Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Общая энергетика

(наименование дисциплины (модуля))

Направление подготовки / специальность 13.03.02 Электроэнергетика и электротехника

(код и наименование)

Направленность (профиль)/специализация Электрический транспорт

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачёт, семестр 4;

курсовая работа, семестр 5;

экзамен, семестр 5.

Перечень компетенций, формируемых в процессе освоения дисциплины

	Код индикатора
Код и наименование компетенции	достижения
	компетенции
ПК-1: Способен рассчитывать и оценивать параметры и режимы функционирования	
подвижного состава электрического транспорта, подстанций, кабельных и	ПК-1.13
воздушных линий электропередачи	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

		T
Код и наименование индикатора		Оценочные
достижения компетенции	Результаты обучения по дисциплине	материалы
		(семестр 7)
ПК-1.13: Выбирает основные методы и	Обучающийся знает:	Вопросы (№ 1–
способы преобразования энергии,	основные виды ресурсов, способы	№ 5)
технологию производства теплоэнергии	преобразования их в электрическую и	КР (раздел 1)
и электроэнергии на тепловых,	тепловую энергию, технологию производства	
атомных и гидравлических	энергии на тепловых, атомных и	
электростанциях; способы передачи	гидравлических электростанциях;	
теплоэнергии и электроэнергии от	общие положения технической	
производителей к потребителям,	термодинамики и основы теории теплообмена;	
нетрадиционные и возобновляемые	способы передачи теплоэнергии и	
источники теплоэнергии и	электроэнергии от производителей к	
электроэнергии	потребителям.	
	Обучающийся умеет:	Задания (№ 6–№ 8)
	оценивать основные виды энергоресурсов и	КР (раздел 2)
	преобразования их в электрическую и	
	тепловую энергию;	
	выполнять анализ эффективности	
	преобразования энергии.	
	Обучающийся владеет:	Задания (№ 9–
	навыками анализа технологических схем	№ 11)
	производства электрической и тепловой	КР (раздел 3)
	энергии в соответствии с техническим	
	заданием и нормативно-технической	
	документацией, соблюдая различные	
	технические, энергоэффективные и	
	экологические требования;	
	методиками расчета показателей	
	энергоэффективности основных объектов	
	энергетики.	
	<u> </u>	

Промежуточная аттестация (экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые 1 контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1. Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат		
достижения компетенции			
ПК-1.13: Выбирает основные методы и	Обучающийся знает:		
способы преобразования энергии,	основные виды ресурсов, способы преобразования их в		
технологию производства теплоэнергии и	электрическую и тепловую энергию, технологию производства		
электроэнергии на тепловых, атомных и	энергии на тепловых, атомных и гидравлических электростанциях;		
гидравлических электростанциях;	общие положения технической термодинамики и основы теории		
способы передачи теплоэнергии и	теплообмена;		
электроэнергии от производителей к	способы передачи теплоэнергии и электроэнергии от		
потребителям, нетрадиционные и	производителей к потребителям.		
возобновляемые источники теплоэнергии			
и электроэнергии			

1. К возобновляемой энергии относятся...

- 1. энергия солнца, земли, ветра.
- 2. энергия рек, морей, океанов.
- 3. энергия ядерного топлива.
- 4. энергия сжигаемого торфа, угля, горючих сланцев.

2. Что такое термический КПД теплового двигателя?

- 1. Отношение низшей температуры цикла к наивысшей.
- 2. Отношение работы цикла к подведенной теплоте.
- 3. Отношение отведенной теплоты к подведенной;
- 4. Отношение снимаемой с двигателя мощности к теоретической.

3. Какие установки широко используются на отечественных ТЭС?

- 1. Гидравлические.
- 2. Электрические.
- 3. Газотурбинные.
- 4. Паровые.

4. Атомная станция типа АСТ вырабатывает...

- 1. электроэнергию и тепло.
- 2. только электроэнергию.
- 3. только тепло.
- 4. электроэнергию на основе реактора, работающего на тории.
- 5. По конструктивному исполнению различают линии электропередачи...
- 1. алюминиевые.
- 2. медные.

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель — разработчик оценочных средств.

- 3. воздушные.
- 4. кабельные.

Курсовая работа «Расчет потерь на корону в проводах воздушных линий электропередачи»:

Раздел 1. Общие сведения о короне на проводах воздушных линий высокого напряжения.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образоратанунуй разунутат	
достижения компетенции	Образовательный результат	
ПК-1.13: Выбирает основные методы и	Обучающийся умеет:	
способы преобразования энергии,	оценивать основные виды энергоресурсов и преобразования их в	
технологию производства теплоэнергии и	электрическую и тепловую энергию;	
электроэнергии на тепловых, атомных и	выполнять анализ эффективности преобразования энергии.	
гидравлических электростанциях;		
способы передачи теплоэнергии и		
электроэнергии от производителей к		
потребителям, нетрадиционные и		
возобновляемые источники теплоэнергии		
и электроэнергии		

- **6.** Удельный расход натурального топлива на $1~\text{кВт}\cdot\text{ч}$ выработанной электроэнергии $B=0,5~\text{кг/(кВт}\cdot\text{ч})$. Теплота сгорания топлива $Q_H=23000~\text{кДж/кг}$. Определить удельный расход условного топлива.
- 7. Паросиловая установка работает по циклу Ренкина. Параметры начального состояния: $p_1 = 120$ бар, $t_1 = 550$ °C. Давление в конденсаторе $p_2 = 0.04$ бар. Определить термический КПД цикла.
- **8.** Определить мощность малой ГЭС, если расход воды $Q=10~\text{m}^3/\text{c}$, напор H=17~m.. Коэффициент потерь напора в открытом гидроканале k=0.85, КПД гидротурбины $\eta_T=76~\%$ КПД гидрогенератора $\eta_9=94~\%$ / Как изменится мощность, если затвором уменьшить расход воды до 70 % от номинального? Будет она больше или меньше, чем 70 % от номинальной мощности?

Курсовая работа «Расчет потерь на корону в проводах воздушных линий электропередачи»:

Раздел 2. Расчет потерь на корону в проводах воздушных линий электропередачи.

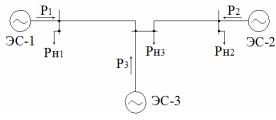
 $Исходные \ данные \ \kappa \ курсовой \ работе.$ Трасса воздушных линий проходит в регионе, метеорологические условия которого характеризуются продолжительностями: хорошей погоды $-T_{XII}$, ч; сухого снега $-T_{CC}$, ч; дождя $-T_{ZI}$, ч; изморози $-T_{II3}$, ч.

Исходные данные

Номинальное напряжение, $U_{{\scriptscriptstyle HOM}}$, кВ	Число проводов в фазе, n	Радиус провода, r_0 , см	Расстояние между фазами, d , см
330	3	0,97	500

ПК-1.13: Выбирает основные методы и способы преобразования энергии, технологию производства теплоэнергии и электроэнергии на тепловых, атомных и гидравлических электростанциях; способы передачи теплоэнергии и электроэнергии от производителей к потребителям, нетрадиционные и возобновляемые источники теплоэнергии и электроэнергии

Обучающийся владеет:


навыками анализа технологических схем производства электрической и тепловой энергии в соответствии с техническим заданием и нормативно-технической документацией, соблюдая различные технические, энергоэффективные и экологические требования;

методиками расчета показателей энергоэффективности основных объектов энергетики.

- **9.** Показать на примере влияния начальных и конечных параметров пара на экономичность тепловых электростанций.
- 10. Определить по заданным исходным данным: 1) оптимальное число резервных агрегатов в электрической системе; 2) экономический эффект создания аварийного резерва мощности. Исходные данные:

- единичная мощность агрегатов N_A ;
- количество основных агрегатов в системе n,
- тип суточного графика нагрузки и коэффициент вынужденного простоя генератора (K_B) ;
- величина удельного ущерба от недоотпуска электроэнергии в целом по энергосистеме уо;
- стоимость одного резервного агрегата K_0 ;
- норма дисконта E и отчисления на ремонт и обслуживание резервных агрегатов p_A .

11. Найти экономичное распределение нагрузки $P_{\Sigma} = P_{HI} + P_{H2} + P_{H3}$ между тремя тепловыми станциями без учета потерь мощности.

К задаче 11

Курсовая работа «Расчет потерь на корону в проводах воздушных линий электропередачи»:

Раздел 3. Эскизы портальной опоры воздушной линии и расщепленной фазы.

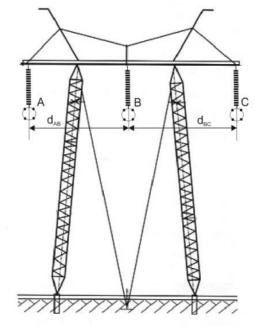


Рисунок к курсовой работе — Горизонтальное расположение фаз

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Определение и состав энергетики.
- 2. Возобновляемые источники энергии.
- 3. Невозобновляемые источники энергии.
- 4. 1, 2 и 3-й законы термодинамики.
- 5. Работа газа в произвольном термодинамическом процессе.
- 6. Внутренняя энергия термодинамической системы.
- 7. Круговой термодинамический процесс.
- 8. Цикл Карно.
- 9. Типы тепловых электростанций.
- 10. Общие сведения и состав паротурбинной установки.
- 11. Устройство ступени паровой турбины.
- 12. Турбины со ступенями давления.
- 13. Подразделение турбин по направлению потока рабочего вещества и в зависимости от характера теплового процесса.
 - 14. Устройство котельного агрегата.

- 15. Преимущества и недостатки паровых турбин.
- 16. Устройство простейшей газотурбинной установки.
- 17. Принципиальная схема газотурбинной установки с двухступенчатым сжатием и двухступенчатым расширением.
- 18. Преимущества и недостатки газотурбинной установки, по сравнению с паротурбинной установкой .
 - 19. Принципиальная схема парогазовой установки.
 - 20. Преимущества и недостатки парогазовой установки.
 - 21. Физические основы работы ядерных реакторов АЭС.
 - 22. Виды ядерных реакторов.
 - 23. Устройство ядерного реактора на тепловых нейтронах.
 - 24. Тепловые схемы АЭС.
 - 25. Устройство АЭС с реактором типа РБМК.
 - 26. Достоинства и недостатки АЭС.
 - 27. Гидроэлектростанции, использующие водоток рек.
 - 28. Гидроаккумулирующие гидроэлектростанции.
 - 29. Приливные гидроэлектростанции.
 - 30. Основное оборудование электрической часть электростанции.
- 31. Классификация электрических сетей по признакам, связанным с номинальным напряжением.
- 32. Почему не возможна передача электроэнергии большой мощности при генераторном напряжении.
 - 33. Основные конфигурации электрических сетей.
 - 34. Основные конструктивные элементы воздушных линий электропередачи.
 - 35. Опоры воздушных линий электропередачи.
 - 36. Изоляция воздушных линий электропередачи.
 - 37. Устройство кабелей среднего напряжения.
 - 38. Устройство кабелей высокого напряжения.
 - 39. Солнечные фотоэлектрические электростанции.
 - 40. Солнечные термодинамические электростанции с линейными концентраторами.
 - 41. Солнечные термодинамические электростанции с точечной фокусировкой.
- 42. Преимущества и недостатки фотоэлектрического и термодинамического вида преобразования солнечной энергии в электричество.
 - 43. Перспективы развития солнечной энергетики.
 - 44. Основные параметры эффективности ветроприемного устройства.
 - 45. Типы и эффективность различных ветроприемных устройств.
- 46. Основные технические характеристики ветроприемных устройств. Достоинства и недостатки ветроэнергетики.
 - 47. Типы источников геотермальной энергии.
 - 48. Геотермические электростанции, работающие на месторождениях сухого пара.
- 49. Геотермические электростанции с испарителем, работающие на месторождениях горячей воды под давлением.
 - 50. Геотермические электростанции с бинарным циклом.
- 51. Геотермические электростанции, использующие тепло сухих горячих скальных пород.

Перечень вопросов для подготовки к защите курсовой работы:

- 1. Расчет напряженности электрического поля для одиночного провода.
- 2. Оптимальный шаг расщепления проводов в фазе.
- 3. Расчет среднегодовой мощности потерь
- 4. Расчет удельных годовых потерь энергии на корону.
- 5. Оценка уровня радиопомех для воздушных линий.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

Оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100–90% от общего объёма заданных вопросов.

Оценка «**хорошо**» выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов.

Оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75–60 % от общего объёма заданных вопросов.

Оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов – менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не** зачтено» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания;
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения;
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету, экзамену

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил

незначительные ошибки и неточности.

«Удовлетворительно/зачтено» – студент допустил существенные ошибки.

«**Неудовлетворительно**/**не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по защите курсовой работы

«Отлично» – получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты работы без арифметических ошибок, а также грамотно ответившие на все встречные вопросы преподавателя.

«Хорошо» — получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты работы без грубых ошибок. При этом при ответах на вопросы преподавателя студент допустил не более одной грубой ошибки или двух негрубых ошибок.

«Удовлетворительно» — получают студенты, оформившие курсовую работу в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты работы. При этом при ответах на вопросы преподавателя студент допустил дветри грубые ошибки или четыре негрубых ошибок.

«**Неудовлетворительно**» — ставится за курсовую работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно».

Виды ошибок:

- -грубые: неумение выполнять типовые расчеты; незнание методики расчета расчетов;
 - негрубые: неточности в выводах; неточности в формулах и определениях.