Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДСЕРУАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: Радеральное государственное бюджетное образовательное учреждение высшего образования
Дата подписания: 71.10.2025 15:09:13.
Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Электрические и электронные аппараты

рабочая программа дисциплины (модуля)

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 9 ЗЕТ

Виды контроля в семестрах:

экзамены 6 зачеты 5

курсовые работы 6

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>) Недель	5 (3.1)		Ì	6 (3.2)		Итого	
Вид занятий	УП	PΠ	УП	РП	УП	PII	
Лекции	16	16	16	16	32	32	
Лабораторные	16	16	16	16	32	32	
Практические	16	16	16	16	32	32	
Конт. ч. на аттест.	0,4	0,4	1	1	1,4	1,4	
Конт. ч. на аттест. в период ЭС	0,15	0,15	2,3	2,3	2,45	2,45	
В том числе в форме практ.подготовки	49	49	66	66	115	115	
Итого ауд.	48	48	48	48	96	96	
Контактная работа	48,55	48,55	51,3	51,3	99,85	99,85	
Сам. работа	86,6	86,6	104	104	190,6	190,6	
Часы на контроль	8,85	8,85	24,7	24,7	33,55	33,55	
Итого	144	144	180	180	324	324	

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 2

Программу составил(и):

ст.преподаватель, Старикова А.Г.

Рабочая программа дисциплины

Электрические и электронные аппараты

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

составлена на основании учебного плана: 13.03.02-25-2-ЭЭб.plm.plx

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Электрический транспорт

Рабочая программа одобрена на заседании кафедры

Тяговый подвижной состав

Зав. кафедрой Муратов А.В.

УП: 13.03.02-25-2-ЭЭб.plm.plx

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 формирование компетенций "Способен использовать методы анализа и моделирования электрических цепей и электрических машин" и "Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности"

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цикл (раздел) OП: Б1.O.22

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин
- ОПК-4.1 Использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного тока
- ОПК-4.5 Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин
- ОПК-5 Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности

ОПК-5.3 Проводит расчет и анализ параметров основных характеристик электрических и электронных аппаратов

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:				
3.1.1	основные физические явления и процессы, происходящие в электрических и электронных аппаратах: нагрев,				
3.1.2	электродинамические силы, образование дуги, возникновение переходного контактного сопротивления				
3.1.3	принципы работы и устройство электрических и электронных аппаратов различного назначения: коммутационных,				
3.1.4	пускорегулирующих, ограничивающих, измерительных				
3.1.5	свойства и технические характеристики основных электрических аппаратов				
3.1.6	назначение и требования к выбору коммутационных электрических аппаратов низкого напряжения				
3.2	Уметь:				
3.2.1	определять электродинамические силы, возникающие в электрических аппаратах				
3.2.2	определять тепловые параметры электрических аппаратов				
3.2.3	определять параметры электрической дуги, возникающей в коммутационных электрических аппаратах низкого				
3.2.4	напряжения				
3.2.5	определять параметры автоматических выключателей, необходимых к установке в электрических цепях				
3.2.6	проводить расчет и анализ параметров основных характеристик электрических и электронных аппаратов				
3.3	Владеть:				
3.3.1	навыком снятия времятоковых характеристик основных типов электрических аппаратов (реле, автоматических				
3.3.2	выключателей, предохранителей)				
3.3.3	навыком выполнения электрических измерений параметров электрических аппаратов				
3.3.4	навыком выбора электрических выключателей по параметрам электрической цепи				

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Код занятия	Наименование разделов и тем /вид занятия/	/ Семестр / Курс	Часов	Примечание
	Раздел 1. Физические процессы в электрических аппаратах (5 сем.)			
1.1	Назначение и виды электрических аппаратов /Лек/	5	2	
1.2	Назначение и виды электронных аппаратов /Ср/	5	4	
1.3	Электродинамические силы в электрических аппаратах /Лек/	5	2	
1.4	Электродинамические силы при переменном токе /Ср/	5	5	
1.5	Нагрев электрических аппаратов /Лек/	5	4	
1.6	Тепловые процессы при различных режимах работы аппаратов /Ср/	5	2	
1.7	Электрическая дуга и способы ее гашения в электрических аппаратах /Лек/	5	4	
1.8	Способы гашения дуги /Ср/	5	4	

УП: 13.03.02-25-2-ЭЭб.plm.plx стр. 4

1.9	Электромагнитные механизмы /Лек/	5	2	
1.10	Динамика срабатывания электромагнитов постоянного тока /Ср/	5	4	
1.11	Электромагниты переменного тока /Ср/	5	6	
1.12	Контакты электрических аппаратов /Лек/	5	2	
1.13	Переходное сопротивление контактов /Ср/	5	4	
1.14	Решение задач на тему "Электродинамические силы в электрических аппаратах" /Пр/	5	4	Практическая подготовка
1.15	Решение задач на тему "Нагрев и охлаждение электрических аппаратов" /Пр/	5	4	Практическая подготовка
1.16	Решение задач на тему "Электрическая дуга и способы ее гашения" /Пр/	5	4	Практическая подготовка
1.17	Решение задач на тему "Электрические контакты аппаратов" /Пр/	5	4	Практическая подготовка
1.18	Снятие времятоковой характеристики предохранителя /Лаб/	5	2	Практическая
1.19	Снятие времятоковой характеристики автоматического воздушного выключателя /Лаб/	5	4	подготовка Практическая подготовка
1.20	Снятие времятоковой характеристики электротеплового реле /Лаб/	5	4	Практическая подготовка
1.21	Определение коэффициента возврата электромагнитного контактора /Лаб/	5	4	Практическая подготовка
1.22	Определение коэффициента возврата электромагнитного реле переменного тока /Лаб/	5	2	Практическая подготовка
	Раздел 2. Самостоятельная работа (5 сем.)			подготовка
2.1	Подготовка к лекциям /Ср/	5	8	
2.2	Подготовка к лабораторным занятиям /Ср/	5	16	
2.3	Подготовка к практическим занятиям /Ср/	5	16	
2.4	Выполнение расчетно-графической работы /Ср/	5	17,6	Практическая
	Раздел 3. Контактные часы на аттестацию (5 сем.)			подготовка
3.1	Расчетно-графическая работа /КА/	5	0,4	
3.2	Зачет /КЭ/	5	0,15	
	Раздел 4. Принципы работы и устройство электрических и электронных аппаратов различного назначения (6 сем.)			
4.1	Коммутационные электрические	6	4	
	аппараты низкого напряжения /Лек/			
4.2	Особенности конструкции быстродействующих выключателей постоянного тока /Ср/	6	4	
4.3			_	
4.5	Коммутационные электрические аппараты высокого напряжения /Лек/	6	2	
4.4	Коммутационные электрические аппараты высокого напряжения /Лек/ Элегазовые выключатели /Ср/	6	4	
	Элегазовые выключатели /Cp/ Выключатели нагрузки. Разъединители. Отделители.			
4.4	Элегазовые выключатели /Ср/	6	4	
4.4	Элегазовые выключатели /Cp/ Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели /Cp/	6	4	
4.4 4.5 4.6	Элегазовые выключатели /Ср/ Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели /Ср/ Пускорегулирующие и ограничивающие электрические аппараты /Лек/	6 6	4 4 2	
4.4 4.5 4.6 4.7	Элегазовые выключатели /Ср/ Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели /Ср/ Пускорегулирующие и ограничивающие электрические аппараты /Лек/ Магнитные пускатели. Реостаты /Ср/	6 6	4 4 2 2 2	
4.4 4.5 4.6 4.7 4.8	Элегазовые выключатели /Ср/ Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели /Ср/ Пускорегулирующие и ограничивающие электрические аппараты /Лек/ Магнитные пускатели. Реостаты /Ср/ Разрядники постоянного тока /Ср/	6 6 6	4 4 2 2 2 2	

УП: 13.03.02-25-2-ЭЭб.plm.plx cтр. 5

4.12	Трансформаторы тока. Трансформаторы напряжения. Особенности конструкции и применения на тяговых подстанциях /Ср/	6	3		
4.13	Бесконтактные электрические аппараты /Лек/	6	2		
4.14	Гибридные электрические аппараты /Ср/		2		
4.15	Основные тенденции развития электрических аппаратов /Лек/	6	4		
4.16	Защитные характеристики автоматических выключателей. Выбор автоматических выключателей. Построение карты селективности. /Пр/	6	4 Практическая подготовка		
4.17	Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя. Выбор АВ и предохранителей для защиты двигателей. /Пр/	6	4 Практическая подготовка		
4.18	Выбор низковольтных аппаратов в системах электроснабжения. Выбор высоковольтных аппаратов в системах электроснабжения. /Пр/	6	4	Практическая подготовка	
4.19	Назначение, устройство и технические характеристики устройств защитного отключения /Пр/	6	4 Практическая подготовка		
4.20	Работа магнитного пускателя /Лаб/	6	4	Практическая подготовка	
4.21	Определение коэффициента возврата электромагнитного промежуточного реле переменного напряжения /Лаб/	6	4	Практическая подготовка	
4.22	Снятие зависимости выдержки времени от уставки электромеханического реле времени /Лаб/	6	4	Практическая подготовка	
4.23	Снятие вольтамперной характеристики ограничителя перенапряжений /Лаб/	6	4	Практическая подготовка	
	Раздел 5. Самостоятельная работа (6 сем.)				
5.1	Подготовка к лекциям /Ср/	6	8		
5.2	Подготовка к практическим занятиям /Ср/	6	16		
5.3	Подготовка к лабораторным занятиям /Ср/	6	16		
5.4	Выполнение курсовой работы /Ср/	6	35	Практическая подготовка	
	Раздел 6. Контактные часы на аттестацию (6 сем.)			подготовка	
6.1	Курсовая работа /КА/	6	1		
6.2	Экзамен /КЭ/	6	2,3		

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля) в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература 6.1.1. Основная литература Заглавие Авторы, составители Издательс Эл. адрес тво, год c.com/books/element.php Л1.1 Акимов Е. Г., Белкин Основы теории электрических аппаратов Санкт-Г. С., Годжелло А. Г., Петербур Дегтярь В. Г. г: Лань, 2015

УП: 13.03.02-25-2-ЭЭб.plm.plx стр. 6

		6.1.2. Дополнительная литература				
	Авторы, составители	Заглавие	Издательс	Эл. адрес		
			тво, год			
Л2.1	Фролов Н.О.	Тяговые аппараты и электрическое оборудование: учебное пособие	Екатерин бург, 2018	://e.lanbook.com/book/12		
(2	H. Language					
0.2	• •	нологии, используемые при осуществлении образовате (модулю)	•			
		ь лицензионного и свободно распространяемого програ	ммного обеспе	ечения		
6.2.1.1		•				
	6.2.2 Перечен	ь профессиональных баз данных и информационных	справочных сі	истем		
6.2.2.1	База данных для тепло	энергетиков: https://q-teplota.ru/				
6.2.2.2	База данных для элек	гроэнергетиков: https://pomegerim.ru/				
6.2.2.3	База данных «Технич	еская литература» http://booktech.ru/journals/vestnik-mashir	ostroeniya Marl	ketelectro		
6.2.2.4	Отраслевой электроте	хнический портал. Адрес ресурса: https://marketelectro.ru/				
6.2.2.5	Электротехника. https://	://electrono.ru				
	7. МАТЕРИА	АЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛ	ІИНЫ (МОДУ	(RICV		
7.1	7.1 Лекционная аудитория (на 30 посадочных мест) в соответствии с расписанием занятий, оборудованная учебной доской, партами, стульями					
7.2		ения практических и лабораторных занятий (30 посадочны ования «Электрические аппараты»	іх мест) с комп	лектом		
7.3	Доступ к электронно-библиотечным системам, к электронной информационно-образовательной среде и к информационно-телекоммуникационной сети «Интернет» в рамках самостоятельной работы обучающегося					

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Электрические и электронные аппараты

(наименование дисциплины (модуля)

Направление подготовки / специальность

13.03.02 Электроэнергетика и электротехника

(код и наименование)

Направленность (профиль)/специализация

Электрический транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: Зачет (5 семестр), экзамен (6 семестр), курсовая работа (6 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения
	компетенции
OПК-4: Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.1
	ОПК-4.5
ОПК-5: Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности	ОПК-5.3

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 5,6)
ОПК-4.1: использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного тока	Обучающийся знает: основные физические явления и процессы, происходящие в электрических и электронных аппаратах: нагрев, электродинамические силы, образование дуги, возникновение переходного контактного сопротивления	Вопросы № 1-7
	Обучающийся умеет: определять электродинамические силы, возникающие в электрических аппаратах, определять тепловые параметры электрических аппаратов	Вопросы № 22-28
	Обучающийся владеет: навыком снятия времятоковых характеристик основных типов электрических аппаратов (реле, автоматических выключателей, предохранителей)	Вопросы № 29-35
ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин	Обучающийся знает: принципы работы и устройство электрических и электронных аппаратов различного назначения: коммутационных, пускорегулирующих, ограничивающих, измерительных	Вопросы № 8-14
	Обучающийся умеет: определять параметры электрической дуги, возникающей в коммутационных электрических аппаратах низкого напряжения	Вопросы № 36-42
	Обучающийся владеет: навыком выполнения электрических измерений параметров электрических аппаратов	Вопросы № 43-49
ОПК-5.3: проводит расчет и анализ параметров основных характеристик электрических и электронных аппаратов	Обучающийся знает: свойства и технические характеристики основных электрических аппаратов, назначение и требования к выбору коммутационных электрических аппаратов низкого напряжения	Вопросы № 15-21

Обучающийся умеет: определять параметры автоматических выключателей, необходимых к установке в электрических цепях, проводить расчет и анализ параметров основных характеристик электрических и электронных аппаратов	Вопросы № 50-56
Обучающийся владеет: навыком выбора электрических выключателей по параметрам электрической цепи	Вопросы № 57-65

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС университета.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование:
- 2) выполнение заданий в ЭИОС университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

провериемым ооризовитемым	an posjetiti.				
Код и наименование индикатора	Образовательный результат				
достижения компетенции					
ОПК-4.1: использует основные	Обучающийся знает: основные физические явления и процессы, происходящие в				
понятия и законы линейных и	электрических и электронных аппаратах: нагрев,				
нелинейных цепей постоянного	электродинамические силы, образование дуги, возникновение переходного				
и переменного тока	контактного сопротивления				

Тестовые вопросы:

Вопрос 1 Как направлены векторы электродинамической силы, если токи в параллельных проводниках направлены одинаково:

Векторы электродинамической силы направлены навстречу друг другу.

Векторы электродинамической силы направлены противоположно.

Векторы электродинамической силы направлены под углом 90° друг к другу.

Векторы электродинамической силы направлены под углом 45° друг к другу.

Вопрос 2 Как направлены векторы электродинамической силы, если токи в параллельных проводниках направлены противоположно:

Векторы электродинамической силы направлены навстречу друг другу.

Векторы электродинамической силы направлены противоположно.

Векторы электродинамической силы направлены под углом 90° друг к другу.

Векторы электродинамической силы направлены под углом 45° друг к другу.

Вопрос 3 Как направлены векторы электродинамической силы, между проводниками, расположенными под прямым углом:

Направлены под углом 90° друг к другу и стремятся разогнуть прямой угол.

Направлены под углом 45° друг к другу и стремятся согнуть прямой угол.

Направлены под углом 90° друг к другу и стремятся согнуть прямой угол.

Направлены под углом 45° друг к другу и стремятся разогнуть прямой угол.

Вопрос 4 Что такое глубина коммутации:

Глубина коммутации — это сумма сопротивлений коммутирующего органа во включенном состоянии и в отключенном состоянии.

Глубина коммутации — это отношение сопротивления коммутирующего органа в отключенном состоянии к сопротивлению во включенном состоянии.

Глубина коммутации — это разница сопротивлений коммутирующего органа во включенном состоянии и в

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

отключенном состоянии.

Глубина коммутации— это отношение сопротивления коммутирующего органа во включенном состоянии к сопротивлению в отключенном состоянии.

Вопрос 5 Что такое электродинамическая стойкость электрического аппарата:

Электродинамическая стойкость электрического аппарата это способность электрического аппарата противостоять высоким температурам, возникающих в токоведущих частях при протекании тока короткого замыкания.

Электродинамическая стойкость электрического аппарата это способность электрического аппарата противостоять механическим нагрузкам, возникающим при воздействии на аппарат внешних разнонаправленных усилий в процессе эксплуатации.

Электродинамическая стойкость электрического аппарата это способность электрического аппарата противостоять механическим нагрузкам, возникающих в токоведущих частях и поддерживающих их элементах в режиме короткого замыкания.

Электродинамическая стойкость электрического аппарата это способность электрического аппарата противостоять механическим нагрузкам, возникающих в токоведущих частях и поддерживающих их элементах в нормальном эксплуатационном режиме.

Вопрос 6 Как направлены электродинамические силы в круговом витке:

Электродинамические силы в круговом витке при протекании тока по часовой стрелке направлены радиально к центру витка.

Электродинамические силы в круговом витке при протекании тока напротив часовой стрелке направлены радиально к центру витка.

Электродинамические силы в круговом витке в независимости от направления тока направлены радиально от центра витка.

Электродинамические силы в круговом витке, в независимости от направления тока направлены по касательной к витку.

Вопрос 7 Какие электродинамические усилия испытывают три параллельных проводника лежащих в одной плоскости в трехфазной системе переменного тока:

Наибольшие электродинамические усилия испытывает крайний проводник слева.

Все три проводника испытывают одинаковые электродинамические усилия.

Наибольшие электродинамические усилия испытывает крайний проводник справа.

Наибольшие электродинамические усилия испытывает средний проводник.

ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин

Обучающийся знает: принципы работы и устройство электрических и электронных аппаратов различного назначения: коммутационных,

пускорегулирующих, ограничивающих, измерительных

Тестовые вопросы:

Вопрос 8 При каких условиях наблюдается механический резонанс в токопроводящем контуре:

Частота собственных колебаний контура значительно превышает частоту изменения электродинамической силы.

Частота собственных колебаний контура значительно меньше частоты изменения электродинамической силы.

Частота собственных колебаний контура совпадет с частотой изменения электродинамической силы.

Механический резонанс в токопроводящем контуре не зависит от частоты собственных колебаний контура

Вопрос 9 Как изменяется плотность переменного тока по сечению проводника:

Плотность переменного тока наименьшая у его поверхности и линейно возрастает по направлению к центру.

Плотность переменного тока одинакова по всему сечению.

Плотность переменного тока наибольшая у его поверхности и убывает по направлению к центру.

Плотность переменного тока наименьшая у его поверхности и возрастает по экспоненте по направлению к центру.

Вопрос 10 Как изменяется плотность постоянного тока по сечению проводника:

Плотность постоянного тока наименьшая у его поверхности и линейно возрастает по направлению к центру.

Плотность постоянного тока одинакова по всему сечению.

Плотность постоянного тока наибольшая у его поверхности и убывает по направлению к центру.

Плотность постоянного тока наименьшая у его поверхности и возрастает по экспоненте по направлению к центру.

Вопрос 11 Что понимается под Джоулевыми потерями:

Снижение механической прочности токоведущего контура при протекании тока короткого замыкания.

Снижение электрической прочности изоляции токоведущего контура при протекании тока короткого замыкания.

Потери электрической энергии в проводнике при протекании тока.

Потери тепла из-за отдачи тепла в окружающую среду.

Вопрос 12 Как зависит поверхностный эффект от частоты тока:

С увеличением частоты тока поверхностный эффект линейно снижается.

С увеличением частоты тока поверхностный эффект снижается по экспоненте.

С увеличением частоты тока поверхностный эффект увеличивается.

Поверхностный эффект не зависит от частоты тока.

Вопрос 13 Сформулируйте понятие постоянной времени нагрева:

Время, в течение которого проводник нагревается до предельно допустимой температуры при протекании тока короткого замыкания.

Время, в течение которого проводник нагревается до установившейся температуры при отсутствии отдачи тепла в окружающее пространство.

Время, в течение которого проводник нагревается до установившейся температуры при протекании тока короткого замыкания.

Время, в течение которого проводник нагревается до установившейся температуры при интенсивной отдаче тепла в окружающее пространство.

Вопрос 14 Чему равно превышение температуры, если время нагрева равно четырем постоянным времени нагрева, а установившееся превышение температуры равно 100 °C:

50°C.

95°C.

85°C.

98°C.

ОПК-5.3: проводит расчет и анализ параметров основных характеристик электрических и электронных аппаратов

Обучающийся знает: свойства и технические характеристики основных электрических аппаратов,

назначение и требования к выбору коммутационных электрических аппаратов низкого напряжения

Тестовые вопросы:

Вопрос 15 Чему равен коэффициент перегрузки по току:

Коэффициент перегрузки по току равен, отношению допустимой нагрузки по току при длительном режиме к допустимой нагрузке по току при кратковременном режиме.

Коэффициент перегрузки по току равен, отношению тока кроткого замыкания к номинальному току аппарата.

Коэффициент перегрузки по току равен, отношению допустимой нагрузки по току при кратковременном режиме к допустимой нагрузке по току при длительном режиме.

Коэффициент перегрузки по току равен, отношению номинального тока аппарата к току кроткого замыкания.

Вопрос 16 Как изменяется постоянная времени нагрева аппарата с изменением массы материала, участвующего в процессе нагрева:

Постоянная времени нагрева аппарата линейно снижается с увеличением массы материала, участвующего в процессе нагрева.

Постоянная времени нагрева аппарата увеличивается с увеличением массы материала, участвующего в процессе нагрева.

Постоянная времени нагрева аппарата не зависит от массы материала, участвующего в процессе нагрева.

Постоянная времени нагрева аппарата снижается по экспоненте с увеличением массы материала, участвующего в процессе нагрева.

Вопрос 17 Сформулируйте понятие продолжительности включения (ПВ) для характеристики повторнократковременного режима:

Продолжительность включения — это отношение продолжительности цикла к продолжительности рабочего периода.

Продолжительность включения — это отношение продолжительности цикла к продолжительности паузы.

Продолжительность включения— это отношение продолжительности рабочего периода к продолжительности цикла Продолжительность включения— это отношение продолжительности паузы к продолжительности цикла.

Вопрос 18 Что такое термическая стойкость аппарата:

Способность аппарата выдерживать тепловое действие номинального тока без повреждений, препятствующих дальнейшей исправной работе.

Способность аппарата выдерживать тепловое действие в условиях пожара без повреждений, препятствующих дальнейшей исправной работе.

Стойкость аппарата к воздействию высокой температуры.

Способность аппарата выдерживать кратковременное тепловое действие тока короткого замыкания без повреждений, препятствующих дальнейшей исправной работе.

Вопрос 19 Какова протяженность околокатодной области в дуговом разряде:

Не более 10⁻³ м.

Не более 10⁻⁴ м.

Не более 10⁻⁶ м.

Не более 10-5 м.

Вопрос 20 Как называется процесс ударной ионизации в дуговом разряде в околокатодной области:

Цепная ударная ионизация.

Термическая ударная ионизация.

Лавинная ударная ионизация.

Ступенчатая ударная ионизация.

Вопрос 21 Какой основной процесс поддерживает горение дуги:

Термоэлектронная эмиссия.

Термическая ионизация.

Автоэлектронная эмиссия.

Рекомбинация.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование		Образовательный результат					
индикатора достижения							
компетенции							
ОПК-4.1: использует основные понятия и законы линейных и нелинейных цепей постоянного и переменного	электрических а	аппарата	х,	электродинамические трических аппаратов	силы,	возникающие	В
тока							

Тестовые вопросы:

Вопрос 22 Как, относительно статической ВАХ дуги, расположена динамическая ВАХ дуги при возрастании тока:

Совпадает со статической ВАХ.

Выше статической ВАХ.

Положение динамической ВАХ дуги, относительно статической не зависит от тока.

Ниже статической ВАХ.

Вопрос 23 Как, относительно статической ВАХ дуги, расположена динамическая ВАХ дуги при снижении тока:

Совпадает со статической ВАХ.

Выше статической ВАХ.

Положение динамической ВАХ дуги, относительно статической не зависит от тока.

Ниже статической ВАХ.

Вопрос 24 Сколько, при заданных условиях горения дуги, существует статических и динамических ВАХ:

Бесконечное множество статических и динамических ВАХ.

Одна динамическая ВАХ и бесконечное множество статических ВАХ.

Одна статическая ВАХ и бесконечное множество динамических ВАХ.

Две статических BAX и бесконечное множество динамических BAX.

Вопрос 25 Сформулируйте условие гашения дуги постоянного тока:

При всех значениях тока падение напряжения на дуге должно быть меньше напряжения, подаваемое на дугу от источника.

ВАХ дуги должна иметь падающий характер.

При всех значениях тока падение напряжения на дуге должно превосходить напряжение, подаваемое на дугу от источника.

ВАХ дуги должна иметь возрастающий характер.

Вопрос 26 Сформулируйте условие гашения дуги переменного тока:

После прохождения тока через нуль электрическая прочность дугового промежутка при всех значениях тока должна быть меньше напряжения на нём.

При всех значениях тока динамическая ВАХ не должна пересекаться со статической ВАХ дуги.

После прохождения тока через нуль электрическая прочность дугового промежутка при всех значениях тока должна быть больше напряжения на нём.

При всех значениях тока динамическая BAX должна пересекаться со статической BAX дуги не более двух раз.

Вопрос 27 Каким образом в дугогаситильном устройстве с узкой щелью электрических аппаратах низкого напряжения дуга перемещается в щель:

Дуга перемещается в щель под воздействием потока теплого воздуха.

Дуга перемещается в щель под воздействием потока сжатого воздуха.

Дуга перемещается в щель под воздействием электродинамической силы.

Дуга перемещается в щель в результате интенсивной термической ионизации.

Вопрос 28 Вследствие чего происходит гашение дуги в роговом разряднике:

Вследствие удлинения дуги.

Вследствие деления длинной дуги на ряд коротких.

Вследствие продольного газовоздушного дутья.

Вследствие поперечного газовоздушного дутья.

ОПК-4.1: использует основные	Обучающийся владеет: навыком снятия времятоковых характеристик основных типов
понятия и законы линейных и	электрических аппаратов (реле, автоматических
нелинейных цепей	выключателей, предохранителей)
постоянного и переменного	
тока	

Тестовые вопросы:

Вопрос 29 От чего зависит значение коэффициента контура:

Значение коэффициента контура зависит от величины протекающего тока.

Значение коэффициента контура зависит от геометрических размеров проводников и их взаимного расположения.

Значение коэффициента контура зависит от частоты протекающего тока.

Значение коэффициента контура зависит от электропроводности материала, из которого изготовлен контур.

Вопрос 30 Что такое тяговая статическая характеристика электромагнита постоянного тока:

Тяговая статическая характеристика электромагнита постоянного тока — это зависимость силы магнитного притяжения

от магнитного потока в рабочем зазоре.

Тяговая статическая характеристика электромагнита постоянного тока — это зависимость напряженности магнитного поля от магнитного потока в рабочем зазоре.

Тяговая статическая характеристика электромагнита постоянного тока — это зависимость силы магнитного притяжения от величины воздушного зазора.

Тяговая статическая характеристика электромагнита постоянного тока — это зависимость силы магнитного притяжения от силы противодействующих пружин.

Вопрос 31 Что необходимо для нормального срабатывания электромагнитного механизма постоянного тока:

Для нормального срабатывания электромагнитного механизма постоянного тока необходимо, чтобы тяговая характеристика, во всём диапазоне изменения хода якоря проходила ниже характеристик противодействующих пружин. Для нормального срабатывания электромагнитного механизма постоянного тока необходимо, чтобы тяговая характеристика, во всём диапазоне изменения хода якоря, пересекалась с характеристикой противодействующих пружин не более двух раз.

Для нормального срабатывания электромагнитного механизма постоянного тока необходимо, чтобы тяговая характеристика, во всём диапазоне изменения хода якоря проходила выше характеристик противодействующих пружин. Для нормального срабатывания электромагнитного механизма постоянного тока необходимо, чтобы тяговая характеристика, во всём диапазоне изменения хода якоря, пересекалась с характеристикой противодействующих пружин не более четырех раз.

Вопрос 32 Как изменяется переходное сопротивление электрического контакта с увеличением силы контактного нажатия:

Переходное сопротивление электрического контакта с увеличением силы контактного нажатия увеличивается.

Переходное сопротивление электрического контакта с увеличением силы контактного нажатия снижается.

Переходное сопротивление электрического контакта не зависит от силы контактного нажатия.

Вопрос 33 Как соотносятся температуры контактов и прилегающих к ним проводников при протекании тока изза переходного сопротивления:

Температура контактов всегда ниже температуры прилегающих к ним проводников.

Температура контактов всегда совпадает с температурой прилегающих к ним проводников

Температура контактов всегда выше температуры прилегающих к ним проводников.

Вопрос 34 Что такое провал контактов:

Величина, которая равна расстоянию, которое пройдет подвижный контакт с момента касания с неподвижным, если последний убрать.

Расстояние между контактными поверхностями подвижного и неподвижного контактов в разомкнутом положении.

Расстояние между контактными поверхностями подвижного и неподвижного контактов в момент гашения дуги.

Вопрос 35 К какой группе контактов относится роликовый токосъем:

К группе неподвижных разборных и неразборных контактов.

К группе подвижных неразмыкающихся контактных соединений.

К группе разрывных контактов.

ОПК-4.5:	Проводи	т расчет и
анализ параметров основных		
характеристик электрических		
пепей и электрических машин		

Обучающийся умеет: определять параметры электрической дуги, возникающей в коммутационных электрических аппаратах низкого

напряжения

Тестовые вопросы:

Вопрос 36 К какой группе, в зависимости от основной функции, выполняемой аппаратом, относится автоматические выключатели:

Пускорегулирующие аппараты.

Ограничивающие аппараты.

Контролирующие аппараты.

Коммутационные аппараты.

Аппараты для измерений.

Вопрос 37 К какой группе, в зависимости от основной функции, выполняемой аппаратом, относится магнитные пускатели:

Пускорегулирующие аппараты.

Ограничивающие аппараты.

Контролирующие аппараты.

Коммутационные аппараты.

Аппараты для измерений.

Bonpoc 38 К какой группе, в зависимости от основной функции, выполняемой аппаратом, относится датчики (преобразователи):

Пускорегулирующие аппараты.

Ограничивающие аппараты.

Контролирующие аппараты.

Коммутационные аппараты.

Аппараты для измерений.

Вопрос 39 К какой группе, в зависимости от основной функции, выполняемой аппаратом, относится трансформаторы тока и напряжения:

Пускорегулирующие аппараты.

Ограничивающие аппараты.

Контролирующие аппараты.

Коммутационные аппараты.

Аппараты для измерений.

Вопрос 40 К какой группе, в зависимости от основной функции, выполняемой аппаратом, относится предохранители:

Пускорегулирующие аппараты.

Ограничивающие аппараты.

Контролирующие аппараты.

Коммутационные аппараты.

Аппараты для измерений.

Вопрос 41 Для чего предназначен тепловой расцепитель автоматического выключателя:

Тепловой расцепитель автоматического выключателя предназначен для отключения номинального тока.

Тепловой расцепитель автоматического выключателя предназначен для отключения тока однофазного короткого замыкания

Тепловой расцепитель автоматического выключателя предназначен для отключения тока перегрузки.

Тепловой расцепитель автоматического выключателя предназначен для отключения тока трехфазного короткого замыкания.

Вопрос 42 Для чего предназначен электромагнитный расцепитель автоматического выключателя:

Электромагнитный расцепитель автоматического выключателя предназначен для отключения небольших номинальных токов.

Электромагнитный расцепитель автоматического выключателя предназначен для отключения токов короткого замыкания.

Электромагнитный расцепитель автоматического выключателя предназначен для отключения тока перегрузки.

Электромагнитный расцепитель автоматического выключателя предназначен для отключения больших номинальных токов.

ОПК-4.5: Проводит расчет и анализ параметров основных характеристик электрических цепей и электрических машин

Обучающийся владеет: навыком выполнения электрических измерений параметров электрических аппаратов

Тестовые вопросы:

Вопрос 43 Что такое предельная коммутационная способность (ПКС) автоматического выключателя:

Предельная коммутационная способность (ПКС) автоматического выключателя — это максимальное число коммутаций, которое может выполнить автоматический выключатель без ремонта.

Предельная коммутационная способность (ПКС) автоматического выключателя — это максимальное число отключений токов короткого замыкания, которое может выполнить автоматический выключатель без ремонта.

Предельная коммутационная способность (ПКС) автоматического выключателя— это максимальное число отключений токов перегрузки, которое может выполнить автоматический выключатель без ремонта.

Предельная коммутационная способность (ПКС) автоматического выключателя— это максимальный ток короткого замыкания, отключение которого гарантирует дальнейшую работоспособность автоматического выключателя.

Вопрос 44 Сформулируйте понятие времятоковой характеристики автоматического выключателя:

Времятоковая характеристика автоматического выключателя— это зависимость времени срабатывания (размыкания) расцепителя от силы протекающего через него тока.

Времятоковая характеристика автоматического выключателя— это зависимость времени срабатывания (размыкания) расцепителя от частоты протекающего через него тока.

Времятоковая характеристика автоматического выключателя— это зависимость времени срабатывания (размыкания) расцепителя от продолжительности протекающего через него тока перегрузки.

Времятоковая характеристика автоматического выключателя— это зависимость времени срабатывания (размыкания) расцепителя от продолжительности, протекающего через него номинального тока.

Вопрос 45 Какой вид селективности позволяет осуществить дальнее резервирование смежных защит:

Абсолютная селективность.

Относительная селективность.

Токовая селективность.

Вопрос 46 Для каких высоковольтных выключателей пожаро- и взрывоопасность является основным недостатком:

Для вакуумных высоковольтных выключателей.

Для воздушных высоковольтных выключателей.

Для масляных высоковольтных выключателей.

Для электромагнитных высоковольтных выключателей.

Вопрос 47 Какой из выключателей требует наименьших затрат на техобслуживание в процессе эксплуатации:

Вакуумный высоковольтный выключатель.

Воздушный высоковольтный выключатель.

Масляный высоковольтный выключатель.

Электромагнитный высоковольтный выключатель.

Вопрос 48 Для чего предназначены выключатели нагрузки:

Для отключения тока перегрузки.

Для переключения небольших номинальных токов.

Для отключения тока однофазного короткого замыкания.

Для отключения тока трехфазного короткого замыкания.

Вопрос 49 Для чего предназначены контакторы:

Для отключения тока перегрузки.

Для отключения тока однофазного короткого замыкания.

Для отключения тока трехфазного короткого замыкания.

Для коммутации номинальных токов.

ОПК-5.3: проводит расчет и анализ параметров основных характеристик электрических и электронных аппаратов

Обучающийся умеет: определять параметры автоматических выключателей, необходимых к установке в электрических цепях,

проводить расчет и анализ параметров основных характеристик электрических и электронных аппаратов

Тестовые вопросы:

Вопрос 50 Каким образом токоограничивающие реакторы ограничивают токи короткого замыкания в электрических сетях 3–35 кВ:

Токоограничивающие реакторы ограничивают токи короткого замыкания в электрических сетях 3–35 кВ путем искусственного увеличения активного сопротивления короткозамкнутой цепи.

Токоограничивающие реакторы ограничивают токи короткого замыкания в электрических сетях 3–35 кВ путем искусственного увеличения емкостного сопротивления короткозамкнутой цепи.

Токоограничивающие реакторы ограничивают токи короткого замыкания в электрических сетях 3—35 кВ путем искусственного увеличения индуктивного сопротивления короткозамкнутой цепи.

Токоограничивающие реакторы ограничивают токи короткого замыкания в электрических сетях 3–35 кВ путем искусственного снижения активного сопротивления короткозамкнутой цепи.

Вопрос 51 Для чего предназначены высоковольтные разъединители:

Для отключения тока перегрузки.

Для отключения тока однофазного короткого замыкания.

Для создания надежного видимого разрыва в обесточенной цепи.

Для отключения тока трехфазного короткого замыкания.

Вопрос 52 Как расположена вольт секундная характеристика искрового промежутка:

Выше вольт секундной характеристики защищаемой изоляции.

Ниже вольт секундной характеристики защищаемой изоляции.

Совпадает с вольт секундной характеристикой защищаемой изоляции.

Вопрос 53 Какой должна быть электрическая прочность внешнего искрового промежутка трубчатого разрядника:

Электрическая прочность внешнего искрового промежутка трубчатого разрядника должна быть ниже электрической прочности внутреннего искрового промежутка.

Электрическая прочность внешнего искрового промежутка трубчатого разрядника должна быть выше электрической прочности внутреннего искрового промежутка.

Электрическая прочность внешнего искрового промежутка трубчатого разрядника должна совпадать с электрической прочностью внутреннего искрового промежутка.

Вопрос 54 Как включаются в контролируемую электрическую цепь первичное реле максимального тока:

Обмотка реле включаются в цепь через измерительный трансформатор тока.

Обмотка реле включаются параллельно контролируемой электрической цепи.

Обмотка реле включена в рассечку контролируемой электрической цепи.

Обмотка реле включаются в цепь через измерительный трансформатор напряжения.

Вопрос 55 Как включаются в контролируемую электрическую цепь вторичное реле максимального тока:

Обмотка реле включаются в цепь через измерительный трансформатор тока.

Обмотка реле включаются параллельно контролируемой электрической цепи.

Обмотка реле включена в рассечку контролируемой электрической цепи.

Обмотка реле включаются в цепь через измерительный трансформатор напряжения.

Вопрос 56 Какой параметр измерительной цепи реостатного преобразователя используется для измерения неэлектрической величины:

Емкость измерительной цепи.

Индуктивность измерительной цепи.

Сопротивление измерительной цепи.

Скорость изменения тока в измерительной цепи.

ОПК-5.3: проводит расчет и анализ параметров основных характеристик электрических и электронных аппаратов

Обучающийся владеет: навыком выбора электрических выключателей по параметрам электрической цепи

Тестовые вопросы:

Вопрос 57 До какой стандартной величины понижается первичный ток в измерительном трансформаторе тока:

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 150 А.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 25 А.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 5 А.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 100 А.

Вопрос 58 До какой стандартной величины понижается первичный ток в измерительном трансформаторе тока:

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 15 А.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 0,5 А.

1рансформатор тока преоназначен оля понажения первичного тока оо станоартнои величины 0,3 A

Tрансформатор тока предназначен для понижения первичного тока до стандартной величины $1\,A$.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины 10 А.

Вопрос 59 До какой стандартной величины понижается высокое напряжение в измерительном трансформаторе напряжения:

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартной величины 100 В.

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартной величины 220 В.

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартной величины 380 В.

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартной величины 5 В.

Вопрос 60 Какая зависимость называется характеристикой управления магнитного усилителя:

Зависимость тока в рабочей цепи от рабочего напряжения при постоянном напряжении источника питания.

Зависимость тока управления от напряжения источника питания.

Зависимость тока в рабочей цепи от тока управления при постоянном напряжении источника питания.

Зависимость тока управления от рабочего напряжения.

Вопрос 61 В каком типе разрядника используется эффект скользящего разряда:

В трубчатом разряднике.

В мультикамерном разряднике

В длинно-искровом петлевом разряднике

В вентильном разряднике

Вопрос 62 Какой тип разрядника используется в трамвае для защиты от грозовых перенапряжений:

Для защиты от грозовых перенапряжений в трамвае используется трубчатый разрядник постоянного тока.

В трамвае не используется разрядник для защиты от грозовых перенапряжений.

Для защиты от грозовых перенапряжений в трамвае используется вентильный разрядник постоянного тока.

Для защиты от грозовых перенапряжений в трамвае используется роговой разрядник постоянного тока.

Вопрос 63 Для чего служат рабочие обмотки в дроссельных магнитных усилителях:

Для изменения активного сопротивления рабочей цепи.

Для изменения индуктивного сопротивления рабочей цепи.

Для изменения емкостного сопротивления рабочей цепи.

Для изменения частоты тока в рабочей цепи.

Вопрос 64 Какое из достоинств не относится к полупроводниковым силовым электронным ключам:

Отсутствие подвижной механической системы.

Бездуговая коммутация цепей, отсутствие электрического износа.

Надёжная работа во взрывоопасных и агрессивных средах.

Наличие гальванической развязки в коммутируемой цепи.

Вопрос 65 Какой из высоковольтных выключателей имеет меньшее число составных частей коммутационной камеры:

Маломасляный высоковольтный выключатель.

Элегазовый высоковольтный выключатель.

Вакуумный высоковольтный выключатель.

2.3. Перечень вопросов для подготовки обучающихся к зачету:

- 1. Разделение аппаратов на группы в зависимости от назначения.
- 2. Тяговые аппараты, электрические контактные аппараты, электрические и электронные бесконтактные аппараты
- 3. Определение электродинамических сил с помощью закона Ампера.
- 4. Определение электродинамических сил по изменению запаса магнитной энергии токоведущего контура.
- 5. Электродинамические силы между параллельными проводниками бесконечной длины.
- 6. Электродинамические силы между проводниками, расположенными под прямым углом.
- 7. Электродинамические силы в круговом витке.
- 8. Электродинамические силы в месте изменения сечения проводника.
- 9. Электродинамические силы при наличии в контуре ферромагнитных деталей.
- 10. Электродинамические силы при переменном токе.
- 11. Механический резонанс.
- 12. Потери в токоведущем контуре электрического аппарата.

- 13. Потери в нетоковедущих ферромагнитных частях электрического аппарата.
- 14. Потери в изоляции электрических аппаратов из-за емкостных токов и из-за токов проводимости.
- 15. Переходной процесс при нагреве и охлаждении.
- 16. Нагрев при кратковременном режиме работы.
- 17. Нагрев при перемежающимся и повторно кратковременном режимах работы.
- 18. Нагрев при коротком замыкании.
- 19. Виды контактирующих поверхностей.
- 20. Переходное сопротивление электрического контакта.
- 21. Зависимость переходного сопротивления от контактного нажатия.
- 22. Зависимость переходного сопротивления от температуры.
- 23. Зависимость переходного сопротивления от материала контактов и от состояния контактной поверхности.
- 24. Нагрев контактов при длительном прохождении номинального тока.
- 25. Нагрев контактов при прохождении тока короткого замыкания.
- 26. Основные конструкции электрических контактов.
- 27. Характеристики различных областей электрической дуги.
- 28. Статистическая вольт-амперная характеристика дуги.
- 29. Динамическая вольт-амперная характеристика дуги.
- 30. Условия стабильного горения и гашения дуги постоянного тока.
- 31. Способы гашения дуги.
- 32. Условия гашения дуги переменного тока
- 33. Магнитная цепь простейшего электромагнитного механизма.
- 34. Прямая и обратная задачи расчета магнитной цепи.
- 35. Тяговая статистическая характеристика электромагнитов постоянного тока.
- 36. Динамика срабатывания электромагнитов постоянного тока.
- 37. Электромагниты переменного тока.

Перечень вопросов для подготовки обучающихся к экзамену:

- 1. Устройство и принцип действия низковольтных предохранителей?
- 2. Устройство и принцип действия автоматических выключателей?
- 3. Устройство и принцип действия быстродействующих выключателей постоянного тока?
- 4. Устройство и принцип работы масляных баковых выключателей?
- 5. Устройство и принцип работы маломасляных выключателей?
- 6. Устройство и принцип работы воздушных выключателей?
- 7. Устройство и принцип работы элегазовых выключателей?
- 8. Устройство и принцип работы вакуумных выключателей?
- 9. В чем суть совместной работы отделителей и короткозамыкателей?
- 10. Устройство и принцип работы контакторов?
- 11. Устройство и принцип работы контроллеров?
- 12. Устройство и принцип работы магнитных пускателей?
- 13. Принцип действия и устройство воздушного токоограничивающего реактора?
- 14. Устройство и принцип действия трубчатого разрядника?
- 15. Устройство и принцип действия вентильного разрядника?
- 16. Устройство и принцип действия длинно-искрового петлевого разрядника?
- 17. Устройство и принцип действия разрядника постоянного тока?
- 18. Схема включения и принцип действия вторичного реле прямого действия?
- 19. Схема включения и принцип действия вторичного реле косвенного действия?
- 20. Устройство электротеплового реле?
- 21. Основные параметры реле?
- 22. Принцип действия и конструкция проволочного тензосопротивления?
- 23. Принцип действия и устройство простейшего индуктивного преобразователя, применяемого для преобразования в электрический сигнал небольших линейных и угловых перемещений?
- 24. Принцип действия и устройство простого емкостного преобразователя уровня жидкости в закрытом резервуаре?

- 25. Принцип действия и устройство пьезоэлектрического преобразователя давления?
- 26. Принцип действия и основные типы трансформаторов тока?
- 27. Принцип действия и основные типы трансформаторов напряжения?
- 28. Устройство ёмкостного делителя напряжений?
- 29. Принцип действия магнитного усилителя?
- 30. Принцип работы тиристорного ключа?
- 31. Принцип работы простейшей схемы гибридного аппарата постоянного тока, реализующий быстродействие тиристора?
- 32. Достоинства и недостатки вакуумных и элегазовых выключателей?
- 33. Назначение и устройство трехпозиционных коммутационных аппаратов?
- 34. Назначение и устройство мультикамерных разрядников?
- 35. Устройство оптических трансформаторов тока и напряжения?

Перечень вопросов к защите курсовой работы:

- 1. Назначение и устройство автоматического выключателя
- 2. Защитные характеристики автоматических выключателей.
- 3. Методика расчета рабочих токов в линиях электроснабжения.
- 4. Методика расчета токов короткого замыкания.
- 5. Методика выбора автоматического выключателя.
- 6. Построение карты селективности.
- 7. Абсолютная и относительная селективность.
- 8. Обоснование выбора автоматического выключателя.
- 9. Обоснование селективности работы выбранных автоматических выключателей.
- 10. Какой вид селективности реализуется автоматическим выключателем QF1.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**» – ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
 - недочеты: нерациональные приемы выполнения задания; отдельные погрешности в

Критерии формирования оценок по результатам выполнения курсовой работы

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по экзамену

«Отлично» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.