неремонтируемого объекта по опытным данным
- 29. Надежность невосстанавливаемой системы при основном соединении элементов
- 30. Определение вероятности безотказной работы и средней наработки до отказа
- 31. Пример расчета надежности системы, собранной по основной схеме
- 32. Порядок решения задач надежности. Исходные положения
- 33. Методы расчета надежности
- 34. Надежность невосстанавливаемых резервированных систем
- 35. Общее резервирование с постоянно включенным резервом и с целой кратностью
- 36. Надежность системы с нагруженным дублированием
- 37. Общее резервирование замещением
- 38. Надежность системы при раздельном резервировании и с целой кратностью по всем элементам
- 39. Смешанное резервирование неремонтируемых систем
- 40. Надежность восстанавливаемых систем
- 41. Надежность восстанавливаемой одноэлементной системы
- 42. Надежность нерезервированной системы с последовательно включенными восстанавливаемыми элементами
- 43. Надежность восстанавливаемой дублированной системы
- 44. Надежность восстанавливаемой системы при различных способах резервирования элементов
- 45. Анализ показателей надежности по экспериментальным данным
- 46. Документация для сбора первичной информации
- 47. Планирование испытаний и обработка экспериментальных данных
- 48. Интервальная оценка показателей надежности

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Зачет и экзамен по дисциплине проводится в устной форме. Билеты должны быть утверждены (или переутверждены) заведующим кафедрой. Количество билетов должно быть определено с учетом количества студентов в группах плюс пять билетов дополнительно. К экзамену и зачету допускаются обучающиеся, выполнившие следующие требования: выполненные и отчитанные лабораторные работы, наличие письменного отчета по практическим и лабораторным занятиям. На подготовку к ответу по билету, обучающемуся дается 45 минут.

Экзаменационный билет состоит из трех вопросов:

- 1. Тестовые вопросы.
- 2. Решение задачи.
- 3. Выполнение практического задания.

По итогам выполнения заданий билета проводится собеседование.

При проведении тестирования обучающимся выдается задание, состоящее из десяти вопросов, отражающих основной теоретический материал с требуемым количеством вариантов ответов. Тесты построены таким образом, что при их выполнении необходимо найти требуемое определение, формулу, точку на механической характеристике или саму графическую зависимость. При этом задания могут включать в себя вопросы, в которых необходимо найти как правильный, так и ошибочный ответ.

Для лучшего освоения материала, полученного на лекционных и практических занятиях, обучающимся предлагается производить подробный анализ и разбор конкретных производственных ситуаций, где могут быть использованы электрические цепи или электрические машины со схемами управления. После чего выработать технически грамотное решение.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

Оценку «Отлично» (5 баллов) — получают студенты с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

Оценку «Хорошо» (4 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 89 - 70% от общего объёма заданных тестовых вопросов.

Оценку «Удовлетворительно» (3 балла) — получают студенты с правильным количеством ответов на тестовые вопросы — 69 - 40% от общего объёма заданных тестовых вопросов.

Оценку «Неудовлетворительно» (0 баллов) – получают студенты с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ РЕШЕНИЯ ЗАДАЧИ

Оценку «зачтено» — получают обучающиеся, самостоятельно выполнившие и оформившие решенную задачу в соответствии с предъявляемыми требованиями, а также грамотно ответившие на все встречные вопросы преподавателя. В представленном решении отражены быть отражены все необходимые результаты проведенных расчетов без арифметических ошибок, сделаны обобщающие выводы.

Оценку «не зачтено» – получают обучающиеся, если задача не решена, или решена неправильно, а обучающийся не сумел ответить на вопросы преподавателя по решению задачи, или представленное решение не соответствует требованиям (содержит ошибки, в том числе по оформлению, отсутствуют выводы).

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Оценку «зачтено» — получают обучающиеся, обладающие знаниями о режимах работы электрических машин и способные идентифицировать эти режимы, имеющие навыки в использовании контрольно-измерительной аппаратуры и способные применить их для измерения параметров электрических машин, правильно выполнившие все необходимые измерения и дополнительные расчеты при проведении натурных исследований, сделавшие обобщающие выводы на основании проведенных замеров.

Оценку «не зачтено» - получают обучающиеся, не обладающие знаниями о режимах работы электрических машин, не способные их идентифицировать, не способные с помощью контрольно-измерительной аппаратуры определить параметры электрических машин, провести их анализ и сделать обобщающие выводы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЗАЧЕТУ

Оценку «отлично» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 95 % от общего объёма заданных вопросов.

Оценку «хорошо» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 75 % от общего объёма заданных вопросов.

Оценку «удовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – не менее 50 % от общего объёма заданных вопросов.

Оценку «неудовлетворительно» – получают обучающиеся с правильным количеством ответов на задаваемые вопросы – менее 50 % от общего объёма заданных вопросов.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ЭКЗАМЕНУ

Оценка «Отлично» (5 баллов) — студент демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

Оценка «Хорошо» (4 балла) – студент демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

Оценка «Удовлетворительно» (3 балла) — студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

Оценка «Неудовлетворительно» (0 баллов) — выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.