Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теория систем автоматического управления

(наименование дисциплины (модуля)

Направление подготовки / специальность

23.05.05 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация

Электрический транспорт железных дорог

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации — оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-6: Способен разбираться в конструкции, принципах действия и закономерностях работы электрического и электронного оборудования электроподвижного состава	ПК-6.10: использует принципы автоматического управления и законы регулирования, приводит основные элементы систем автоматического управления ЭПС, выполняет эквивалентные структурные преобразования ПК-6.11: описывает критерии устойчивости и проводит оценку качества регулирования автоматических систем ЭПС

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные материалы
ПК-6.10: использует принципы	Обучающийся знает: основные понятия теории	Вопросы (1 – 10)
автоматического управления и законы	управления; математическое описание линейных	()
регулирования, приводит основные	систем управления	
элементы систем автоматического	Обучающийся умеет: описывать системы управления	Задания (1 – 3)
управления ЭПС, выполняет	при помощи соответствующих уравнений;	
эквивалентные структурные	Обучающийся владеет: навыками математического	Задания (4 – 6)
преобразования	описания систем автоматического управления.	, , , ,
	Обучающийся знает: показатели качества систем	Вопросы (11 – 20)
	управления; методы синтеза по частотным	
	характеристикам; дискретные системы и их	
	описание; релейные, цифровые, импульсные	
	системы; устойчивость, качество и синтез	
	импульсных систем управления; нелинейные	
	системы управления; технические средства	
ПК-6.11: описывает критерии	автоматики.	
устойчивости и проводит оценку	Обучающийся умеет: определять устойчивость систем	Задания (7 – 10)
качества регулирования автоматических систем ЭПС	автоматического управления при помощи	
	алгебраических и графических методов (критерии	
	Рауса, Гурвица, Михайлова; составлять разностные	
	уравнения импульсных систем; определять	
	устойчивость цифровых систем; составлять уравнения	
	нелинейных систем автоматического управления.	
	Обучающийся владеет: навыками оценки качества	Задания (10 – 12)
	регулирования автоматических систем	

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знание проверяемого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.10: использует принципы	Обучающийся знает: основные понятия теории управления; математическое
автоматического управления и	описание линейных систем управления.
законы регулирования,	
приводит основные элементы	
систем автоматического	
управления ЭПС, выполняет	
эквивалентные структурные	
преобразования	

Примеры вопросов/заданий

- 1. Система автоматического управления включает в себя:
- 1) объект управления и управляющее устройство
- 2) объект управления и измерительный элемент
- 3) управляющее устройство и органы воздействия на объект управления
- 4) объект управления и усилительный элемент

2. В системах с управлением по отклонению управляющее устройство решает задачу:

- 1) устранения отклонения управляемой величины от задающей
- 2) измерения, задающего и возмущающего воздействий и выработки с учетом этих измерений регулирующего воздействия
- 3) измерения задающего воздействия и выработки на его основе регулирующего воздействия
- 4) измерения возмущающего воздействия и выработки регулирующего воздействия для его компенсации

3. В системах с управлением по возмущению управляющее устройство решает задачу:

- 1) измерения, задающего и возмущающего воздействий и выработки с учетом этих измерений регулирующего воздействия
 - 2) устранения отклонения управляемой величины от задающей
- 3) измерения задающего воздействия и выработки на его основе регулирующего воздействия
- 4) измерения возмущающего воздействия и выработки регулирующего воздействия для его компенсации

4. Функциональная схема САУ характеризует:

- 1) функции отдельных элементов системы вне зависимости от их конкретной реализации
- 2) последовательность соединения отдельных частей системы и их конкретную реализацию

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

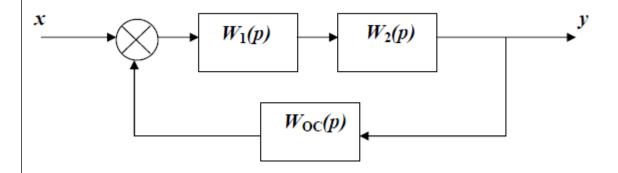
- 3) последовательность соединения отдельных частей системы и их математическое описание
- 4) функции отдельных элементов системы с учетом их физической природы
- 5. Какое из перечисленных ниже устройств не входит в функциональную схему линейной CAY:
 - 1) кодирующее устройство
 - 2) сравнивающее устройство
 - 3) усилительное устройство
 - 4) измерительное устройство
- 6. Какое из перечисленных ниже устройств предназначено для установления требуемого значения управляемой величины:
 - 1) задающее устройство
 - 2) сравнивающее устройство
 - 3) усилительное устройство
 - 4) измерительное устройство
- 7. Какое из перечисленных ниже устройств предназначено для выработки воздействия, прикладываемого к регулирующему органу объекта управления
 - 1) исполнительное устройство
 - 2) сравнивающее устройство
 - 3) усилительное устройство
 - 4) измерительное устройство
- 8. Какое из перечисленных ниже устройств предназначено для изменения свойств САУ в нужном проектировщику направлении
 - 1) корректирующее устройство
 - 2) сравнивающее устройство
 - 3) исполнительное устройство
 - 4) измерительное устройство
- 9. Выделить воздействие, не входящее в число типовых при исследовании САУ:

1)
$$f(t) = Atg\omega t$$

$$f(t) = t^2 \cdot 1(t)$$

$$f(t) = Asin\omega t$$

$$f(t) = t \cdot 1(t)$$

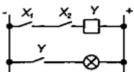

- 10. На какие две группы в зависимости от причин возникновения можно разделить возмущающие воздействия?
 - 1) нагрузку и помехи
 - 2) постоянные и переменные
 - 3) гармонические и негармонические
 - 4) приложенные к входу объекта управления и к регулятору

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.10: использует принципы	Обучающийся умеет: описывать системы управления при помощи соответствующих
автоматического управления и	уравнений
законы регулирования,	
приводит основные элементы	
систем автоматического	
управления ЭПС, выполняет	
эквивалентные структурные	
преобразования	

Примеры вопросов/заданий

Задание 1

Определить передаточную функцию системы, если
$$W_1(p) = \frac{2}{p-1}$$
, $W_2(p) = \frac{3}{p}$, $W_{\text{OC}}(p) = -1$.

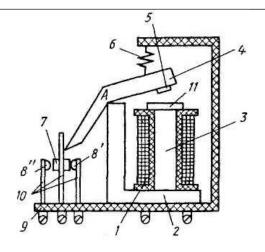


Задание 2

Вывести формулу передаточной функции по заданному дифференциальному уравнению: $25\frac{d^4}{dt^4}x_{\rm belx}(t) + 12\frac{d^2}{dt^2}x_{\rm belx}(t) - \frac{d}{dt}x_{\rm belx}(t) + 10x_{\rm belx}(t) = 5\frac{d}{dt}x_{\rm ex}(t) + x_{\rm ex}(t).$

Задание 3

Определите логическую операцию, выполняемую релейно-контакторной схемой, приведенной ниже. Напишите таблицу истинности для этой схемы



Образовательный результат
Обучающийся владеет: навыками математического описания систем автоматического
управления.

Примеры вопросов/заданий

Задание 4

Объясните принцип действия и особенности реле постоянного тока, показанного на рис.

Задание 5

Составьте схему на релейно-контакторных элементах, реализующую логическую операцию ИЛИ и поясните принцип работы.

Задание 6

Составьте схему на бесконтактных элементах, реализующую логическую операцию И-ИЛИ и поясните принцип работы.

ПК-6.11: описывает критерии устойчивости и проводит оценку качества регулирования автоматических систем ЭПС

Обучающийся знает: показатели качества систем управления; методы синтеза по частотным характеристикам; дискретные системы и их описание; релейные, цифровые, импульсные системы; устойчивость, качество и синтез импульсных систем управления; нелинейные системы управления; технические средства автоматики.

Примеры вопросов/заданий

11. Для расчета автоматического управления они разбиваются на:

- а) динамические звенья;
- б) статические звенья;
- в) функциональные части

12. Под динамическим звеном понимают:

- а) устройство любой физической природы и конструктивного исполнения, описываемое определенным дифференциальным уравнением;
- б) устройство любой физической природы и конструктивного исполнения, описываемое соответствующим алгебраическим уравнением;
- в) устройство любой физической природы и конструктивного исполнения, описываемое любым уравнением

13. Основой разделения звеньев на типовые является:

- а) уравнения статического режима;
- б) правая часть дифференциального уравнения;
- в) дифференциальное уравнение

14. Классификация динамических звеньев осуществляется:

- а) по виду дифференциального уравнения;
- б) по конструкции звена;
- в) по принципу действия устройства, представленного звеном

15. Дифференциальным уравнением называет уравнение:

1) связывающее независимые переменные, искомые функции и производные от искомых

функций;

- 2) связывающее независимые параметры, независимые переменные и производные от независимых переменных;
- 3) связывающее независимые переменные, производные от независимых переменных и искомые функции

16. Порядком дифференциального уравнения называют:

- 1) наивысший порядок производной, входящей в уравнение;
- б) наименьший порядок производной, входящей в уравнение;
- в) количество переменных

17. При стандартной записи дифференциальных уравнений систем автоматического управления выходная величина записывается:

- а) в правой части уравнения;
- б) в левой части уравнения;
- в) в правой и левой частях уравнения

18. Переход от дифференциального уравнения к операторной форме записи осуществляется посредством

- 1) прямого преобразования Лапласа;
- 2) обратного преобразования Лапласа;
- 3) прямого и обратного преобразования Лапласа

19. Коэффициенты дифференциального уравнения системы автоматического управления называют:

- а) переменными параметрами;
- б) переменными величинами;
- в) постоянными

20. Из дифференциального уравнения системы автоматического управления можно получить уравнение статического режима, используя математическую операцию:

- 1) интегрирования дифференциального уравнения системы;
- 2) преобразования дифференциального уравнения системы по Лапласу при нулевых начальных условиях;
 - 3) приравниванием всех производных нулю

•		
	Код и наименование индикатора	Образовательный результат
	достижения компетенции	
	ПК-6.11: описывает критерии	Обучающийся умеет: определять устойчивость систем автоматического управления
	устойчивости и проводит	при помощи алгебраических и графических методов (критерии Рауса, Гурвица,
	оценку качества регулирования	Михайлова; составлять разностные уравнения импульсных систем; определять устойчивость цифровых систем; составлять уравнения нелинейных систем
	автоматических систем ЭПС	автоматического управления.

Примеры вопросов/заданий

Задание 7

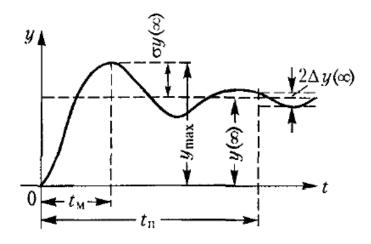
Определить устойчивость системы автоматического управления по критерию Раусса, описываемую характеристическим уравнением: $4p^5 + 2p^4 - 3p^3 + p^2 - 4p + 6 = 0$.

Залание 8

Определить устойчивость системы автоматического управления по критерию Гурвица, описываемую характеристическим уравнением: $4p^5 + 2p^4 - 3p^3 + p^2 - 4p + 6 = 0$.

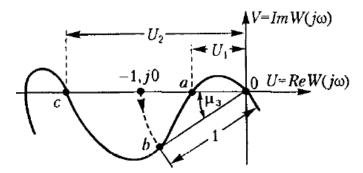
1

Задание 9

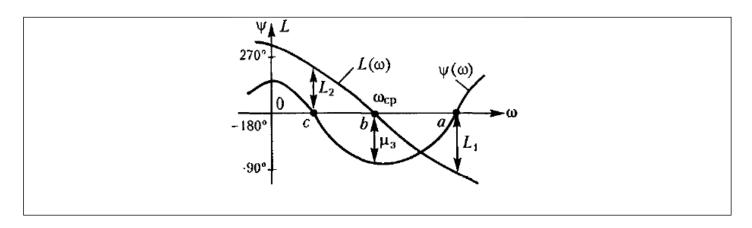

Определить устойчивость системы автоматического управления по критерию Михайлова, описываемую характеристическим уравнением: $4p^5 + 2p^4 - 3p^3 + p^2 - 4p + 6 = 0$.

Код и наименование индикатора	Образовательный результат	
достижения компетенции		
ПК-6.11: описывает критерии	Обучающийся владеет: навыками оценки качества регулирования автоматических	
устойчивости и проводит	систем ЭПС	
оценку качества регулирования		
автоматических систем ЭПС		

Примеры вопросов/заданий


Задание 10

Выполните оценку запаса устойчивости и быстродействия (качества процесса регулирования) системы автоматического управления по переходной характеристике, представленной ниже


Задание 11

Определите запас устойчивости замкнутой системы по амплитуде, согласно графику, приведенному ниже, и оцените качество системы

Задание 12

Определите запас устойчивости замкнутой системы по фазе, согласно графику, приведенному ниже, и оцените качество системы

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации (зачету)

- 1. Общие сведения о системах автоматического управления.
- 2. Основные понятия и определения ТАУ.
- 3. Разомкнутые САУ.
- 4. Замкнутые САУ.
- 5. Классификация САУ по характеру внутренних динамических процессов.
- 6. Классификация САУ по принципу действия.
- 7. Классификация САУ по закону изменения выходной (управляемой) величины.
- 8. Классификация САУ по закону изменения во времени выходного сигнала регулятора.
- 9. Примеры непрерывных систем управления.
- 10. Примеры дискретных и релейных систем управления.
- 11. Устройство, принцип действия, классификация и характеристики электромагнитного реле.
- 12. Устройство, принцип действия, классификация электромагнитных шаговых искателей.
- 13. Программы и алгоритмы управления, используемые в САУ.
- 14. Временные программы управления.
- 15. Параметрические программы управления.
- 16. Линейные алгоритмы управления, их отличительные особенности.
- 17. Пропорциональное управление САУ.
- 18. Управление по производным.
- 19. Интегральное управление.
- 20. Изотропное управление.
- 21. Нелинейные алгоритмы управления, их отличительные особенности.
- 22. Функциональные нелинейные алгоритмы.
- 23. Логические нелинейные алгоритмы.
- 24. Оптимизирующие нелинейные алгоритмы.
- 25. Параметрические нелинейные алгоритмы.
- 26. Аппаратура управления.
- 27. Датчики автоматики, их классификация.
- 28. Устройства предварительной обработки сигналов датчиков, их классификация.
- 29. Устройство и принцип действия магнитных усилителей.
- 30. Динамические звенья и их характеристики.
- 31. Общие понятия о динамических звеньях.
- 32. Временные характеристики динамических звеньев.
- 33. Позиционные звенья и их передаточные функции.
- 34. Интегрирующие звенья и их передаточные функции.
- 35. Дифференцирующие звенья и их передаточные функции
- 36. Апериодическое звено 1-го порядка и его характеристики.
- 37. Апериодическое звено 2-го порядка и его характеристики.

- 38. Колебательное звено и его характеристики.
- 39. Консервативное звено и его характеристики.
- 40. Идеально интегрирующее звено и его характеристики.
- 41. Интегрирующее звено с запаздыванием и его характеристики.
- 42. Изотропное звено и его характеристики.
- 43. Идеальное дифференцирующее звено и его характеристики.
- 44. Дифференцирующее звено с замедлением и его характеристики.
- 45. Частотная передаточная функция.
- 46. Амплитудно-фазовая частотная характеристика.
- 47. Амплитудно-частотная характеристика.
- 48. Фазочастотная характеристика.
- 49. Неустойчивые и минимальные фазовые звенья.
- 50. Составление исходных дифференциальных уравнений систем автоматического управления.
- 51. Общий метод составления исходных уравнений.
- 52. Передаточные функции САУ.
- 53. Структурные схемы САУ.
- 54. Последовательное соединение звеньев САУ.
- 55. Параллельное соединение звеньев САУ.
- 56. Встречно-параллельное соединение звеньев САУ.
- 57. Критерии устойчивости САУ.
- 58. Общие сведения об устойчивости САУ.
- 59. Критерий устойчивости Рауса.
- 60. Критерий устойчивости Гурвица.
- 61. Критерий устойчивости Михайлова.
- 62. Оценка качества управления и способы ее повышения.
- 63. Группы критериев качества САУ.
- 64. Точность САУ в типовых режимах неподвижное состояние.
- 65. Точность САУ в типовых режимах движение с постоянной скоростью.
- 66. Точность САУ в типовых режимах движение с постоянным ускорением.
- 67. Точность САУ в типовых режимах движение по гармоническому (синусоидальному) закону.
- 68. Определение запаса устойчивости и быстродействия САУ по переходной характеристике.
- 69. Общие методы повышения точности САУ.
- 70. Корректирующие средства, используемые для улучшения процесса управления.
- 71. Обратные связи для коррекции работы САУ.
- 72. Определение коэффициентов ошибок САУ.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения заданий; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету (пятибалльная шкала оценивания)

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«Хорошо/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.