Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гаранин Максиф РЕДЕРИАЛЬНОЕ АГЕ НТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
Должность: Едерильное государственное бюджетное образовательное учреждение высшего образования
Дата подписания: 70.10.2025 09-07-49.
Уникальный программный ключ.

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Имитационное моделирование

рабочая программа дисциплины (модуля)

Направление подготовки 09.04.02 Информационные системы и технологии Направленность (профиль) Корпоративные информационные системы

Квалификация магистр

Форма обучения очная

Общая трудоемкость 4 ЗЕТ

Виды контроля в семестрах:

зачеты с оценкой 4

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2)		Итого	
Недель	1	10		
Вид занятий	УП	РП	УП	РП
Лекции	10	10	10	10
Лабораторные	20	20	20	20
Конт. ч. на аттест. в период ЭС	0,15	0,15	0,15	0,15
В том числе в форме практ.подготовк и	20	20	20	20
Итого ауд.	30	30	30	30
Контактная работа	30,15	30,15	30,15	30,15
Сам. работа	105	105	105	105
Часы на контроль	8,85	8,85	8,85	8,85
Итого	144	144	144	144

Программу составил(и):

к.ф-м.н., Доцент, Иванов Д.В.

Рабочая программа дисциплины

Имитационное моделирование

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования - магистратура по направлению подготовки 09.04.02 Информационные системы и технологии (приказ Минобрнауки России от 19.09.2017 г. № 917)

составлена на основании учебного плана: 09.04.02-25-2-ИСТмКИС.plm.plx

Направление подготовки 09.04.02 Информационные системы и технологии Направленность (профиль) Корпоративные информационные системы

Рабочая программа одобрена на заседании кафедры

Цифровые технологии

Зав. кафедрой к.э.н., доцент Ефимова Т.Б.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Целью изучения дисциплины "Имитационное моделирование" является формирование у обучаемых знаний, умений и навыков (уровня сформированности соответствующих компетенций) в результате последовательного изучения содержательно связанных между собой разделов (тем) учебных занятий, четкого представления места и роли информационного моделирования в решении актуальных задач по управлению информацией, анализу сложившейся в этой области терминологии, системных научных подходов к моделированию, проектированию и реализации сложных программных комплексов, получение знаний и навыков владения инструментами моделирования, обучение перспективным информационным технологиям и методам решения проблем внедрения и применения информационных систем.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Цикл (раздел) ОП: Б1.В.06

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-3 Способен проводить работы по обработке и анализу научно-технической информации и результатов исследований

ПК-3.1 Проводит анализ научных данных, результатов экспериментов и наблюдений

40.011. Профессиональный стандарт "СПЕЦИАЛИСТ ПО НАУЧНО-ИССЛЕДОВАТЕЛЬСКИМ И ОПЫТНО-КОНСТРУКТОРСКИМ РАЗРАБОТКАМ", утверждённый приказом Министерства труда и социальной защиты Российско Федерации от 4 марта 2014 г. N 121н (зарегистрирован Министерством юстиции Российской Федерации 21 марта 2014 г., регистрационный N 31692)

ПК-3. В. Проведение научно-исследовательских и опытно-конструкторских разработок при исследовании самостоятельных тем

В/02.6 Проведение работ по обработке и анализу научно-технической информации и результатов исследований

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	базовые принципы архитектурного проектирования программных средств, информационного моделирования процессов и систем, выбора оптимальных проектных решений, возможности современных инструментов компьютерного моделирования; современные языки и средства автоматизированного проектирования и моделирования.
3.2	Уметь:
3.2.1	строить информационные модели процессов и систем с применением современных нотаций и инструментов, проводить исследования и сравнительный анализ вариантов структур программных средств, разрабатывать высокоуровневую и детальную архитектуру программной системы; разрабатывать соответствующую документацию; строить статические и динамические (имитационные) модели транспортных процессов с эффективным использованием возможностей современного программного инструментария; оценивать адекватность и качество построенных моделей; проводить анализ результатов моделирования
3.3	Владеть:
3.3.1	навыками: подготовки проектной программной документации, соответствующей современным международным и российским стандартам в данной области, выбора и обоснования оптимальных проектных решений: построения статических и динамических имитационных моделей транспортных процессов с применением современных программных средств; оценки адекватности и качества моделей; анализа результатов моделирования и формулировки предложений по его итогам.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Код Наименование разделов и тем /вид занятия/ Семестр / Курс Примечание

занятия	панменование разделов и тем/вид запитии/	/ Kypc	Тасов	примечание
	Раздел 1. Практические занятия			
1.1	Понятие модели. Цели моделирования. Парадигмы моделирования. Математические модели Классификация моделей Этапы создания и реализации модели /Лек/	4	2	
1.2	Метод Монте-Карло. Датчики случайных чисел. Моделирование случайных событий /Лек/	4	2	
1.3	Специализированные системы математического и имитационного моделирования /Лек/	4	2	
1.4	Имитация основных процессов: генераторы, очереди, узлы обслуживания, терминаторы и др. Транзакты и их свойства /Лек/	4	2	
1.5	Планирование компьютерного эксперимента. Модельное время. Масштаб времени /Лек/	4	2	
1.6	Потоки, задержки, обслуживание. Системы массового обслуживания. Формула Поллачека-Хинчина /Ср/	4	4	

2.1	Подготовка к практическим занятиям /Ср/	4	30	
	Раздел 2. Самостоятельная работа			
1.21	Сортировочная горка (Моделирование ж/д узла) /Лаб/	4	2	Практическа подготовка
1.20	Визуальное моделирование /Ср/	4	16	
1.19	Дискретно-событийное моделирование. Создание простой модели заводского цеха /Лаб/	4	2	Практическ подготовка
1.18	Системная динамика. Создание диаграммы потоков и накопителей /Лаб/	4	2	Практическ подготовка
1.17	Агентное моделирование. Создание популяции агентов /Лаб/	4	2	Практическ подготовка
1.16	Агентное моделирование /Ср/	4	10	
1.15	Дискретно-событийное /Ср/	4	8	
1.14	Системная динамика /Ср/	4	8	
1.13	Имитационное моделирование в Simulink /Cp/	4	10	
1.12	Визуальное моделирование в среде Skylab (MatLab). /Лаб/	4	4	Практическ подготовка
1.11	Математическое моделирование в Skylab (MatLab). /Лаб/	4	4	Практическ подготовка
1.10	Математическое моделирование /Ср/	4	11	
1.9	Система аналитических вычислений Махіта. /Лаб/	4	4	Практическ подготовка
1.8	Моделирование объектов типа «ресурс». Виды ресурсов. Стратегии управления ресурсами /Ср/	4	4	
1.7	Прогнозирование. Классификация прогнозов. Методы прогнозирования. Понятие о рисках /Ср/	4	4	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы для проведения промежуточной аттестации обучающихся приведены в приложении к рабочей программе дисциплины.

Формы и виды текущего контроля по дисциплине (модулю), виды заданий, критерии их оценивания, распределение баллов по видам текущего контроля разрабатываются преподавателем дисциплины с учетом ее специфики и доводятся до сведения обучающихся на первом учебном занятии.

Текущий контроль успеваемости осуществляется преподавателем дисциплины (модуля), как правило, с использованием ЭИОС или путем проверки письменных работ, предусмотренных рабочими программами дисциплин в рамках контактной работы и самостоятельной работы обучающихся. Для фиксирования результатов текущего контроля может использоваться ЭИОС.

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература			
	Авторы, составители	6.1.1. Основная литература Заглавие	Издательс тво, год	Эл. адрес
Л1.1	Советов Б. Я., Яковлев С. А.	Моделирование систем: учебник для академического бакалавриата	Москва: Юрайт, 2014	
6.1.2. Дополнительная литература				

	Авторы, составители	Заглавие	Издательс	Эл. адрес
	,		тво, год	
Л2.1	Акопов А. С.	Имитационное моделирование: учебник и практикум для академического бакалавриата	Москва: Юрайт, 2015	
6.2	Информационные тех	нологии, используемые при осуществлении образовател	ьного процесса	по дисциплине
		(модулю)		
	-	ь лицензионного и свободно распространяемого програм		
6.2.1.1	Операционная система Microsoft® Windows Professional 8 Russian Upgrade OLP NL Academic Edition Договор на поставку № 0342100004813000011 от года.			
6.2.1.2	Microsoft Office 2013 Professional Договор № 0342100004814000045			
6.2.1.3	Mat lab 14 Договор № 0342100004812000038-0001013-01			
6.2.1.4	Scilab http://www.scilab.org/scilab/license (CeCILL (совместимой с GPL)			
	6.2.2 Перечен	ть профессиональных баз данных и информационных сп	равочных сист	ем
	База книг и публикаций Электронной библиотеки "Наука и Техника"- http://www.n-t.ru			
	Портал для разработчиков электронной техники:http://www.espec.ws/			
6.2.2.3		тека программиста» https://proglib.io/		
		АЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИ		
7.1	Учебные аудитории для проведения занятий лекционного типа, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование для предоставления учебной информации большой аудитории и/или звукоусиливающее оборудование (стационарное или переносное).			
7.2	Учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные специализированной мебелью и техническими средствами обучения: мультимедийное оборудование и/или звукоусиливающее оборудование (стационарное или переносное)			
7.3	Помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета.			
7.4	Помещения для хранения и профилактического обслуживания учебного оборудования			

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Имитационное моделирование

(наименование дисциплины(модуля)

09.04.02 Информационные системы технологии

(код и наименование)

Корпоративные информационные системы

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет с оценкой, семестр 4

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-3: Способен проводить работы по обработке и анализу научнотехнической информации и результатов исследований	ПК-3.1

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы (семестр 4)
ПК-3.1: Проводит анализ научных данных, результатов экспериментов и наблюдений	Обучающийся знает: базовые принципы архитектурного проектирования программных средств, информационного моделирования процессов и систем, выбора оптимальных проектных решений, возможности современных инструментов компьютерного моделирования; современные языки и средства автоматизированного проектирования и моделирования.	Вопросы (№1 - №10)
	Обучающийся умеет: строить информационные модели процессов и систем с применением современных нотаций и инструментов, проводить исследования и сравнительный анализ вариантов структур программных средств, разрабатывать высокоуровневую и детальную архитектуру программной системы; разрабатывать соответствующую документацию; строить статические и динамические (имитационные) модели транспортных процессов с эффективным использованием возможностей современного программного инструментария; оценивать адекватность и качество построенных моделей; проводить анализ результатов моделирования Обучающийся владеет: навыками: подготовки проектной программной документации, соответствующей современным международным и российским стандартам в данной области, выбора и обоснования оптимальных проектных решений: построения статических и динамических имитационных моделей транспортных процессов с применением современных программных средств; оценки адекватности и качества моделей; анализа результатов моделирования и формулировки предложений по его итогам.	Задания (№1 - №5)

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС Университета.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат	
достижения компетенции		
ПК-3.1: Проводит анализ	Обучающийся знает: базовые принципы архитектурного проектирования	
научных данных, результатов	программных средств, информационного моделирования процессов и систем, выбора	
экспериментов и наблюдений	оптимальных проектных решений, возможности современных инструментов	
1	компьютерного моделирования; современные языки и средства автоматизированного	
	проектирования и моделирования.	

Примеры вопросов

1. Важнейшими характеристиками точки зрения моделирования являются

- 1. цель (зачем создается модель) и целевая аудитория (то есть для кого она предназначается)
- 2. модель и ПО
- 3. метамодель и модель
- 4. метаметамодель и метамодель
- 5. свойства модели и ее архитектура

2. Языками визуального моделирования являются

- 6. UML, BPMN, SDL, MSC, SADT/IDEF0, IDEF1x, WebML
- 7. Java, C#, C++, C
- 8. HTML, CSS, JavaScript
- 9. любые языки программирования
- 10. язык ассемблера

3. Что представляет собой применение для фиксирования эскизов ПО нотаций с развитой семантикой, графикой и текстовым содержанием.

- 11. Визуальное моделирование
- 12. Абстрогирование
- 13. Создание редактора
- 14. Архитектура
- 15. Анализ объектов

4. Интерактивная среда Simulink:

- 16. позволяет использовать уже готовые библиотеки блоков для моделирования электросиловых, механических и гидравлических систем, а также применять развитый модельно-ориентированный подход при разработке систем управления, средств цифровой связи и устройств реального времени.
- 17. достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), агрегация (aggregation) и поведение) и больше сконцентрироваться на проектировании и архитектуре.
- 18. создает описание для объектного моделирования в области разработки программного обеспечения, моделирования бизнес-процессов, системного проектирования и отображения организационных структур.
- 19. дает возможность сопоставлять абстрактные и невидимые человеческому глазу элементы ПО некоторым зрительно воспринимаемым объектам.
- 20. это графическая среда имитационного моделирования, позволяющая при помощи блокдиаграмм в виде направленных графов, строить динамические модели, включая дискретные, непрерывные и гибридные, нелинейные и разрывные системы.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

5. Что такое нотация?

- + совокупность графических объектов, которые используются в моделях
- совокупность объектов, которые не используются в моделях
- диаграмма, определяющая метамодель
- интерфейс сущности
- ассоциация, моделирующая взаимосвязь
 - 21. преимущественно изображение произведения искусства.
- 6. Что позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), агрегация (aggregation) и поведение) и больше сконцентрироваться на проектировании и архитектуре.
 - a. UML
 - b. Simulink
 - c. Perl
 - d. Borland Together
 - e. CASE

7. UML позволяет также разработчикам программного обеспечения

- а. достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), агрегация (aggregation) и поведение) и больше сконцентрироваться на проектировании и архитектуре.
- b. описания для объектного моделирования в области разработки программного обеспечения, моделирования бизнес-процессов, системного проектирования и отображения организационных структур.
- с. позволяет использовать уже готовые библиотеки блоков для моделирования электросиловых, механических и гидравлических систем, а также применять развитый модельно-ориентированный подход при разработке систем управления, средств цифровой связи и устройств реального времени.
- d. сопоставлять абстрактные и невидимые человеческому глазу элементы ПО некоторым зрительно воспринимаемым объектам.
- е. повысить понимаемость решений проекта людьми разными категориями задействованных в проекте специалистов (инженеров-электронщиков, менеджеров, заказчика и т. д.).
- 8. Язык графического описания для объектного моделирования в области разработки программного обеспечения, моделирования бизнес-процессов, системного проектирования и отображения организационных структур.
 - a. UML
 - b. Simulink
 - c. CASE
 - d. Microsoft Visio
 - e. WebRatio

9. Важнейшими характеристиками точки зрения моделирования являются

- а. цель (зачем создается модель) и целевая аудитория (то есть для кого она предназначается)
- b. модель и ПО
- с. метамодель и модель
- d. метаметамодель и метамодель
- е. свойства модели и ее архитектура

10. С помощью компьютерного имитационного моделирования НЕЛЬЗЯ изучать:

- а. демографические процессы, протекающие в социальных системах;
- b. тепловые процессы, протекающие в технических системах;
- с. инфляционные процессы в промышленно-экономических системах;
- d. процессы психологического взаимодействия учеников в классе;
- е. траектории движения планет и космических кораблей в безвоздушном пространстве.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ПК-3.1: Проводит анализ	Обучающийся умеет: строить информационные модели процессов и систем с
научных данных,	применением современных нотаций и инструментов, проводить исследования и
результатов экспериментов	сравнительный анализ вариантов структур программных средств, разрабатывать
и наблюдений	высокоуровневую и детальную архитектуру программной системы; разрабатывать
	соответствующую документацию; строить статические и динамические
	(имитационные) модели транспортных процессов с эффективным использованием
	возможностей современного программного инструментария; оценивать адекватность и
	качество построенных моделей; проводить анализ результатов моделирования
	Обучающийся владеет: навыками: подготовки проектной программной
	документации, соответствующей современным международным и российским
	стандартам в данной области, выбора и обоснования оптимальных проектных
	решений: построения статических и динамических имитационных моделей
	транспортных процессов с применением современных программных средств; оценки
	адекватности и качества моделей; анализа результатов моделирования и формулировки
	предложений по его итогам.

Примеры заданий

В процессе работы над практическим заданием необходимо разработать и исследовать имитационную модель конкретного процесса или системы. В качестве программной среды моделирования предлагается использовать инструментарий Simulink в составе широко известной системы MATLAB.

Каждая модель содержит варьируемые параметры и наблюдаемые переменные, которые определяются согласно варианту задания. После построения и отладки имитационной модели производится подбор параметров распределения наблюдаемых переменных: строятся гистограммы относительных частот и подбирается вид функций распределений.

Примерные варианты заданий:

- 1. Банковская система с двумя кассами. Очередной посетитель выбирает кассу, у которой наименьшая очередь. Модель останавливается в случае истечения моделируемого времени или при превышении длины одной из очередей. Варьируемые переменные: среднее время обслуживания клиента для каждого кассира, максимальная длина очереди. Наблюдаемые переменные: процент простоя каждого кассира, средняя длина каждой очереди.
- **2.** Автозаправочная станция, реализующая три вида бензина. Для каждого вида задается вероятность его использования. Модель останавливается при израсходовании одного из видов бензина. Варьируемые переменные: запасы каждого вида бензина, вероятности использования каждого из видов. Наблюдаемые переменные: валовая прибыль, нереализованные остатки.
- **3.** Линия по сборке компьютеров, состоящих из пяти компонентов. Для каждого компонента задается период поступления, который является случайным числом. Модель останавливается при истечении времени моделирования. Количество компонентов считать неограниченным.

Варьируемые переменные: период поступления каждого из компонентов, время сборки компьютера. Наблюдаемые переменные: количество собранных компьютеров за единицу времени.

4. Аэропорт на девять самолетов. Задаются средние значения интервалов времени между прилетающими и отлетающими самолетами.

Количество самолетов, ожидающих посадку, ограничено. Модель останавливается в случае невозможности принять очередной самолет.

Варьируемые переменные: интервалы времени между прилетающими и отлетающими самолетами, количество самолетов, ожидающих посадку. Наблюдаемые переменные: среднее время ожидания посадки, среднее число самолетов на посадочной полосе.

5. Процесс подачи заявлений в приемную комиссию. Заявления подаются на два факультета. Для каждого факультета определяется проходной балл. Каждое заявление сопровождается суммой баллов, которые были набраны в результате тестирования. В процессе моделирования необходимо учесть неравномерность количества подаваемых заявлений во времени. Варьируемые переменные: проходной балл для каждого факультета, среднее количество баллов поступающих. Наблюдаемые переменные: количество поданных заявлений на каждый факультет.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Аддитивный и мультипликативный критерии оптимальности.
- 2. Аналитическая модель системы.
- 3. Алгоритмическая модель системы.
- 4. Имитационное моделирование, назначение.
- 5. Особенности применения имитационного моделирования.
- 6. Методологические особенности моделирования.
- 7. Методы условной оптимизации, критерии оптимальности.
- 8. Методы анализа проектных задач, многовариантный анализ (чувствительности, статистический, наихудшего случая).
- 9. Методы безусловной оптимизации.
- 10. Модели динамических объектов непрерывных систем.
- 11. Модели динамических объектов цифровых и импульсных систем.
- 12. Модели функциональные и структурные, полные и макромодели.
- 13. Моделирование импульсных систем при детерминированных и случайных воздействиях.
- 14. Визуальное моделирование в среде Skylab (MatLab).
- 15. Моделирование на языке UML.
- 16. Моделирование нелинейных систем при детерминированных и случайных воздействиях.
- 17. Моделирование с использованием пакета Simulink.
- 18. Моделирование цифровых систем при детерминированных и случайных воздействиях.
- 19. Одновариантный и многовариантный анализ, основные понятия.
- 20. Оптимизация проектных вариантов моделей.
- 21. Основные объекты имитационной модели.
- 22. Пакеты программ для схемотехнического моделирования.
- 23. Поисковая оптимизация, общая схема вычислений.
- 24. Принципы организации системы моделирования.
- 25. Процесс нисходящего проектирования.
- 26. Способы реализации моделей. Построение машинных моделей.
- 27. Формализация проектных задач, математический аппарат, используемый на разных этапах проектирования.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух

недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету с оценкой

«Отлично» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) — обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.