Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гнатрек Максим В Информация о владельце:

ФИО: Гнатрек Максим В Информация о владельце В Инфо

Приложение 2 к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Методы многокритериальной оптимизации

(наименование дисциплины (модуля)

Направление подготовки / специальность

27.04.03 Системный анализ и управление

(код и наименование)

Направленность (профиль)/специализация

Системный анализ в распределенных технических системах

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет в 2 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции

ОПК-2: способностью формулировать содержательные и математические задачи исследования, выбирать методы экспериментального и вычислительного экспериментов, системно анализировать, интерпретировать и представлять результаты исследований

ПК-1: способностью применять адекватные методы математического и системного анализа и теории принятия решений для исследования функциональных задач управления техническими объектами на основе отечественных и мировых тенденций развития методов, управления, информационных и интеллектуальных технологий

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы
ОПК-2: способностью формулировать содержательные и математические	Обучающийся знает: Методы многокритериальной оптимизации	Вопросы (1-10)
задачи исследования, выбирать методы экспериментального и вычислительного экспериментов, системно	Обучающийся умеет: решать многокритериальные задачи предметной области, учитываю приоритет критериев	Задания (1-3)
анализировать, интерпретировать и представлять результаты исследований	Обучающийся владеет: прикладным программным обеспечением для решения задач многокритериальной оптимизации	Задания (1-3)
ПК-1: способностью применять адекватные методы математического и	Обучающийся знает: Правила построения математических моделей задач оптимизации	Вопросы (11-20)
системного анализа и теории принятия решений для исследования	Обучающийся умеет: создавать математические модели для оптимизационных задач разных классов	Задания (4-6)
функциональных задач управления техническими объектами на основе отечественных и мировых тенденций развития методов, управления, информационных и интеллектуальных технологий	Обучающийся владеет: методами математического программирования для решения задач глобальной оптимизации	Задания (4-6)

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки навыков образовательного результата Проверяемый образовательный результат:

Код и наименование		Образовательный результат
компетенці	ии	
ОПК-2: сп	особностью	Обучающийся знает: Методы многокритериальной оптимизации
формулировать соде	ржательные	
и математически	е задачи	
исследования, выбир	ать методы	
экспериментального	И	
вычислительного		
экспериментов,	системно	
анализировать,		
интерпретировать	И	
представлять	результаты	
исследований		

- 1.Оптимизация системы состоит
- а) в поиске такой системы, в которой максимум параметров управления;
- b) в поиске такого набора параметров управления, при котором целевая функция достигает экстремума;
- с) в поиске такого набора параметров управления, при котором целевая функция наиболее оптимальна;
- d) в поиске такого набора параметров управления, при котором целевая функция самая оптимальная;
- е) в поиске минимального набора параметров управления, при которых целевая функция достигает экстремума.

Правильный ответ b

- 2. Целевая функция это
- а)любая функция, у которой есть экстремумы
- b)любая функция, у которой нет экстремумов;
- с) любая функция, у которой есть минимумы;
- d) функция, экстремумы которой необходимо найти;
- е) любая функция, у которой есть максимумы.

Правильный ответ а

- 3. Уравнение Эйлера, к которому сводится задача отыскания экстремалей интегрального функционала с подынтегральной функцией, в общем случае является:
- а) обыкновенным дифференциальным уравнением второго порядка.
- б) обыкновенным дифференциальным уравнением первого порядка
- в) трансцендентным алгебраическим уравнением.

Правильный ответ а

- 4.В каких из перечисленных случаев задача отыскания экстремума функционала может не иметь решения
- а) когда подынтегральная функция не зависит от у'.
- б) когда подынтегральная функция линейно зависит от у'.
- в) когда подынтегральная функция зависит только от у'.
- г) когда подынтегральная функция зависит только от у и у'.

Правильный ответ а

- 5. Какое число неопределенных множителей Лагранжа может быть в задаче условной оптимизации, если число переменных в составе оптимизируемой функции равно 8.
- а) не более 7
- б) не более 8
- в) любое количество

Правильный ответ в

- 6. Какие из перечисленных утверждений верны:
- а) матрица Гессе симметрическая.
- б) матрица Гессе диагональная.
- в) определитель матрицы Гессе не может быть равен нулю.

Правильный ответ а

- 7. Если в критической точке функции одной переменной вторая производная отрицательна, то:
- а) эта точка является точкой максимума.
- б) эта точка является точкой минимума.
- в) в этой точке функция имеет разрыв.

Правильный ответ а

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 8.Для решения задачи условной оптимизации методом неопределенных множителей Лагранжа обязательно:
- а) знание аналитического выражения оптимизируемой функции.
- б) наличие ограничений только в виде равенств.
-) линейность ограничений.

Правильный ответ а

- 9. Какая точка в методе Хука-Дживса называется временной вершиной?
- а) точка, в которой достигается наилучшее значение функции отклика после пробных шагов по всем факторным переменным из некоторой базовой точки.
- б) любая точка, в которой в процессе поиска определяется значение функции отклика.
- в) точка, в которой достигается наибольшее изменение функции отклика по сравнению с предшествующей.

Правильный ответ а

- 10.Требуется ли вычисление градиента функции отклика для реализации оптимизационной процедуры метода Хука-Дживса?
- а) нет.
- б) требуется в базовых точках.
- в) требуется во временных вершинах.

Правильный ответ а

ПК-1: способностью применять	Обучающийся	знает:	Правила	построения	математических	моделей	задач
адекватные методы	оптимизации						
математического и системного							
анализа и теории принятия							
решений для исследования							
функциональных задач							
управления техническими							
объектами на основе							
отечественных и мировых							
тенденций развития методов,							
управления, информационных и							
интеллектуальных технологий							
\ 1.1 TC				1 0			

- 11. Когда используются неградиентные методы оптимизации функций многих переменных.
- а) когда неизвестно аналитическое выражение функции отклика, или ее производные не могут быть найдены.
- б) если функция отклика строго выпукла или строго вогнута.
- в) когда функция отклика имеет овражную структуру.

Правильный ответ а

- 12. Какое число вершин имеет правильный симплекс в пространстве, размерность которого равна 17?
- a) 18;
- б) 17;
- в) 16.

Правильный ответ б

- 13. Какой метод наиболее эффективен для отыскания глобального экстремума произвольной неунимодальной функции отклика.
 - а) метод сканирования.
 - б) метод наискорейшего подъема.
 - в) симплекс-метод.

Правильный ответ а

- 14. При реализации метода барьерных функций последовательность чисел {rk} формируется как:
- а) убывающая.
- б) убывающая, члены которой образуют сходящийся числовой ряд.
- в) возрастающая.

Правильный ответ б

- 15. При построении штрафных функций F(x,rk) последовательность чисел {rk} формируется как:
- а) возрастающая.
- б) убывающая.
- в) убывающая, члены которой образуют сходящийся числовой ряд.

Правильный ответ в

- 16. Чему становится равна барьерная функция I(x) при попадании на границу множества допустимых значений?
- a) I(x) = 0
- б) I(x) = ∞
- B) I(x) > 0

Правильный ответ б

- 17. Если при реализации метода проекции градиента на k-ом шаге в точке xk направление градиента функции отклика совпадает с направлением нормали к поверхности, ограничивающей область допустимых значений переменных, то:
 - а) точка xk является точкой оптимума.
 - б) координаты точки хк определены неверно.
 - в) длина шага из точки xk должна быть удвоена.

Правильный ответ а

18.Интервалом неопределенности называется:

- а) интервал, достоверно содержащий точку максимума (минимума) исследуемой функции.
- б) произвольный интервал, длина которого точно неизвестна.
- в) интервал, внутри которого содержатся все критические точки исследуемой функции.

Правильный ответ а

- 19. Найти четырнадцатое число F14 в последовательности чисел Фибоначчи.
- a) 610.
- б) 377;
- в) 233;

Правильный ответ а

20. Чему будет равна длина интервала неопределенности при использовании метода золотого сечения, если реализовано 9 замеров, а длина исходного интервала равна 14?

- a) ~ 0.298 ;
- б) 0,184;
- в) ~0,482.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-2: способностью	Обучающийся умеет: решать многокритериальные задачи предметной области,
формулировать	учитываю приоритет критериев
содержательные и	Обучающийся владеет: прикладным программным обеспечением для решения задач
математические задачи	многокритериальной оптимизации
исследования, выбирать	
методы экспериментального	
и вычислительного	
экспериментов, системно	
анализировать,	
интерпретировать и	
представлять результаты	
исследований	

Задание 1. Для изготовления четырёх видов продукции (A, Б, В и Γ) используется три вида сырья (I, II и III). Ресурсы сырья, нормы его расхода на единицу продукции и получаемая прибыль от единицы продукции заданы в следующей таблице:

Crari	Нормы расхода				Ресурсы
Сырьё	A	Б	В	A	Б
I	2	1	Ι	2	1
II	1	5	II	1	5
III	3	0	III	3	0
Прибыль	7,5	3	Прибыль	7,5	3

Определить оптимальный план выпуска продукции из условия максимизации прибыли.

Задание 2. Четыре различных предприятия могут выпускать любой из четырёх видов продукции. Производственные мощности предприятий позволяют обеспечить выпуск продукции каждого вида 50, 70, 100 и 30 тыс. шт., а плановое задание составляет соответственно 30, 80, 20 и 100 тыс. шт. Матрица

$$\mathbf{C} = \|\mathbf{c}_{ik}\| = \begin{pmatrix} 9 & 5 & 4 & 8 \\ 5 & 7 & 9 & 4 \\ 6 & 4 & 8 & 6 \\ 8 & 6 & 7 & 5 \end{pmatrix}$$

характеризует себестоимость единицы k-го вида продукции при производстве его на i-ом предприятии. Найти оптимальное распределение планового задания между предприятиями.

Задание 3. Для контроля за работой космической ракеты используются четыре вида датчиков (A, Б, В и Г), которые помещены на ракете и результаты измерений которых регистрируются тремя типами наземных регистраторов (I, II, и III). Каждый датчик определяет одну из характеристик (температуру, давление и т.д.) и передаёт результаты по отдельному каналу связи на любой регистраторо. В следующей таблице указаны численности датчиков и регистраторов, а также время, затраниваемое на включение соответствующего канала срязи.

также время, затрачиваемое на включение соот	встствующего ка	інала Связи			
	Латимки				i
	дагчики				i
	٨	Г	D	Г	i
	A	D	D	1	i

		Число	20	40	50	60
dr. I	Тип I	70	2	1	5	3
рры	Тип II	90	3	2	3	4
Регатс	Тип II	60	3	4	1	2

Определить оптимальное закрепление датчиков к регистраторам, при котором достигается минимум суммарных затрат на переключение каналов.

ПК-1: способностью применять адекватные методы математического и системного анализа и теории принятия решений для исследования функциональных задач управления техническими объектами на основе отечественных и мировых тенденций развития методов, управления, информационных и интеллектуальных

Обучающийся умеет: создавать математические модели для оптимизационных задач разных классов

Обучающийся владеет: методами математического программирования для решения задач глобальной оптимизации

технологий **Задание 4.**

Решить транспотртную задачу

По\Пн
$$b_1 = 20$$
 $b_2 = 40$ $b_3 = 40$ $a_1 = 25$ 5 1 3 a_2 4 2 7 $= 30$ a_3 8 4 9 $= 45$

Задание 5.

Найти максимум целевой функции L = 2x + 3y при следующих ограничениях:

$$\begin{cases} 5x + 6y \le 30; \\ 10x + 7y \le 49; \\ x + 2y \ge 2; \\ x \ge 0; \quad y \ge 0. \end{cases}$$

Решить задачу при дополнительном условии (ДУ):

ДУ: Найти минимум целевой функции L=х-у при тех же ограничениях.

Задание 6.

Завод ремонтирует тракторы двух типов: первого - мощностью 300 л.с. и второго - мощностью 200 л.с.. За месяц завод может отремонтировать не более 150 тракторов. За ремонт трактора 1 типа завод получает чистой прибыли 1 млн. рублей, а за ремонт 2 типа 2 млн. рублей. Составить месячный план ремонта тракторов, при котором завод получит не менее 240 млню рублей прибыли и суммарная мощность отремонтированных тракторов будет наибольшей, если надо отремонтировать не менее 50 тракторов 1 типа.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Многокритериальные задачи оптимизации.
- 2. Постановка задачи многокритериальной оптимизации.
- 3. Проблемы решения задач многокритериальной оптимизации
- 4. Отношение доминирования по Парето. Парето-оптимальность.
- 5. Аналитические методы построения множества Парето.
- 6. Способы сужения Парето-оптимального множества
- 7. Экспертные оценки. Метод ранжирования.

- 8. Метод приписывания баллов.
- 9. Обработка результатов экспертных оценок.
- 10. Формальные методы определения весовых коэффициентов
- 11. Метод взвешенных сумм (Метод линейной свертки).
- 12. Мультипликативный критерий.
- 13. Метод "идеальной" точки.
- 14. Проблемы построения обобщённого критерия для векторных задач оптимизации
- 15. Метод главного критерия.
- 16. Метод последовательных уступок.
- 17. Лексикографический критерий.
- 18. Метод равенства частных критериев
- 19. Принцип максимума в многокритериальных задачах
- 20. Регуляризация неустойчивых многокритериальных задач

3. Методические материалы, определяющие процедуру и критерии оценивания сформированных компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее $60\,\%$ от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«Зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Не зачтено**» – ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии оценки по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание

которых необходимо для получения положительной оценки.