Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 28.10.2025 10:55:57 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

# ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

### Системы управления устройствами автоматики и телемеханики

(наименование дисциплины(модуля)

Направление подготовки / специальность

#### 23.05.05 СИСТЕМЫ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ПОЕЗДОВ\_

(код и наименование)

Направленность (профиль)/специализация

Автоматика и телемеханика на железнодорожном транспорте

(наименование)

### Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

#### 1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачёт 9 семестр.

#### Перечень компетенций, формируемых в процессе освоения дисциплины

| Код и наименование компетенции                                                                                                                                                                                |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ПК-3: Способен обеспечивать и контролировать качество и безопасность технологических процессов эксплуатации, технического обслуживания и ремонта устройств и систем железнодорожной автоматики и телемеханики | ПК-3.2 |

### Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

| Код и наименование компетенции        | Результаты обучения по дисциплине                | Оценочные материалы (семестр 9) |
|---------------------------------------|--------------------------------------------------|---------------------------------|
| ПК-3.2: Разрабатывает организационно- | Обучающийся знает: принципы построения и         | Вопросы (№ 1 - № 24)            |
| технические мероприятия по            | безопасного функционирования, показатели         | Задания (№ 1 - № 16)            |
| обеспечению безопасности движения,    | безопасности, аппаратные средства и техническую  |                                 |
| надежности устройств и систем         | структуру микропроцессорных систем автоматики и  |                                 |
| железнодорожной автоматики и          | телемеханики.                                    |                                 |
| телемеханики с последующим            | Обучающийся умеет: Изучать и анализировать       | Задания (№ 1 - № 4)             |
| контролем их выполнения               | безопасные структуры, безопасные устройства и    |                                 |
|                                       | программное обеспечение, показатели безопасности |                                 |
|                                       | микропроцессорных систем автоматики и            |                                 |
|                                       | телемеханики.                                    |                                 |
|                                       | Обучающийся владеет: Навыками расчета            | Задания (№ 5 - № 7)             |
|                                       | показателей безопасности микропроцессорных       |                                 |
|                                       | систем автоматики и телемеханики.                |                                 |

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС университета.

# 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

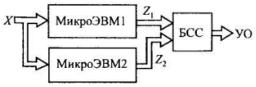
### **2.1** Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

#### Проверяемый образовательный результат

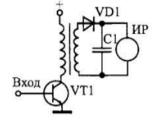
| Код и наименование компетенции                                                                      | Образовательный результат                |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| ПК-3.2: Разрабатывает организационно-технические мероприятия                                        | Обучающийся знает: Принципы построения и |  |  |
| по обеспечению безопасности движения, надежности устройств и                                        | безопасного функционирования, показатели |  |  |
| систем железнодорожной автоматики и телемеханики с                                                  | безопасности, аппаратные средства и      |  |  |
| последующим контролем их выполнения                                                                 | техническую структуру микропроцессорных  |  |  |
|                                                                                                     | систем автоматики и телемеханики.        |  |  |
| Задания:                                                                                            |                                          |  |  |
| 1 Укажите прицины необходимости внедрения микропроцессорных и редейно-процессорных централизаций на |                                          |  |  |

- Укажите причины необходимости внедрения микропроцессорных и релейно-процессорных централизаций на железнодорожных станциях России.
  - а) физический износ и выработка срока службы эксплуатируемых релейных ЭЦ;
  - б) моральное старение релейных ЭЦ;

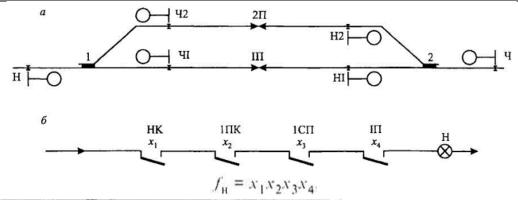
- в) обе перечисленные причины.
- 2. Укажите преимущества применения микропроцессорной техники при построении ЭЦ.
  - а) расширение функциональных возможностей;
  - б) протоколирование действий оперативного персонала и поездных ситуаций;
  - в) простота адаптации системы при реконфигурации путевого развития станции;
  - г) повышение надежности и безопасности систем;
  - д) легкость увязки с компьютерными информационными и управляющими системами более высокого уровня;
  - е) уменьшение габаритов аппаратуры, экономия материалов и помещений, удешевление строительства;
  - ж) улучшение условий и культуры труда ДСП и электромехаников СЦБ.
  - з) все перечисленные преимущества.
- 3. Какие стратегии используют для реализации концепции безопасности микропроцессорных систем ЖАТ?
  - а) безотказность;
  - б) отказоустойчивость;
  - в) безопасное поведение при отказах;
  - г) все перечисленные стратегии.
- 4. Какие безопасные структуры используются в микропроцессорных централизациях?
  - а) одноканальная система с одной программой, самопроверяемыми средствами внутреннего контроля (ССВК) и безопасными выходными схемами (БВС);
  - б) одноканальная система с дублированной программой и внешней безопасной схемой сравнения (БСС);
  - в) дублированные системы;
  - г) троированные мажоритарные системы;
  - д) реконфигурируемые системы;
  - е) все перечисленные структуры.
- **5.** Какие требования предъявляются к устройствам сопряжения с исполнительными объектами (УСО) в микропроцессорных системах ЖАТ?
  - а) обеспечение временного и энергетического согласования электронных схем и исполнительных объектов;
  - б) исключение возникновения ложного сигнала на выходе УСО при любом отказе его элементов;
  - в) высокая устойчивость к электромагнитным помехам и влияниям;
  - г) стабильность параметров в течение всего срока эксплуатации;
  - д) высокая технологичность в производстве в сочетании с низкой стоимостью;
  - е) все перечисленные требования.
    - **6.** Какие принципы используются для построения безопасных схем сопряжения с исполнительными объектами в микропроцессорных системах ЖАТ?
- а) непрерывный контроль исправности электронных элементов за счет периодического изменения их состояния (принцип контроля динамической работы);
  - б) статистическая обработка (накопление) сигналов управления;
  - в) гальваническая развязка входных и выходных цепей;
  - г) отсутствие обратных связей;
  - д) защита схемы от неисправностей источников питания;
  - е) защита от опасных отказов при изменении параметров входных сигналов в пределах, бо́льших допустимых; ж) все перечисленные.
    - 7. Каковы преимущества релейных схем сопряжения с объектами? Укажите все правильные ответы.
  - а) высокая устойчивость к электромагнитным помехам и перенапряжениям;
  - б) идеальная гальваническая развязка;
  - в) высокий коммутационный ресурс реле;
  - д) отсутствие необходимости профилактического обслуживания.
    - 8. Каковы преимущества бесконтактных схем сопряжения с объектами? Укажите все правильные ответы.
  - а) не требуется профилактическое обслуживание;
  - б) высокая технологичность в изготовлении;
  - в) высокая устойчивость к электромагнитным помехам и перенапряжениям.
    - 9. Что является общим недостатком всех бесконтактных схем сопряжения с объектами?
  - а) высокая сложность схем;
  - б) малое потребление энергии;
  - в) малый срок службы и необходимость периодического обслуживания.
    - 10. Какой показатель безопасности используется при нормировании безопасности микропроцессорных ЭЦ?
  - а) средняя наработка до опасного отказа;
  - б) интенсивность опасных отказов;
  - в) вероятность опасного отказа;
  - г) вероятность безопасной работы.
    - 11. Что является существенным недостатком дублированной системы?
  - а) более низкая стоимость в сравнении с нерезервированной системой;
  - б) безопасность обеспечивается за счет уменьшения безотказности;
  - в) более высокая безопасность;
  - г) нет недостатков.
    - **12.** Как называется согласно ОСТ 32.17-92 информация, используемая в дискретной системе, искажение которой переводит систему в опасное состояние?
  - а) ответственная информация;
  - б) важная информация;


- в) избыточная информация;
- г) необходимая информация.
  - 13. Какие показатели используются при оценке безопасности систем автоматики и телемеханики?
- а) вероятность безопасной работы;
- б) вероятность опасного отказа;
- в) интенсивность опасных отказов;
- г) средняя наработка до опасного отказа;
- д) все перечисленные выше показатели.
- **14.** Какова норма безопасности ( $\lambda_{on}$ , 1/ч) для вновь разрабатываемых безопасных элементов и реле систем железнодорожной автоматики и телемеханики?
  - a)  $10^{-12}$ ;
  - б) 10<sup>-9</sup>;
  - в) 10<sup>-15</sup>;
  - $\Gamma$ ) 10<sup>-3</sup>.
- **15.** Зависит ли норма безопасности ( $\lambda_{on}$ , 1/ч) для управляющего вычислительного комплекса МПЦ от количества стрелок на станции?
  - а) зависит;
  - б) не зависит;
  - в) зависит только для крупных станций;
  - г) зависит только для небольших станций.
- **16.** Зависит ли норма безопасности ( $\lambda_{on}$ , 1/ч) для управляющего вычислительного комплекса МПЦ от количества стрелок на станции?
  - а) зависит;
  - б) не зависит;
  - в) зависит только для крупных станций;
  - г) зависит только для небольших станций.

#### 2.2 Типовые задания для оценки навыкового образовательного результата


#### Проверяемый образовательный результат

| Код и наименование компетенции                                   | Образовательный результат             |  |  |
|------------------------------------------------------------------|---------------------------------------|--|--|
| ПК-3.2: Разрабатывает организационно-технические мероприятия по  | Обучающийся умеет: Изучать и          |  |  |
| обеспечению безопасности движения, надежности устройств и систем | анализировать безопасные структуры,   |  |  |
| железнодорожной автоматики и телемеханики с последующим          | безопасные устройства и программное   |  |  |
| контролем их выполнения                                          | обеспечение, показатели безопасности  |  |  |
|                                                                  | микропроцессорных систем автоматики и |  |  |
|                                                                  | телемеханики.                         |  |  |


1. Проанализируйте безопасную структуру системы, представленную на рисунке (дублированная система с умеренными связями). Укажите ее возможности по обеспечению безопасности, достоинства и недостатки.



2. Проанализируйте безопасную трансформаторную схему включения исполнительного объекта (см. рисунок), укажите ее особенности, достоинства и недостатки.



3. При написании программного обеспечения, реализующего логическую функцию управления входным светофором H, программист сделал ошибку и в команде № 3 написал MOV C, M2. К каким последствиям приведет эта ошибка?



| №<br>команды | Команда                                                   | Мнемокод<br>команды |
|--------------|-----------------------------------------------------------|---------------------|
| 1            | Переслать содержимое из ячейки М1 в регистр А             | MOV A, M1           |
| 2            | То же из ячейки M2 в регистр В                            | MOV B, M2           |
| 3            | То же из ячейки М3 в регистр С                            | MOV C, M3           |
| 4            | То же из ячейки М4 в регистр D                            | MOV D, M4           |
| 5            | Перемножить содержимое регистров A и B ( $x_1x_2$ )       | ANA B               |
| 6            | То же для регистров A и C $(x_1x_2x_3)$                   | ANA C               |
| 7            | То же для регистров A и D $f_{\rm u} = (x_1 x_2 x_3 x_4)$ | ANA D               |
| 8            | Вывод значения $f_n$ в выходной регистр PORT!             | OUT PORTI           |
|              |                                                           |                     |

4. При испытаниях на безопасность вероятность безопасной работы системы в течение 20 лет составила 0,96. Соответствует ли система нормативному требованию по безопасности  $\lambda_{on} \le 10^{-7}$  1/ч? Ответ обосновать.

ПК-3.2: Разрабатывает организационно-технические мероприятия по обеспечению безопасности движения, надежности устройств и систем железнодорожной автоматики и телемеханики с последующим контролем их выполнения

**Обучающийся владеет:** Навыками расчета показателей безопасности микропроцессорных систем автоматики и телемеханики.

- 5. Рассчитайте вероятность опасного отказа микропроцессорной системы электрической централизации, если  $\lambda_{on} = 1,7 \ 10^{-8} \ 1/\text{ч}$ .
- 6. Рассчитайте вероятность безопасной работы микропроцессорной системы электрической централизации, если  $\lambda_{on} = 1.7 \ 10^{-8} \ 1/\text{ч}.$
- 7. Рассчитайте среднюю наработку до опасного отказа микропроцессорной системы электрической централизации, если  $\lambda_{on} = 1.7 \ 10^{-8} \ 1/ч$ .

#### 2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Цели создания систем микропроцессорных управляющих систем. История их развития.
- 2. Основы построения микропроцессорных электрических централизаций.
- 3. Причины применения МПЦ на станциях. Понятие о безопасной системе.
- 4. Показатели и нормы безопасности микропроцессорных централизаций.
- 5. Принципы построения программного обеспечения микропроцессорных централизаций.
- 6. Концепция безопасности микропроцессорных систем. Безопасные структуры микропроцессорной централизации.
- 7. Особенности безопасных структур микропроцессорной централизации.
- 8. Свойства безопасной двухканальной структуры. Свойства безопасной трехканальной структуры.
- 9. Надежность программного обеспечения микропроцессорных систем.
- 10. Методы повышения надежности программ.
- 11. Способы передачи ответственной информации в микропроцессорных централизациях.
- 12. Принципы построения безопасных устройств сопряжения с объектами.
- 13. Безопасные схемы включения исполнительных объектов.
- 14. Структуры современных систем микропроцессорных централизаций.
- 15. Функциональная структура РПЦ ЭЦ-МПК.
- 16. Аппаратные средства и техническая структура ЭЦ-МПК.

- 17. Структура программного обеспечения ЭЦ-МПК.
- 18. Алгоритмическое обеспечение комплекса технических средств управления и контроля КТС УК ЭЦ-МПК.
- 19. Принципы увязки КТС УК с исполнительными схемами в ЭЦ-МПК.
- 20. Алгоритмы функционирования релейных схем в ЭЦ-МПК.
- 21. Функциональная структура системы «Диалог-Ц». Технические средства.
- 22. Безопасная микроЭВМ БМ-1602.
- 23. Программное обеспечение РПЦ «Диалог-Ц».
- 24. Технические решения по увязке с релейными схемами в РПЦ «Диалог-Ц».

# 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

#### Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

#### Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

#### Критерии формирования оценок по зачету

«Зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

**«Не зачтено»** – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.