Приложение 2 к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Сопротивление материалов

(наименование дисциплины(модуля)

Специальность

23.05.01 Наземные транспортно-технологические средства

(код и наименование)

Специализация

№ 2 «Подъемно-транспортные, строительные, дорожные средства и оборудование»

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет (3 семестр), экзамен (4 семестр).

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции

ПК-12 способностью проводить стандартные испытания наземных транспортно-технологических средств и их технологического оборудования

ОПК-6: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные средства и методы получения нового знания

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы(семестр)
ПК-12 способностью проводить стандартные испытания наземных транспортно-технологических средств и их технологического оборудования	Обучающийся знает: основы проектирования технических объектов; основные виды механизмов, методы исследования и расчета их статических и динамических характеристик; методы расчета на прочность и жесткость типовых элементов различных конструкций.	Примеры тестовых вопросов 1.11.3 Вопросы к экзамену 2.1 2.9
	Обучающийся умеет: проводить расчеты деталей машин по критериям работоспособности и надежности; анализа и синтеза исполнительных механизмов; применять методы расчета и	Задания к зачету 5.1-5.4 Задания к экзамену
	конструирования деталей и узлов механизмов.	6.1-6.2
	Обучающийся владеет: навыками использования методов теоретической механики теории механизмов и машин, сопротивления материалов,	Задания к зачету 7.1-7.5
	деталей машин и основ конструирования при решении практических задач; методами теоретического и экспериментального исследования в механике.	Задания к экзамену 8.1-8.2
ОПК-6: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные средства и методы получения нового знания	Обучающийся знает: методы проектирования конструкций	Примеры тестовых вопросов 3.13.5 Вопросы к экзамену 4.1 4.10
	Обучающийся умеет: применять научные знания при проведении конструкционных расчетов	Задания к зачету 9.1-9.3 Задания к экзамену
		10.1-10.2
	Обучающийся владеет: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные	Задания к зачету 11.1-11.6
	средства и методы получения нового знания	Задания к экзамену 12.1-12.2

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий
- 2) выполнение тестовых заданий в ЭИОС СамГУПС.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение тестовых заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат

Код и наг	именование	Образовательный результат	
компо	етенции		
ПК-12	способностью	Обучающийся знает: основы проектирования технических объектов; основные	
проводить	стандартные	виды механизмов, методы исследования и расчета их статических и динамических	
испытания	наземных	характеристик; методы расчета на прочность и жесткость типовых элементов	
транспортно-н	пехнологических	различных конструкций.	
средств и их	технологического		
оборудования			

Тестирование по дисциплине проводится с использованием тестов на бумажном носителе или ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/).

Примеры тестовых вопросов (Зачет):

1.1 Активные силы - это силы, которые

Выберите один ответ:

- а. вызывают движение исследуемого объекта или его разрушение
- b. действуют на исследуемый объект со стороны других тел
- с. возникают в опорах и препятствуют движению исследуемого объекта
- 1.2 Балка это стержень,

Выберите один ответ:

- а. работающий на изгиб работающий на кручение
- b. работающий на сжатие
- 1.3 Вал это стержень,

Выберите один ответ:

- а. имеющий круглое поперечное сечение
- b. передающий вращательное движение и работающий на кручение
- с. имеющий две опоры на концах и работающий на изгиб

Вопросы для подготовки к экзамену

- 2.1 Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано.
- 2.2 Интеграл Мора. Вычисление интегралов Мора способом Верещагина
- 2.3 Раскрытие статической неопределимости. Метод сил.
- 2.4 Расчет статически неопределимых систем в связи с изменением температуры и наличием натягов при сборке.
- 2.5 Винклерова модель упругого основания. Дифференциальное уравнение изогнутой оси балки и его общее решение.
- 2.6 Косой изгиб. Уравнение нейтральной линии.
- 2.7 Внецентренное растяжение-сжатие
- 2.8 Расчет на прочность при совместном изгибе и кручении.
- 2.9 Расчёт цилиндрической оболочки, находящейся под действием постоянного давления.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

ОПК-6:	способностью	Обучающийся знает: методы проектирования конструкций
самостоятельно	о или в составе	
группы осущест	пвлять научную	
деятельность,	реализуя	
специальные сре	едства и методы	
получения нового	энания	
I	(n	

Примеры тестовых вопросов (Зачет):

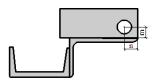
- 3.1 Способность элементов конструкций сохранять под нагрузкой первоначальную форму упругого равновесия называется...
- 1)твердостью
- 2)жесткостью
- 3)устойчивостью
- 4) прочностью
- 3.2 Устойчивостью называется способность элементов конструкции...
- 1) находиться в состоянии статического равновесия под действием внешних сил
- 2)сохранять под нагрузкой первоначальную форму упругого равновесия
- 3) оказывать сопротивление деформации
- 4) воспринимать приложенные к ним нагрузки, не разрушаясь
- 3.3 Одним из основных допущений (принципов) в сопротивлении материалов является...
- 1) допущение об идеальной упругости материала
- 2) принцип возможных перемещений
- 3) закон сохранения энергии
- 4) принцип Даламбера
- 3.4 Допущением об изотропности материалов предполагается, что...
- 1) свойства материалов в данной точке тела по всем направлениям одинаковы
- 2) свойства материалов во всех точках тела одинаковы
- 3) деформации материалов в каждой точке тела прямо пропорциональны напряжениям
- 4) материал совершенно упругий
- 3.5 Допущением об однородности материалов предполагается, что
- 1) материалы изотропны
- 2) материалы обладают одинаковыми свойствами во всех точках тела
- 3) свойства материала в данной точке тела по различным направлениям одинаковы
- 4) материал заполняет объем тела без пустот

Вопросы для подготовки к экзамену

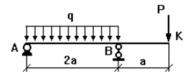
- 4.1. Чем занимается наука о сопротивлении материалов?
- 4.2. Что такое прочность, жёсткость и устойчивость элементов конструкций?
- 4.3. Для чего используется в сопротивлении материалов метод сечений? В чём он заключается?
- 4.4. Что такое напряжение? Какова его размерность?
- 4.5. Какие простые деформации испытывает брус при его нагружении внешними силами?
- 4.6. Когда брус испытывает деформацию центрального растяжения, сжатия?
- 4.7. Какие напряжения возникают при простых сопротивлениях.? Как они определяются?
- 4.8. Что такое абсолютная и относительная деформации бруса?
- 4.9. Закон Гука в деформациях, закон Гука в напряжениях, закон Пуассона?
- 4.10. Что такое предел текучести (физический, условный)?

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат


Код и наименование	Образовательный результат		
компетенции			
ПК-12 способностью	Обучающийся умеет: проводить расчеты деталей машин по критериям		
проводить стандартные	работоспособности и надежности; анализа и синтеза исполнительных механизмов;		
испытания наземных	применять методы расчета и конструирования деталей и узлов механизмов.		
транспортно-технологических			
средств и их технологического			
оборудования			

Задания выполняемые на зачете


- 5.1. Рассчитать полное перемещение при косом изгибе?
- 5.2. Рассчитать полное напряжение при косом изгибе?
- 5.3. Рассчитать напряжения по измеренным величинам деформаций при одноосном напряженном состоянии?
- 5.4.Определить степень статической неопределимости?

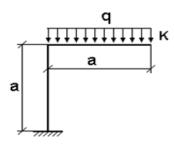
Задания выполняемые на экзамене

- 6.1 Для заданного плоского сечения требуется:
- 1. Сделать чертеж сечения в масштабе, на котором указать все оси и необходимые размеры.
- 2. Определить положение центра тяжести сечения и сделать проверку правильности вычислений.
- 3. Вычислить осевые и центробежный моменты инерции сечения относительно двух взаимно перпендикулярных центральных осей: горизонтальной и вертикальной и сделать проверку правильности вычислений.
- 4. Вычислить величины главных центральных моментов инерции и сделать проверку правильности вычислений.
- 5. Найти положение главных центральных осей.
- 6. Определить моменты сопротивления относительно главных центральных осей.
- 7. Вычислить главные радиусы инерции и построить эллипс инерции.

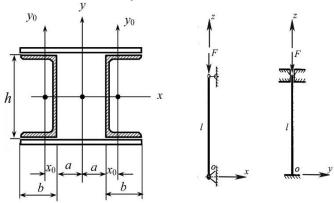
- 6.2 Для балки, нагруженной погонной нагрузкой, требуется:
 - 1) определить реакции опор и сделать проверку;
 - 2) построить эпюры внутренних силовых факторов;
- 3) из расчета на прочность по максимальным нормальным напряжениям подобрать номер двутаврового профиля, из которого следует изготовить балку, приняв допускаемое напряжение $[\sigma] = 200 \ M\Pi a$ (или расчетное сопротивление $R = 200 \ M\Pi a$);
- 4) с помощью интегралов Мора найти вертикальное перемещение сечения K_1 и угол поворота сечения K_2 , приняв модуль упругости $E=200 \Gamma\Pi a$;
- 5) из расчета на прочность подобрать для балки круговое, кольцевое, квадратное и прямоугольное сечения и сравнить массы всех рассчитанных балок, включая двутавровую; принять соотношение размеров прямоугольника $h/b=1.5\,$ и кольца $D/d=1.5\,$.

ПК-12 способностью проводить стандартные испытания наземных транспортно-технологических средств и их технологического оборудования

Обучающийся владеет: навыками использования методов теоретической механики теории механизмов и машин, сопротивления материалов, деталей машин и основ конструирования при решении практических задач; методами теоретического и экспериментального исследования в механике.


Задания выполняемые на зачете

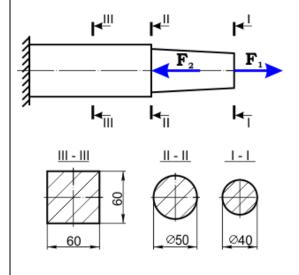
- 7.1 Определите величину коэффициента динамичности в случае, когда высота падения груза равна нулю.
- 7.2 Определите влияние массы балки на коэффициент динамичности
- 7.3 Как изменится величина напряжения при ударе, если высота падения груза увеличится
- 7.4 Определите влияние длины стержня на величину критической силы
- 7.5 Определите влияние изгибной жесткости стержня на величину критической силы


Задания выполняемые на экзамене

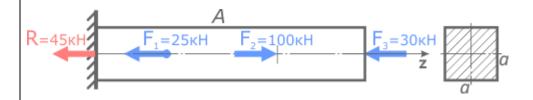
- 8.1 Для рамы, нагруженной погонной нагрузкой, требуется:
 - 1) определить реакции опор и сделать проверку;
 - 2) построить эпюры внутренних силовых факторов;
- 3) из расчета на прочность по максимальным нормальным напряжениям подобрать номер двутаврового профиля, из которого следует изготовить раму, приняв допускаемое напряжение $[\sigma] = 160 \ M\Pi a$ (или расчетное сопротивление $R = 160 \ M\Pi a$);

4) с помощью интегралов Мора найти вертикальное и горизонтальное перемещение сечения A и угол поворота сечения B, приняв модуль упругости $E=200 \Gamma\Pi a$.

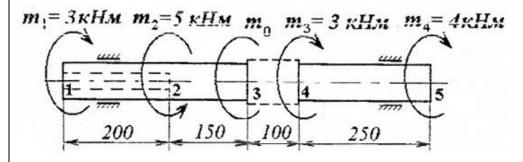
- **8.2** Колонна составлена из двух ветвей (прокатных профилей), соединённых между собой планками. Опорные сечения колонны в плоскостях *XOZ* и *YOZ* имеют разные закрепления. Требуется определить:
 - 1. Размеры сечения (номер швеллера или двутавра) из условия устойчивости.
 - 2. Расстояние между планками(свободную длину l_0).
 - 3. Расстояние между ветвями колонны (2a)
 - 4. Величину критической силы $F_{\kappa p}$ и коэффициент запаса устойчивости $n_{\rm v}$.



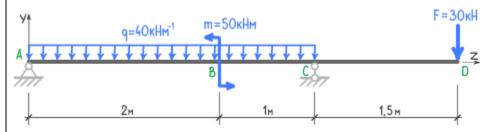
ОПК-6: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные средства и методы получения нового знания


Обучающийся умеет: применять научные знания при проведении конструкционных расчетов

Задания выполняемые на зачете


9.1 Проверить прочность стержня при растяжении-сжатии, центрально нагруженного двумя сосредоточенными силами $F1=100~\mathrm{kH}$ и $F2=600~\mathrm{kH}$.

9.2 Построить эпюру нормальных напряжений для стержня постоянного сечения, нагруженного продольными силами.

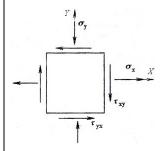


9.3 Стальной вал круглого сплошного и кольцевого сечения нагружен скручивающими моментами. Требуется спроектировать ступенчатый вал заданной формы

Задания выполняемые на экзамене

10.1 Для заданной стальной двухопорной балки , нагруженной изгибающим моментом m, сосредоточенной силой F и равномерно распределенной нагрузкой q, требуется методом начальных параметров, определить вертикальное перемещение (прогиб) сечений балки в точках B и D, и угловые перемещения сечений на опорах (в точках A и C).

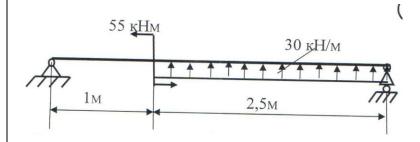
10.2 При каком соотношении сил F1 и F2 вертикальное перемещение крайнего правого сечения двухопорной балки (прогиб в точке K) будет равно нулю?

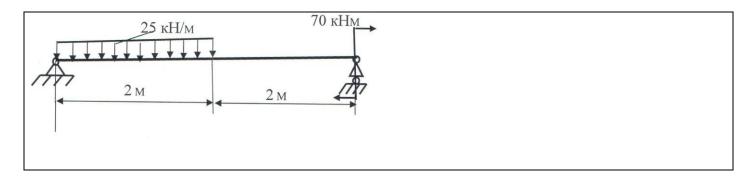

ОПК-6: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные средства и методы

Обучающийся владеет: способностью самостоятельно или в составе группы осуществлять научную деятельность, реализуя специальные средства и методы получения нового знания

получения нового знания	

Задания выполняемые на зачете


Для стального кубика, находящегося в плоском напряженном состоянии, требуется найти:


- 11.1 величину и направление главных напряжений;
- 11.2 величину наибольших касательных напряжений;
- 11.3 относительные деформации ребер кубика;
- 11.4 относительное изменение объема;
- 11.5 удельную потенциальную энергию деформации;
- 11.6 проверить прочность элемента, используя III теорию прочности.

Задания выполняемые на экзамене

12.1 Найти прогиб в середине балки

12.2 Найти угол поворота на левой опоре

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

Вопросы для подготовки к зачету

- 1. Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано.
- 2. Интеграл Мора. Вычисление интегралов Мора способом Верещагина
- 3. Раскрытие статической неопределимости. Метод сил.
- 4. Расчет статически неопределимых систем в связи с изменением температуры и наличием натягов при сборке.
- 5. Винклерова модель упругого основания. Дифференциальное уравнение изогнутой оси балки и его общее решение.
- 6. Косой изгиб. Уравнение нейтральной линии.
- 7. Внецентренное растяжение-сжатие
- 8. Расчет на прочность при совместном изгибе и кручении.
- 9. Расчёт цилиндрической оболочки, находящейся под действием постоянного давления.
- 10. Основные понятия об усталостном разрушении. Механизм усталостного разрушения.
- 11. Понятие о пределе выносливости материала. Параметры цикла напряжений.
- 12. Предел выносливости материала при симметричном цикле.
- 13. Диаграмма предельных амплитуд напряжений цикла.
- 14. Предел выносливости материала при асимметричном цикле.
- 15. Концентрация напряжений и её влияние на прочность деталей.
- 16. Основные факторы, влияющие на предел выносливости детали.
- 17. Предел выносливости детали при асимметричном цикле.
- 18. Схематизированная диаграмма предельных амплитуд цикла Серенсена Кинасошвили.
- 19. Расчёты на прочность при переменных напряжениях валов, испытывающих изгиб с кручением.
- 20. Перемещения, напряжения и расчёт на прочность при ударе.

Вопросы для подготовки к экзамену

- 1. Чем занимается наука о сопротивлении материалов?
- 2. Что такое прочность, жёсткость и устойчивость элементов конструкций?
- 3. Для чего используется в сопротивлении материалов метод сечений? В чём он заключается?
- 5. Что такое напряжение? Какова его размерность?
- 4. Какие простые деформации испытывает брус при его нагружении внешними силами?
- 5. Когда брус испытывает деформацию центрального растяжения, сжатия?
- 6. Какие напряжения возникают при простых сопротивлениях.? Как они определяются?
- 7. Что такое абсолютная и относительная деформации бруса?
- 8. Закон Гука в деформациях, закон Гука в напряжениях, закон Пуассона?
- 9. Что такое предел текучести (физический, условный)?
- 10. Что такое предел прочности?
- 11. Условие прочности при простых сопротивлениях?
- 12. Что называется допускаемым напряжением и как оно определяется?
- 13. Как определяется жёсткость при простых сопротивлениях?
- 14. Что относится к геометрическим характеристикам поперечного сечения бруса?
- 15. Как определяются статические моменты площади поперечного сечения бруса?
- 16. Как определяются осевые моменты инерции поперечного сечения бруса?
- 17. Формулы осевых моментов инерции прямоугольника, круга, кольца.

- 14. Определение главных напряжений и положения главных площадок.
- 15. Определение главных напряжений и положения главных площадок.
- 16. Напряжения на произвольной площадке при объёмном напряжённом состоянии.
- 17. Закон Гука при объёмном напряжённом состоянии для главных площадок.
- 18. Закон Гука при объёмном напряжённом состоянии для произвольных площадок
- 19. Потенциальная энергия деформации. Энергия изменения формы и объёма.
- 20. Теории прочности и пластичности. Основные понятия о предельном состоянии материала.
- 21. Критерии прочности наибольших нормальных напряжений и наибольших линейных деформаций.
- 22. Критерий пластичности наибольших касательных напряжений.
- 23. Критерий пластичности удельной потенциальной энергии изменения формы.
- 24. Теория прочности Мора..
- 25. Потеря устойчивости сжатым стержнем. Формула Эйлера для критической силы.
- 26. Влияние на критическую силу способа закрепления стержня.
- 27. Пределы применимости формулы Эйлера. Полный график критических напряжений.
- 28. Расчёт сжатых стержней на устойчивость по коэффициентам снижения допускаемого напряжения.
- 29. Выбор материала и рациональной формы поперечного сечения сжатых стержней.
- 30. Продольно поперечный изгиб. Приближенное решение дифференциального уравнения упругой линии балки.
- 31. Расчёт на прочность при продольно-поперечном изгибе.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«Неудовлетворительно/не зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по экзамену

«Отлично» - студент приобрел необходимые умения и навыки, продемонстрировал навык

практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно» – студент допустил существенные ошибки.

«**Неудовлетворительно**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по зачету

К зачету допускаются студенты, выполнившие более 60% заданий по самостоятельной работе в 7 семестре.

«Зачтено» - студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Незачтено» - выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Экспертный лист

оценочных материалов для проведения промежуточной аттестации по дисциплине «Сопротивление материалов»

по специальности

23.05.01 Наземные транспортно-технологические средства

шифр и наименование направления подготовки/специальности

_№ 2 «Подъемно-транспортные, строительные, дорожные средства и оборудование»

	профиль / специализация		
	инженер квалификация выпускника	a	
1. Форма	альное оценивани	re.	
	шине оденивани		_
Показатели		Присутствуют	Отсутствуют
Наличие обязательных структурных элеме	ентов:	1	
– титульный лист		<u> </u>	
– пояснительная записка		V	
 типовые оценочные материаль 	Ы	V	
 методические материалы, опре- 	еделяющие	$\sqrt{}$	
процедуру и критерии оцениван	Р В В В В В В В В В В В В В В В В В В В		
Содержат	сельное оцениван	ие	
		Соответствует	Не
Показатели	Соответствует	частично	соответствует
Соответствие требованиям ФГОС ВО к	1		
результатам освоения программы	$\sqrt{}$		
Соответствие требованиям ОПОП ВО к	√		
результатам освоения программы			
Ориентация на требования к трудовым			
функциям ПС (при наличии	$\sqrt{}$		
утвержденного ПС)			
Соответствует формируемым			
компетенциям, индикаторам достижения	$\sqrt{}$		
компетенций			
Заключение: ФОС рекомендуется/ не		-	
обеспечивает объективность и достоверност			
обучения; критерии и показатели оценивани			<u>обеспечивают</u> / не
обеспечивают проведение всесторонней оце	енки результатов	обучения.	
Эксперт, должность, ученая степень,	ученое звание		_/
		(подпись)	(ФИО)

МΠ