Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаранин Максим Алексеевич

Должность: Ректор

Дата подписания: 30.10.2025 14:42:34 Уникальный программный ключ:

7708e3a47e66a8ee02711b298d7c78bd1e40bf88

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Проектирование и расчет элементов

железнодорожного пути (наименование дисциплины (модуля) Направление подготовки / специальность 23.05.05 Строительство железных дорог, мостов и транспортных тоннелей (код и наименование) Направленность (профиль)/специализация

Управление техническим состоянием железнодорожного пути

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Целью освоения дисциплины является формирование профессиональной компетенции (ПК-2) согласно ФГОС ВО, повышения уровня специальной подготовки обучающихся посредством изучения основных принципов производственно-технологической, проектно-конструкторской и научно-исследовательской деятельности в области проектирования и расчета элементов железнодорожного пути.

Формы промежуточной аттестации: курсовая работа и экзамен в 9 семестре -для очной формы обучения; по заочной форме - 5 курс.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-2 Способен производить анализ, проектирование и расчет элементов железнодорожного пути и земляного полотна	ПК-2.1 Выполняет анализ, проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативно-технической документацией ПК-2.3 Применяет современное программное
элементов железподорожного пути и земязиюто полотна	ПК-2.3 Применяет современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ПК-2.1 Выполняет анализ, проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативно-технической	Обучающийся знает: проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативно-технической документацией	Вопросы (1 – 10)
документацией	Обучающийся умеет: выполнять проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативно-технической документацией	Задания(1-3)
	Обучающийся владеет: методами анализа, проектирования и расчета элементов железнодорожного пути в соответствии с требованиями нормативнотехнической документацией	Задания (4-6) Курсовая работа (вопросы 1-14)
ПК-2.3 Применяет современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного	Обучающийся знает: современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна	Вопросы (11–20)
полотна	Обучающийся умеет: использовать современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна	Задания(7-9)
	Обучающийся владеет: навыками применения современного программного обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна	Задания(10-12)

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС СамГУПС

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения компетенции	Образовательный результат
ПК-2.1 Выполняет анализ, проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативнотехнической документацией	Обучающийся знает: проектирование и расчет элементов железнодорожного пути в соответствии с требованиями нормативно-технической документацией

Примеры вопросов/заданий

- 1. Методика расчётов верхнего строения пути на прочность и устойчивость позволяет решать следующие задачи:
 - а) определение напряжений и деформаций в элементах верхнего строения пути в заданных условиях эксплуатации
 - b) оценка возможности повышения осевых нагрузок и скоростей движения при заданной конструкции пути
 - с) контроль и оценка факторов, оказывающих влияние на состояние бесстыкового пути, определение вероятности возникновения выброса.
- 2. Основные показатели напряженно-деформированного состояния пути это:
 - а) М-изгибающий момент в рельсе; Q давление на опору; Y прогиб рельса (упругий)
 - b) М-изгибающий момент в рельсе; U модуль упругости подрельсового основания; Y прогиб рельса (упругий)
 - с) М-изгибающий момент в рельсе; К коэффициент относительной жесткости; Y прогиб рельса (упругий)
- 3. При расчете коэффициента устойчивости против вползания гребня колеса на рельс к силам, препятствующих подъему колеса относятся
 - а) вертикалые нагрузи от колес на рельсы

¹Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

b) силы трения с) динамическая рамная сила 4. Статическая нагрузка от колеса на рельс является: а) постоянной величиной b) случайной величиной с) статистической величиной 5. Напряжения, возникающие в элементах ВСП определяются от воздействия: а) вертикальной поездной нагрузки b) горизонтальной поездной нагрузки с) вертикальной и горизонтальной поездной нагрузках 6 Нормальные напряжения в рельсовый плетях бесстыкового пути - это: а) напряжения от поездной нагрузки и температурных сил b) напряжения от температурных сил с) напряжения от поездной нагрузки 7 Оценочные критерии прочности пути зависят от: а) грузонапряженности b) типа конструкции ВСП с) скорости движения 8 Максимально допустимое значение напряжений в рельсах $[\sigma_{\kappa}]$: a) 400 MIIa b) 350 MΠa c) 450 MΠa 9. Расчет устойчивости бесстыкового пути сводится к а) определению наибольшего допустимого значения продольной температурной силы b) определению наибольшего допустимого значения динамической силы с) определению наибольших допустимых значений продольной температурной и динамической сил 10. Для обеспечения прочности и устойчивости бесстыкового пути в режиме работы без разрядки напряжений все вновь укладываемые плети должны закрепляться при а) оптимальной температуре b) минимальной температуре с) расчетной температуре

ПК-2.3	Прі	именяет	совр	еменное
програм	мно	е обес	печени	ве для
расчета	И М	оделиро	вания	работы
элемент	ов ж	елезнод	орожно	ого пути
и землян	юго	полотна		

Обучающийся знает: современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

- 11. Напряжения в элементах ВСП зависят от :
 - а) типа ВСП, обращающихся подвижных единиц, типа профиля, сезонности
 - ь) типа ВСП, скорости движения подвижных единиц, типа профиля, сезонности
 - с) типа ВСП, вертикальных нагрузок, типа профиля, сезонности
- 12. Предельному состоянию устойчивости против вползание колеса на головку рельса соответствует
 - a) k = 1.0
 - b) k = 0.9
 - c) k = 0.8
 - 13. Величины напряжений и скорости движения подвижного состава соотносятся друг с другом:
 - а) прямо пропорционально
 - b) обратно пропорционально
 - с) не влияют друг на друга
 - 14. В общем случае, при взаимодействие «колесо-рельс» наибольшая сумма растягивающих напряжений оказывается:
 - а) в наружной кромке подошвы
 - b) во внутренней кромке головки
 - с) в наружной кромке головки
 - 15. В общем случае, при взаимодействии «колесо-рельс» наибольшая сумма сжимающих напряжений оказывается:
 - а) во внутренней кромке головки
 - b) в наружной кромке подошвы
 - с) в наружной кромке головки
 - 16. В инженерных расчетах пути на прочность напряженные состояния рельсов оцениваются по величине:
 - а) Нормальных изгибных напряжений
 - b) Нормальных напряжений кручения
 - с) Нормальных температурных напряжений
 - 17. Модуль упругости пути зависит от
 - а) от эпюры шпал, материала и состояния шпал, рода и состояния балласта, вида и состояния грунтов земляного полотна, времени года

- b) от скорости движения и грузонапряженности
- с) от типа обращающегося локомотива и грузонапряженности
- 18. Ординаты линий влияния µ используют для расчета
- а) М-изгибающего момента в рельсе
- b) М-изгибающего момента в рельсе и Q давления на опору
- с) М-изгибающего момента в рельсе, Y прогиба рельса и Q давления на опору
- 19. При расчете коэффициента устойчивости против вползания гребня колеса на рельс к силам, вызывающим этот подъем, относятся
- а) вертикалые нагрузи от колес на рельсы
- b) силы трения
- с) динамическая рамная сила
- 20. При определении эквивалетных нагрузок принимается
- а) максимальная вероятная нагрузка расчетного колеса и среднее значение нагрузок соседних колес
- b) минимальная вероятная нагрузка расчетного колеса и среднее значение нагрузок соседних колес
- с) максимальная вероятная нагрузка расчетного колеса и максимальное значение нагрузок соседних колес

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ПК-2.1 Выполняет анализ,	Обучающийся умеет: выполнять проектирование и расчет элементов железнодорожного
проектирование и расчет	пути в соответствии с требованиями нормативно-технической документацией
элементов железнодорожного	
пути в соответствии с	
требованиями нормативно-	
технической документацией	

Примеры заданий

Задание 1. Начертите расчетную схему статического расчета пути на прочность.

Задание 2. Приведите расчетную схему для определения коэффициента устойчивости против вкатывыния колеса на рельс.

Задание 3. Запишите основное дифференциальное уравнение статического расчета пути на прочность.

ПК-2.1	Выполн	яет	анализ,
проектиро	ование	И	расчет
элементог	в желе	знодо	рожного
пути н	в соот	ветст	вии с
требовани	ИМК	норг	мативно-
технической документацией			

Обучающийся владеет: методами анализа, проектирования и расчета элементов железнодорожного пути в соответствии с требованиями нормативно-технической документацией

Примеры заданий

Задача 4. Определить возможность укладки бесстыкового пути в конкретных условиях эксплуатации, если допускаемая температурная амплитуда [T] =135,5°C, фактическая амплитуда колебаний температуры, наблюдавшейся в данной местности $T_A=102$ °C.

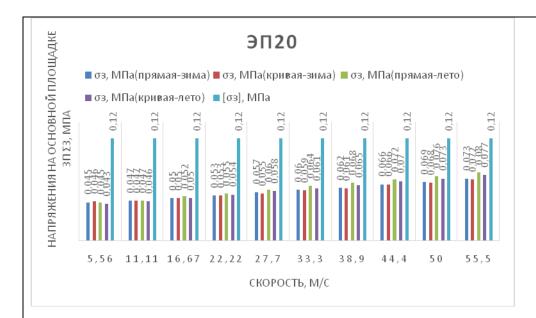
Задача 5 Для расчетного локомотив ТЭ2 рассчитать максимальную динамическую нагрузку $P_{\text{расч}}$, если среднее квадратическое отклонение динамической вертикальной нагрузки от колеса на рельс S = 17003 H, Средняя величина вертикальной нагрузки, от колеса на рельс $\overline{P}_{cp} = 132574 \text{ H}$.

Задача 6. По заданным коэффициентам устойчивости колеса грузового вагона $k=1,31,\ k=1,54,\ k=1,19$ сделать вывод по гарантированной устойчивости колеса против вкатывания на головку рельса.

ПК-2.3 Применяет современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

Обучающийся умеет: использовать современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

Задание 7. Записать выражение и составить схему для определения напряжения σ_h на основной площадке земляного полотна при толщине балластного слоя h, учитывая напряжения от расчетной шпалы σ_h и от двух соседних σ_{hc} , σ_{hc}


Задание 8. Построить графики максимальных допускаемых напряжений в рельсах при проходе заданного локомотива и вагона.

Задание 9. По заданным расчетным значениям напряжений в балласе построить графики напряжений при проходе заданного локомотива.

ПК-2.3 Применяет современное программное обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

Обучающийся владеет: навыками применения современного программного обеспечение для расчета и моделирования работы элементов железнодорожного пути и земляного полотна

Задание 10

По приведенному графику сделать анализ изменения напряжений на основной площадке земляного полотна

Задание 11. Рассчитайте по исходным данным наибольшее допускаемое по условию прочности рельса понижение температуры рельсовой плети по сравнению с ее температурой при закреплении.

Задание 12.

По приведенному графику провести анализ изменения напряжений в балласте при движении локомотива Π 20.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Курсовая работа выполняется (по очной форме обучения в 9 семестре; по заочной форме - на 5 курсе) на тему: «Расчеты верхнего строения пути на прочность и устойчивость». Работа состоит из 3-х разделов: 1. Расчет на прочность по условиям обеспечения надежности; 2. Расчет устойчивости бесстыкового пути; 3. Расчет вкатывания колеса на рельс.

Целью курсовой работы является определение возможности обращения заданной подвижной единицы с установленной скоростью по пути определенной конструкции, проверки условий устойчивости бесстыкового пути при различных ослабляющих факторах, расчета вкатывания колеса на рельс, а также получение практических навыков производства расчетов с использованием специальных программ на ЭВМ.

Объем пояснительной записки 50-65 стр. Метод контроля: защита курсовой работы.

Пример задания

К курсовой работе по дисциплине «Проектирование и расчет элементов верхнего строения железнодорожного пути» студенту

гр.

№ п/п	Расчетные характеристики	Расчетное обозначение	Размер- ность		Вариа	нты р	расчета	
					T	ипы шг	іал	
				Ж.б.				
	Постоянные для расчета	r_1	-	0,7				
	давления на основную	C_1	-	0,241				
1	площадку земляного	C_2	-	0,116				
	полотна	A	-	0,255				
			1	Типы	подвижн	юго со	става	
				ЧС 8				
2	Число осей в тележке	-	шт.	2				
3	Коэффициенты уравнения	-	-	-				
3	максимального прогиба рессор	-	-	-				
4	Статическая нагрузка от колеса на рельс	Рет	кгс	10950				
5	Вес неподрессоренной части приходящийся на одно колесо	q	кгс	1750				
6	Жесткость рессор	Жр	кгс/мм2	184				
7	Диаметр колеса	d	СМ	125				
8	Расстояние между 1-2 ой осями в тележке	l _i	СМ	295				
9	Максимальная скорость движения	V _{max}	км/ч	160				
					Типы ре	ельсов,	<u> </u>	
				P65	щебень			
10	Момент инерции рельса	I_{B}	cm ⁴	3208				
11	Момент сопротивления рельса	W_{π}	см3	417				
12	Площадь полушпалы с учетом коэффициента изгиба	0.5αab	cm ²	3092				

13	Площадь рельсовой подкладки	ω	cm ²	518				
14	Коэффициент учитывающий соотношение масс пути и колеса	α	-	0,403				
15	Произведение коэффициентов, учитывающих тип рельса, балласта, шпал	(α1βγε)	-	0,261				
16	Расчетная глубина неровности колеса	e_0	СМ	0,047				
					Ти	пы проф	иля	
				700 м	Пря	мая	Кри	т вая
17	Коэффициент перехода от напряжений в подошве к напряжению в головке	$m_{\mbox{\tiny K-}\Gamma}$	-		1,31		1,408	
18	Коэффициент учета боковых сил	f	-		1,16		1,42	
19	Расстояние между осями шпал	1	СМ		55	55	51	51
20	Модуль упругости	U	кгс/см ²		лето	зима 2550	лето	зима 2839
21	Скорость начальная	V_0	км/ч		20	20	20	20

Примечание 1. Интервал изменения скорости от V_0 до V_{max} , предусмотренной программой равен 20 км/ч.

Примечание 2. При отсутствии данных №6 и №7 данные №6 принимается равным 0. Вместо данного №7 используется статический прогиб рессор в мм.

Руководитель курсового проектирования	
---------------------------------------	--

По результатам проверки курсовой работы обучающийся допускается к её защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- сделаны выводы;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если работа не отвечает предъявляемым требованиям, то она возвращается автору на доработку. Обучающийся должен переделать работу с учетом замечаний и предоставить для проверки вариант с результатами работы над ошибками. Если сомнения вызывают отдельные аспекты курсовой работы, то в этом случае они рассматриваются во время устной защиты

Защита курсовой работы представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя.

Примеры вопросов для защиты курсовой работы.

- 1. Какие цели преследуют расчеты пути на прочность?
- 2. В каких элементах верхнего строения пути и где определяются расчетные напряжения?
- 3. Назовите основные предпосылки и допущения в расчетах.
- 4. Как оценивается жесткость рельсовых опор?
- 5. В чем заключается физический смысл модуля упругости рельсового основания?
- 6. Как определяется модуль упругости рельсового основания?
- 7. Что понимается под жесткостью пути и коэффициентом относи- тельной жесткости рельса и подрельсового основания? Какие единицы измерения у этих характеристик пути
 - 8. В каких случаях возможна укладка бесстыкового пути температурно-напряженного типа?

- 9. Как определяется расчетный интервал температур для укладки и содержания бесстыковых плетей?
- 10. Как определить коэффициент устойчивости пути против попереч ного сдвига под поездом?
- 11. Назовите два критерия устойчивости рельсошпальной решетки в поперечном направлении.
- 12. Как рассчитывается динамическая рамная сила?
- 13. От чего зависит максимальная горизонтальная нагрузка под шпалу?
- 14. В каких случаях может начаться вкатывание колеса на головку рельса?

Примеры вопросов для экзамена

- 1. В каких направлениях развивалась теория расчетов пути на прочность?
- 2. Какие отечественные и зарубежные ученые внесли большой вклад в теорию и опытные исследования?
 - 3. Какие цели преследуют расчеты пути на прочность?
 - 4. В каких элементах верхнего строения пути и где определяются расчетные напряжения?
 - 5. Назовите основные предпосылки и допущения в расчетах.
 - 6. Как оценивается жесткость рельсовых опор?
 - 7. В чем заключается физический смысл модуля упругости рельсового основания?
 - 8. Как определяется модуль упругости рельсового основания?
- 9. Что понимается под жесткостью пути и коэффициентом относи- тельной жесткости рельса и подрельсового основания? Какие единицы измерения у этих характеристик пути
- 10.Как определить упругий прогиб рельса на любом расстоянии X от точки приложения вертикальной силы?
 - 11. На каком расстоянии от точки приложения вертикальной силы про гиб равен нулю?
 - 12. Как определяются осевые напряжения в кромках подошвы рельса?
 - 13.От чего зависят напряжения сжатия под подкладкой и под шпалой в подрельсовом сечении?
- 14 С помощью чего действие системы нагрузок от нескольких колес приводят к одной эквивалентной нагрузке в расчетном сечении?
 - 15. От чего зависят силы, связанные с колебаниями обрессоренных масс экипажа?
 - 16. Как определяется среднее квадратическое отклонение сил Рр?
 - 17. Какие неровности на железнодорожном пути учитываются в расче- те?
 - 18. Какие силы входят в уравнение равновесия при взаимодействии колеса и пути?
 - 19. Как определяются силы инерции в системе «колесо-путь»?
- 20. Запишите основное дифференциальное уравнение современного динамического расчета пути на прочность.
- 21. От каких параметров зависит дополнительная инерционная сила, связанная с наличием неровности на пути?
- 22. Что понимается под изолированной и непрерывной неровностью на колесе? Как определяются дополнительные инерционные силы при наличии этих неровностей?
 - 23. Какая вертикальная нагрузка колеса на рельс принята за расчетную?
- 24. Как определяется суммарное среднее квадратическое отклонение дополнительных инерционных сил при взаимодействии колеса с рельсом?
 - 25. От чего зависят расчетные напряжения в рельсах, шпалах и балласте?
 - 26. Как определяются допускаемые скорости движения поездов по условиям прочности пути?
 - 27.Влияние скорости и конструкции пути на прочность элементов железнодорожного пути.
 - 28. Схема определения напряжений, возникающих в земляном полотне.
 - 29. Определение вертикальной нагрузки от колеса на основание пути.
 - 30. Как определяются допускаемые температурные силы сжатия и растяжения в плетях бесстыкового пути?
 - 31 В каких случаях возможна укладка бесстыкового пути температурно-напряженного типа?
 - 32. Как определяется расчетный интервал температур для укладки и содержания бесстыковых плетей?
 - 33. Как определяется критический радиус кривой, меньше которого необходим дополнительный расчет по снижению скорости движения поездов?
 - 34. Какие силы учитываются при определении поперечной устойчиво сти пути?
 - 35. Почему в расчете горизонтальные поперечные силы принимаются с максимально вероятными значениями?

- 36. Как определить коэффициент устойчивости пути против попереч ного сдвига под поездом?
- 37. Назовите два критерия устойчивости рельсошпальной решетки в поперечном направлении.
- 38. Как рассчитывается динамическая рамная сила?
- 39. От чего зависит максимальная горизонтальная нагрузка под шпалу?
- 40. В каких случаях может начаться вкатывание колеса на головку рельса?
- 41. Что такое устойчивость колеса на рельсе?
- 42. Какова опасность всползания колеса на рельс?
- 43. Перечислить факторы, способствующие всползанию колеса на рельс.
- 44. Сформулировать условие подъема колеса с последующим вкатыванием его гребня на головку рельса.
- 45. Необходимо ли учитывать вертикальные инерционные силы возникающие от неровностей пути при скорости движения грузовых поездов менее 120 км/ч и почему?
- 46. Каково, в среднем, протяжение пути, на котором колесо может всползти на рельс?
- 47. Как влияет подуклонка рельса на устойчивость колеса на рельсе?
- 48. Оказывает ли существенное влияние нанесение смазки (лубрикации) на боковую грань головки рельса?
- 49. Каким образом влияет наличие бокового износа головки рельса на безопасность движения?
- 50. Как влияет радиус кривого участка пути на безопасность движения?
- 51. Как влияет возвышение наружного рельса на безопасность движения?
- 52. Каким образом влияет режим движения состава (тяга и торможение) на безопасность движения?
- 53. Повлияет ли на коэффициент устойчивости колеса на рельсе степень загруженности тары грузового вагона?
- 54. Определение напряжений, возникающих в земляном полотне.
- 55. Критерии оценки прочности элементов верхнего строения железнодорожного пути.
- 56. Влияние скорости и конструкции пути на прочность элементов железнодорожного пути.
- 57. Схема определения напряжений, возникающих в земляном полотне.
- 58. Определение вертикальной нагрузки от колеса на основание пути.
- 59. Зависимость роста напряжений, возникающих в элементах верхнего строения железнодорожного пути от скоростей движения поездов.
- 60. Статические и динамические силы, возникающие при расчете на прочность.
- 61. Определение момента, поперечной силы и прогиба, возникающих при действии подвижного состава в расчете на
- прочность железнодорожного пути.
- 62. Методика определения произвольного участка железнодорожного пути на прочность.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«Хорошо/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей примененияполученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) — обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовыхпонятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практическогоприменения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логичноизлагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторыенеточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса:его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и невсегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Экспертный лист

оценочных материалов для проведения промежуточной аттестации по дисциплине «<u>Проектирование и расчет элементов железнодорожного пути</u>» по направлению подготовки/специальности

23.05.05 Строительство железных дорог, мостов и транспортных тоннелей

шифр и наименование направления подготовки/специальности

Управление техническим состоянием железнодорожного пути

профиль / специализация

квалификация выпускника

1. Формальное оценивание Показатели Присутствуют Отсутствуют Наличие обязательных структурных элементов: -титульный лист -пояснительная записка -типовые оценочныематериалы -методические материалы, определяющие процедуру и критерии оценивания Содержательное оценивание Соответствует He Показатели Соответствует частично соответствует Соответствие требованиям ФГОС ВО к результатам освоения программы Соответствие требованиям ОПОП ВО к результатам освоения программы Ориентация на требования к трудовым функциям ПС (при наличии утвержденного ПС) Соответствует формируемым компетенциям, индикаторам достижения компетенций

Заключение: ФОС рекомендуется/ не рекомендуется	к внедрению; обеспечивает/ не		
обеспечивает объективность и достоверность результатов при проведении оценивания результатог			
обучения; критерии и показатели оценивания компетенций, шкалы оценивания обеспечивают/ не			
обеспечивают проведение всесторонней оценки результатов	з обучения.		
Эксперт, должность, ученая степень, ученое звание _	/ Ф.И.О.		
	(подпись)		

МΠ