Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 24.10.2025 15:08:23

Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Взаимодействие видов транспорта

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.04 Эксплуатация железных дорог

(код и наименование)

Направленность (профиль)/специализация

Магистральный транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет с оценкой, 9 семестр ОФО, 5 курс ЗФО.

Перечень компетенций, формируемых в процессе освоения дисциплины

Trepe tens kommerengini, формируе	мых в процессе освоения днецивнив	
Код и наименование компетенции	Код индикатора достижения компетенции	
ПК-1: Способен выполнять комплекс услуг	ПК-1.7: Использует принципы	
по транспортному обслуживанию	взаимодействия разных видов транспорта	
грузоотправителей и грузополучателей при	при их участии в едином перевозочном	
перевозке грузов, в том числе	процессе	
скоропортящихся, на основе принципов		
логистики с учетом эффективного и		
рационального взаимодействия видов		
транспорта, составляющих единую		
транспортную систему		

Результаты обучения по дисциплине, соотнесенные с планируемыми

результа	аммы		
Код и наименование	Результаты обучения по	Оценочные	
индикатора достижения	дисциплине	материалы	
компетенции			
ПК-1.7: Использует	Обучающийся знает: принципы	Вопросы (№ 1- №5)	
принципы взаимодействия	взаимодействия разных видов		
разных видов транспорта	транспорта при их участии в едином		
при их участии в едином	перевозочном процессе		
перевозочном процессе	Обучающийся умеет: использовать	Задания (№1 - №3)	
	принципы взаимодействия разных		
	видов транспорта при их участии в		
	едином перевозочном процессе		
	Обучающийся владеет:	Задания (№4 - №6)	
	использованием принципов		
	взаимодействия разных видов		
	транспорта при их участии в едином		

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) ответ на теоретические вопросы;
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат		
достижения компетенции			
ПК-1.7: Использует принципы	Обучающийся знает: принципы		
взаимодействия разных видов транспорта	взаимодействия разных видов транспорта при		
при их участии в едином перевозочном	их участии в едином перевозочном процессе		
процессе			

Примеры вопросов/заданий

- 1.В какие транспортные коридоры (ТК) с учетом технических и технологических требований входит Транссиб»:
 - 1). 2, 3, и 9;
 - 2). 1, 2 и 9
 - 3).2, 5 и 9;
 - 4).2, 4 и 7.
- 2.С учетом технического оснащения рабочих мест перевалка внешнеторговых грузов может осуществляться:
 - 1). На станции;
 - 2). На таможне;
 - 3). В портах;
 - 4). На контейнерном терминале.
 - 3. Фрахтовый агент это:
 - 1). Представитель перевозчика;
 - 2). Представитель грузовладельца;
 - 3). Представитель грузоотправителя;
 - 4). Представитель грузополучателя.
- 4. Какой из евроазиатских транспортных коридоров имеет оптимальные основы эксплуатации наземных видов транспорта:
 - 1). MTK № 9;
 - 2). Транссиб;
 - 3). TPACEKA;
 - 4). Север-Юг.
 - 5. С таможенными грузами работают на территории:
 - 1). CBX;
 - 2). Склада крытого хранения;
 - 3). Склада открытого хранения;
 - 4). Таможенного склада.

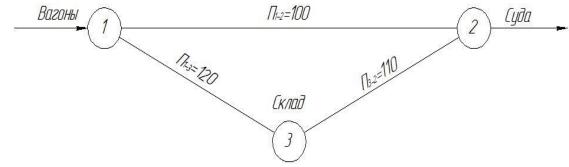
2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения компетенции	Образовательный результат		
ПК-1.7: Использует принципы взаимодействия	Обучающийся умеет: Использовать		
разных видов транспорта при их участии в	принципы взаимодействия разных видов		
едином перевозочном процессе			

Примеры заданий

Задача №1. Смоделировать прибытие автотранспорта к складу для тарно-штучных грузов при нерегулируемом подводе автомобилей. Продолжительность работы автотранспорта составляет 9 часов, общее число ездок-60 штук, доля ездок, выполняемых автомобилями ЗИЛ-130, составляет 60%, остальные езди осуществляются машинами марки ГАЗ-53А, время обслуживания машин у склада: ЗИЛ-130-21 мин., ГАЗ-53А-16 мин. В утренние часы прибывает «пиковое» количество машин — 40% от всей нормы. Этот период длится 2,4 часа. Параметр Эрланга в распределении интервалов между ездками автомобилей в период их сгущенного подхода равен 1, в остальные часы-2. Склад имеет 4 секции. Для моделирования интервалов прибытия автомобилей необходимо использовать случайные числа.


Решение.

$$au_1 = -rac{60}{ extit{K} imes \lambda_a} imes ext{In} \Biggl(\prod_{i=1}^k \xi_i \Biggr) = -rac{60}{1 imes 10} imes ext{In} (0,1012) = -6 imes (-2,29) = 14$$
 мин

Таблица 2 - Моделирование прибытия автомобилей к складу

Интервалы	Время	Марка	Продолжительность	Секция
между	прохода	прибывшего	грузовой операции,	склада
прибытием	автомобилей	автомобиля	МИН	
автомобилей,	к складу			
МИН				
	8:00	ЗИЛ-130	21	1
14	8:14	ЗИЛ-130	21	1
10	8:24	ГАЗ-53А	16	3
2	8:26	3ИЛ-130	21	2
8	8:34	ГАЗ-53А	16	4

Задача 2. Построить потоковый граф обработки подвижного состава в речном порту. Прибытие железнодорожного маршрута массой 2000 т ожидается в 2ч 00 мин, а подача порожнего речного состава из двух барж массой 2х1000 — в 6ч 00 мин., причем техническая производительность ПРМ составляет по технологической связи 1-2-100т/ч; 1-3-120т/ч; 3-2-110т/ч соответственно.

Задача 3. Построить с помощью MS Word контактный график взаимодействия железнодорожного и речного транспорта в порту при несогласованном поступлении судов и вагонов и использовании буферного склада.

Исходные данные: прибытие железнодорожного маршрута массой 2000 т ожидается в 2400 мин, а подача порожнего речного состава из двух барж массой 2x1000 — в 6400 мин., причем техническая производительность ПРМ составляет по технологической связи 1-2-100т/ч; 1-3-120т/ч; 3-2-110т/ч соответственно. Продолжительность технологических операций по обработке подвижного состава задана в табл. 3.1.

Таблица 3.1 – Продолжительность технологических операций по обработке подвижного состава

Операция	Продолжительность, ч	
Обработка речного состава по прибытии $t_{\text{тс}}$	1,5	
Обработка речного состава по отправлению t_{oc}	2,0	
Обработка железнодорожного состава по прибытии $t_{\rm np}$	0,5	
Обработка железнодорожного состава по отправлению $t_{ m or}$	0,5	
Формирование t_{ϕ}	0,5	
Подача – уборка на причал $t_{ m n-y}$	0,5	

Портовая станция	01epayuy 5 0,5 0,5	6 2 8 7 24
	(000000)	41
станция	05	
	U,J	-
	tio	
	0,5	
Путь 1		
Путь 2		
Еклад	tw	
Причальная стена		X-4x
Рейд тправления	2,0	, , , , , , , , , , , , , , , , , , ,
Рейд прибытия	15	
a	Путь 2 Склад Причальная стена Рейд отправления	Путь 1 Путь 2 гнал Склад Причальная стена Реція Отправления 20 Реція

Рисунок 3.1 – Контактный график взаимодействия железнодорожного и речного транспорта в порту при несогласованном поступлении судов и вагонов и использовании буферного склада

ПК-1.7: Использует принципы взаимодействия разных видов транспорта при их участии в едином перевозочном процессе

Обучающийся владеет: использованием принципов взаимодействия разных видов транспорта при их участии в едином перевозочном процессе

Примеры заданий

Задача 4. Через порт в смешанных перевозках транспортируется уголь с годовым объемом $\sum G = 1$ млн. т. Период согласованной работы порта и железнодорожной станции $T_{e} = 250$ сут. Эксплуатационная грузоподъемность типового речного состава $\, Q_p \cdot \varepsilon = 2000 \,$ т. Приемо пути позволяют принимать составы длиной до $n_{\star} = 50$ ваг. отправочные Производительность перегрузочных машин на первом причале $P_{\scriptscriptstyle 1}=1000\,$ т/смену, на втором причале $P_2 = 800\,$ т/смену. Порт работает круглосуточно. Длина фронта - $10\,$ вагонов. Весь груз перегружается по прямому варианту. Суммарное время на технологические операции с судном $t_m=$ 1,0 ч. Перерывы за время обработки судна не предусмотрены, $t_{\it пер}=0$. Время на подачу и уборку вагонов с грузовых путей $t_{\Pi}^{\mathcal{H}}=t_{V}^{\mathcal{H}}=0.5$ ч; $t_{\partial\partial\Pi}=1.2$ мин/ваг; $\sum t_{\Pi\mathcal{O}}=1$ ч. Определить достаточность числа причалов, интервалы прибытия судов и вагонов на станцию; составить график прибытия судов в порт и вагонов на станцию. Считать, что первое судно прибыло в порт в 6.00 ч расчетных суток.

Решение: для оптимального варианта формирования составов в смешанном сообщении и разработки совмещенных графиков движения железнодорожных и речных составов следует добиваться полного соответствия весовых норм типовых составов речного и железнодорожного транспорта или обеспечить кратность их весовых норм.

Возможны следующие три случая соотношения весовых норм железнодорожных и речных составов (рис. 4):

- весовые нормы идентичны, и интервалы прибытия речных судов и железнодорожных составов равны (рис. 4, a);
- количество тоннажа в одном железнодорожном составе, поданном под погрузку на причалы пункта перевалки, полностью соответствуют количеству грузов, прибывающих в речных судах для перевалки на железнодорожный транспорт (рис. $4, \delta$);
- грузоподъемность прибывающего железнодорожного состава больше эксплуатационной грузоподъемности судна, поданного под выгрузку (рис. 4, в).

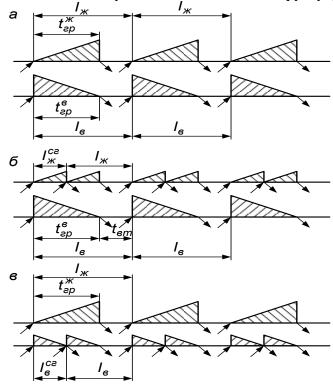


Рис. 4. Интервалы прибытия речных и железнодорожных составов при условиях: $a - n_{\varkappa} \cdot q \cdot \alpha = Q_{p} \cdot \varepsilon$; $\delta - n_{\varkappa} \cdot q \cdot \alpha < Q_{p} \cdot \varepsilon$; $\delta - n_{\varkappa} \cdot q \cdot \alpha > Q_{p} \cdot \varepsilon$

Проверим достаточность числа причалов для переработки судов: для первого причала —

$$I_{mex.1}^{g} = \frac{2000 \cdot 8}{1000} + 1,0 = 17 \text{ ч};$$

для второго причала –

$$I_{\text{mex.2}}^{\text{g}} = \frac{2000 \cdot 8}{800} + 1.0 = 21 \text{ }\text{Y}.$$

Так как по причалам $I_g = 24$, то два причала полностью справятся с обработкой двух судов.

Проверим достаточность числа причалов для переработки железнодорожных составов:

на первом причале –

$$I_{mex.1}^{\mathcal{H}} = 4 \cdot \frac{500 \cdot 8}{1000} + 4 \cdot (0.5 + 0.5) + \frac{40 \cdot 1.5}{60} + 1.0 = 22 \text{ T};$$

на втором причале –

$$I_{mex.2}^{**} = 4 \cdot \frac{500 \cdot 8}{800} + 4 \cdot (0.5 + 0.5) + \frac{40 \cdot 1.5}{60} + 1.0 = 26 \text{ q.}$$

Как видно, на втором причале не обеспечено соблюдение технологического интервала обработки подачи, т. е. в этом случае организуем последовательную погрузку групп вагонов на двух погрузочно-разгрузочных путях одного причала, тогда

$$I_{mex}^{\varkappa} = 4 \cdot \frac{500 \cdot 8}{800} + (0,5+0,5) + \frac{40 \cdot 1,5}{60} + 1,0 = 23 \text{ q.}$$

Ответ. Число причалов для переработки судов и железнодорожных составов достаточно.

Задача 5. Рассчитайте суммарные затраты всех групп транспортных средств и обеспечьте доставку грузов потребителю в заданном объеме. Тип транспортно – технологической схемы транспортировки-ЖТ-ТТ-АТ. Числовые значения для расчетов приведены ниже.

F	0.5	- v			n
	Объем	Простой в	Средняя	Расходы на	Затраты,
	транспортируемого	парке приема,	продолжительность	содержание	связанные с
	груза, тыс.т	на	расформирования	постоянных	пересечением
		причальных	состава,	устройств, Э	госграницы,
		фронтах, на	переработки судна,	_{сод} , тыс.руб	стыковых
		стадии ТЭО,	t _{расф} , t судна, мин		станций,
		$t_{\Pi\Pi},t_{\Pi\varphi},t$ T90,			паромных
		МИН			переправ, t_c , $t_{пп}$
					, тыс.руб
	2100	34/67/97	12/205	1503,78	123,78

Решение. Суммарные затраты определяются по формуле (5.1):

$$E(t) = E_{\Pi P}(t) + E_{MAH}(t) + E_{CTЫK}(t) + \mathcal{G}_{COII}. \tag{5.1}$$

где $E_{\Pi P}(t)$ — расходы, связанные с простоем вагонов, судов, автомобилей в парке приема, на причальных фронтах, на стадии ТЭО;

Еман(t) – расходы на маневровую работу, перевалку, перегрузку;

E_{стык}(t) – расходы, связанные с пересечением госграницы;

Эсод – расходы на содержание постоянных устройств.

Расходы, связанные с простоем вагонов в парке приема, судов на причальных фронтах, автомобилей под операциями ТЭО, определяются по формуле (5.2):

$$E_{\Pi P}(t) = 365 \cdot Q \cdot (e_{Bar-4} + e_{CVJH-4} + e_{aBT-4}) \cdot (t_{III} + t_{II} + t_{II} + t_{II}),$$
(5.2)

где $e_{\text{ваг-ч}}$, $e_{\text{судн-ч}}$, $e_{\text{авт-ч}}$ — стоимость одного вагоночаса, судночаса, автомобилечаса простоя соответственно вагона, судна, автомобиля.

Расходы на маневровую работу, на перевалку груза определяются по формуле (5.3):

$$E_{\text{MAH}}(t) = 365 \cdot Q \cdot (t_{\text{pac}\phi} e_{\text{лок ч}} + t_{\text{судна}} e_{\text{судн-ч}}). \tag{5.3}$$

Расходы, связанные с пересечением госграницы, определяются по формуле (5.4):

$$E_{CTblK}(t) = 365 \cdot Q \cdot (t_c \cdot (e_{Bar-4} + e_{nok \cdot 4}) + t_{nn} \cdot e_{cydh-4}),$$
 (5.4)

E(t) = 2897 млн.руб.

Задача 6. Произвести технико-экономическое обоснование выбора рационального вида транспорта для перевозки грузов на заданном направлении.

Исходные данные: объем перевозки грузов составляет 150 тыс. т. в год.

На направлении перевозок функционируют два магистральных вида транспорта: автомобильный и железнодорожный.

Грузоотправителя (завод) и грузополучателя (стройку) связывает автомобильная дорога III категории протяженностью 42 км. Кроме того, завод имеет железнодорожный ПНП длиной 3 км к железнодорожной станции А. Расстояние по железной дороге от станции А до станции Б, находящейся вблизи стройки, 38 км. Станцию Б и стройку связывает автодорога III категории протяженностью 6 км.

При перевозке грузов автотранспортом используется бортовой автомобиль ЗИЛ-157КД с прицепом общей грузоподъемностью 10,5 т. Такие же автомобили используются и на вывозе грузов со станции Б. Погрузка грузов (у грузоотправителя), выгрузка (у грузополучателя) и их перегрузка (на станции Б с железнодорожного на автотранспорт) механизирована.

Технико-эксплуатационные и экономические показатели (среднее время нахождения автомобилей в наряде, коэффициенты использования грузоподъемности, выпуска автомобилей на линию и др.), характеризующие работу магистрального автотранспорта и автотранспорта, используемого на вывозе грузов с железнодорожной станции Б, одинаковые. Коэффициент экономической эффективности капитальных вложений для рассматриваемых вариантов принять равным 0,12.

При железнодорожном варианте перевозки грузов используются четырехосные полувагоны со статической нагрузкой 58 т.

Решение. Вначале излагается общая методика выбора вида транспорта на направлении перевозки грузов с указанием возможных видов затрат по элементам перевозочного процесса в рассматриваемых вариантах и обосновывается необходимость их учета при расчете и сравнении вариантов.

Определяем эксплуатационные расходы при прямой автомобильной перевозке грузов.

Исходные данные:
$$C_1$$
 =11,80 руб/км; $C_{\mathcal{I}}$ =0,87 руб/км; q_H =10,5т; γ =1; β =0,61; C_2 =3,12руб/т; C_3 =0,35руб/т-км; l_a =42км; K_3 =1,35.

Тогда

$$9^{a}_{Ma2} = (11,80+0,87)*42/10,5*1*0,61+1,35 (3,12+0,35*42) = 107,13 \text{ py6/T}.$$

Определяем время одной ездки автомобиля при транспортировке грузов. Исходные данные для расчета:

- время погрузки и выгрузки автомобиля 8+8=16мин, или 0,27 ч;
- средняя техническая скорость автомобиля в городе $20\,$ км/ч, за городом $33\,$ км/ч. В нашем примере прямые автоперевозки грузов осуществляются частично в городе, а большую часть пути за городом, поэтому принимаем в среднем Vтех = $30\,$ км/ч.

Тогда
$$t_e=(42/30.0,61)+0.27=2.56$$
ч.

Капитальные вложения в автотранспорт определяются по формуле (88). Исходные данные для расчета: $H_a = 660$ тыс.руб, $\alpha_{bbin} = 0.85$, $T_H = 9.6$ ч, $K_{anv} = 2.5$.

$$K_T^a = (660000 \cdot 2,56 \cdot 2,5)/365 \cdot 10,5 \cdot 1 \cdot 0,85 \cdot 9,6 = 135,07 \text{ py6/t};$$

Приведенные затраты по автомобильному варианту перевозки грузов с завода на стройку:

$$E_{np}^{a} = 107,13 + 0,12 \cdot 135,07 = 123,34 \text{ py6/T}.$$

При железнодорожном варианте перевозок сопоставимые приведенные затраты по схеме транспортировки $\Pi H\Pi - M$ — A вначале определяются затраты по всем элементам.

Эксплуатационные расходы на перевозку грузов по магистральной железной дороге (от станции А до станции Б) определяются по формуле для исходных данных: ∂_{HK} =11,01py6./т, $\partial_{\partial \theta}$ =0,168 py6/т-км, ∂_{mc} =3,368 py6./т, $l_{\mathcal{H}\partial}$ = 38 км, n = 1.

$$\mathcal{P}_{Maz}^{\mathcal{H}O} = 11,01 + 0,168.38 + 3,368.1 = 20,76 \text{ py6/T}.$$

Расходы, связанные с подвозом груза к станции А по железнодорожному пути необщего пользования, определяются по формуле (97) для следующих исходных данных: P_{CT} =58т, C_{J} =300 руб/лок.ч, T_{J} =5,0ч, $N_{\mathcal{G}}$ =6ваг, $C_{\mathcal{G}}$ =4,8 руб/ваг.ч, $t_{\mathcal{G}}$ =12ч.

$$\theta_{\partial ocm} = \frac{1}{58} \left(\frac{300 \cdot 500}{600} + 4.80 \cdot 12 \right) = 5.30 \, py6 \, / m$$

Эксплуатационные расходы автотранспорта, используемого на вывозе грузов со станции Б, определяются по формуле, как и при прямой автомобильной перевозке, для расстояния перевозки 6 км.

$$\mathcal{G}_{BbB} = \frac{(11,80+0,87)6}{10,5*1*0,5} + 1.35(3,12+0.35*6) = 21.53 \text{ py6/T}.$$

Эксплуатационные расходы на выполнение перегрузочных операций на станции Б с железнодорожного на автомобильный транспорт определяются следующим образом и при Θ_{on} =32 руб/т, Z_{nep} = 2 составят

$$\Theta_{nep} = 32*2 = 64 \text{ py6/T}.$$

Капитальные вложения в подвижной состав и постоянные устройства на железнодорожном транспорте определяются по формуле (99). Исходные данные для расчета: \mathcal{U}_{6} =800000 руб; K_{pem} =1,15; K_{HK} =2,01; $K_{\partial 6}$ =7,45; K_{mc} =2,54; α_{2D} =1.

Тогда

$$K_T^{\mathcal{H}CO} = \frac{800000 * 1,15}{365 * 58} \left[2 * 2,01 + \frac{7,45(1+1)38}{520} + 1 * 2,54 \right] = 332,47 \text{ py6/T}.$$

Время одной ездки автомобиля, работающего на вывозе грузов, принимается с учетом того, что он совершает работу в основном в черте города, т.е. со средней технической скоростью 20 км/ч. Коэффициент использования пробега автомобилей для заданного расстояния перевозки грузов равен 0,50. Тогда

$$t_e = (6/20*0.50) + 0.27 = 0.874$$

Капитальные вложения в автомобильный транспорт, занятый вывозом грузов со станции Б, определяются по формуле и составят

$$K_T^{a'} = \frac{660000 \cdot 0,87 \cdot 2,5}{365 \cdot 10,51 \cdot 0,85 \cdot 9,6} = 45,9 \text{ py}6/\text{T}.$$

Единовременные затраты на погрузочно-разгрузочные машины в пункте перевалки

(на станции Б) определяются по формуле для исходных данных: $\mu_{np} = 640000$ руб; $\mu_{np} = 25000$ т.

$$K_{nep} = \frac{640000}{25000} = 25.6 \text{ py6/T}.$$

Изменение стоимости грузовой массы или оборотных средств, находящихся в пути, за счет разных сроков доставки грузов (при железнодорожном варианте – $t_{\rm жд}$, автомобильном - $t_{\rm a}$ рассчитывается по формуле.

При этом время доставки 1 т груза от склада отправителя до склада получателя при железнодорожном варианте перевозки определяется по формуле (101) для исходных данных: $t_{nn}^{\mathcal{H}\mathcal{O}}=13$ ч; $t_{max}^{\mathcal{H}\mathcal{O}}=38/20=1,9$ ч; $t_{nep}^{\mathcal{H}\mathcal{O}}=12$ ч; $t_{e}=0,87$ ч.

$$t_{\partial}^{\mathcal{H}C\partial} = \frac{13+1,9+12+0,87}{24} = 1,16 \,\mathrm{cyr}.$$

При перевозке груза по прямому автомобильному варианту это время равно длительности одной ездки, а именно

$$t_{\partial}^{a} = 2,56/24 = 0,106 \,\mathrm{cyr}.$$

Тогда разница в стоимости грузовой массы (при цене 1т перевозимого груза 2000 руб.)

$$\Delta K_{\mathcal{ZM}} = \frac{2000}{365} (1,16-0,106) = 5,75 \text{ py6/T}.$$

Рассчитаем общую величину приведённых затрат по железнодорожному варианту перевозки при EH = 0,12.

$$E_{np}^{\mathcal{H}\mathcal{O}} = 20,76 + 5,30 + 64 + 21,53 + 0,12 \cdot (332,47 + 45,9 + 25,6 + 5,75) = 160,76$$
 py6/T.

По результатам выполненных расчетов делаем вывод

$$E_{np}^{\mathcal{H}O} = 160,76 > E_{np}^{a} = 123,34.$$

Таким образом, сравнение приведённых затрат по железнодорожному и автомобильному вариантам показывает целесообразность передачи рассматриваемого объёма перевозок грузов на данном направлении с железнодорожного на автомобильный транспорт.

Ответ. Годовой экономический эффект от реализации только этого предложения составит:

- 2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации
- 1. Транспортная система России. Ее составляющие элементы.

- 2. Порядок формирования и развития международных транспортных коридоров (МТК).
- 3. Оптимизация схемы транспортирования грузов за счет рационального сочетания различных видов транспорта.
 - 4. Возникновение и историческое развитие транспортной системы РФ.
 - 5. Модернизация транспортной системы России.
 - 6. Перспективное развитие мультимодальных транспортных компаний.
 - 7. Мультимодальные технологии и сервис перевозок.
 - 8. Организация ТЭО мультимодальных перевозок.
 - 9. Совершенствование системы перевозок различными видами транспорта.
 - 10. Развитие водных коридоров.
 - 11. Внутренние водные пути, их развитие.
 - 12. Назначение судов смешанного типа плавания.
 - 13. Развитие предпортовых станций
 - 14. Развитие припортовых станций.
 - 15. Особенности функционирования незамерзающих портов.
 - 16. Назначение сухогрузной гавани порта.
 - 17. Назначение железнодорожной паромной переправы.
 - 18. Создание скоростных автодорог.
- 19. Теоретические основы технологического обоснования формирования транспортных коридоров.
- 20. Теоретические основы экономического обоснования формирования транспортных коридоров.
- 21. Модернизация транспортной инфраструктуры в условиях кардинальных изменений в транспортном секторе.
 - 22. Развитие систем управления и информатизации грузопотоков.
 - 23. Совершенствование подвижного состава.
 - 24. Повышения безопасности функционирования МТК.
 - 25. Организация мультимодальных перевозок за рубежом.
 - 26. Мировой транзит перевозок укрупненными модулями.
 - 27. Переработка грузов по «системе кассет».
 - 28. Системы слежения за перемещением трейлеров.
 - 29. Обеспечение сохранности грузов в контейнерах.
 - 30. Принцип разработки маршрутов коридоров.
 - 31. Порядок перевозок грузов МТК.
 - 32. Условия перевозок грузов МТК
 - 33. Условия и организация перевозок конвенционных грузов
- 34. Перечень перевозочных документов при перевозке грузов различными видами транспорта внутри государства.
- 35. Порядок заполнения перевозочных документов при перевозке грузов различными видами транспорта внутри государства.
- 36. Перечень перевозочных документов при перевозке грузов различными видами транспорта в режиме «экспорт импорт».
- 37. Порядок заполнения перевозочных документов при перевозке грузов различными видами транспорта в режиме «экспорт импорт».
 - 38. Технология работы предпортовых станций.
 - 39. Техническое оснащение предпортовых станций.
 - 40. Алгоритмизация формирования транспортных коридоров.
 - 41. Рентабельность организации транспортных коридоров.
 - 42. Технология работы железнодорожной паромной переправы.
 - 43. Техническое оснащение железнодорожной паромной переправы.
 - 44. Оптимизация функционирования МТК.
 - 45. Рациональная организация работы стыковых пунктов.
 - 46. Рациональная организация работы передаточных пунктов.
 - 47. Спутниковое слежение за перемещением грузов.

- 48. Алгоритм разработки коридоров.
- 49. Рациональная организация работы ТЭО мультимодальных перевозок.
- 50. Характеристика конвенционных грузов.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» — ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету с оценкой

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.