Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основы теории надежности (наименование дисциплины(модуля) Направление подготовки / специальность 23.05.06 Строительство железных дорог, мостов и транспортных тоннелей (код и наименование) Направленность (профиль)/специализация Мосты

(наименование)

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет с оценкой в 4 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ОПК-4: Способен выполнять проектирование и расчет	ОПК-4.3: Использует методы расчета показателей
транспортных объектов в соответствии с требованиями	надежности объектов транспортной инфраструктуры
нормативных документов	при проектировании и эксплуатации

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные
достижения компетенции		материалы
ОПК-4: Способен выполнять	Обучающийся знает: законы механики для	Вопросы (1-18)
проектирование и расчет транспортных	выполнения проектирования и расчета транспортных	
объектов в соответствии с	объектов; показатели надежности при формировании	
требованиями нормативных	технических заданий и разработке технической	
документов	документации;	
	Обучающийся умеет: выполнять проектирование и	Кейс-задание (1-5)
	расчёт транспортных объектов в соответствии с	
	требованиями нормативных документов;	
	применять системы автоматизированного	
	проектирования на базе отечественного и	
	зарубежного программного обеспечения для	
	проектирования транспортных объектов;	
	Обучающийся владеет: использует методы расчета	Задания (1-3)
	надежности систем при проектировании	
	транспортных объектов;	
	применяет показатели надежности при	
	формировании технических заданий и разработке	
	технической.	

Промежуточная аттестация (зачет с оценкой) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-4.3: Использует методы	Обучающийся знает: законы механики для выполнения проектирования и расчета
расчета показателей	транспортных объектов; показатели надежности при формировании технических
надежности объектов	заданий и разработке технической документации;
транспортной инфраструктуры	
при проектировании и	
эксплуатации	

Примеры вопросов/заданий

Безотказность - это:

- 1) свойство объекта непрерывно сохранять работоспособное состояние в течение всего времени работы;
- 2) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- 3) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 4) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

2 Долговечность - это:

- 1) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;
- 2) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования;
- 3) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 4) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

3 Ремонтопригодность - это:

- 1) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования;
- 2) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- 3) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;
- 4) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта.

4 Сохраняемость - это:

1) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;

- 2) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 3) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- 4) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

5 Исправное состояние - это:

1) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 2) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.

6 Неисправное состояние - это:

- 1) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

7 Надежность трактуется как:

- 1) свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования;
- 2) свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования;
- 3) свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта;
- 4) свойство объекта максимально возможно поддерживать во времени в установленных пределах значения всех параметров, характеризующих выполнение требуемых функций в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.

8 Работоспособное состояние - это:

- 1) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

9 Неработоспособное состояние - это:

- 1) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно;
- 3) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

10 Предельное состояние - это:

1) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;

- 2) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.

11 ОТКАЗ – это:

- 1) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) событие, заключающееся в нарушении работоспособного состояния объекта;
- 4) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.

12 Повреждение - это:

- 1) событие, заключающееся в нарушении работоспособного состояния объекта;
- 2) каждое отдельное несоответствие объекта установленным нормам или требованиям;
- 3) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;
- 4) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

13 Дефектом называется:

- 1) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;
- 2) событие, заключающееся в нарушении работоспособного состояния объекта;
- 3) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) каждое отдельное несоответствие объекта установленным требованиям или нормам.

14 Оценка надежности - это:

- 1) величина, отражающая измерение количественных показателей системы, связанных с ее помехоустойчивостью и стабильностью;
- 2) измерение количественных метрик атрибутов субхарактеристик в использовании: завершенности, устойчивости к дефектам, восстанавливаемости и доступности/готовности;
- 3) показатель, характеризующий время безотказной работы системы;
- 4) измерение количественных метрик атрибутов субхарактеристик в использовании: стабильности, устойчивости к дефектам, помехоустойчивости и доступности/готовности.

15 Критерий длительности наработки на отказ:

- 1) определяется временем работоспособного состояния системы между последовательными сбоями или началами нормального функционирования системы после них;
- 2) определяется временем простоя системы вследствие произошедших сбоев;
- 3) определяется временем восстановления системы после произошедших сбоев;
- 4) определяется временем работоспособного состояния системы между последовательными отказами или началами нормального функционирования системы после них.

16 Интенсивность отказов - это:

- 1) относительное количество отказов, приходящееся на каждую единицу времени;
- 2) количество отказов, зарегистрированных в ходе испытания системы;
- 3) частота произошедших сбоев;
- 4) относительное количество отказов, приходящихся на все время функционирования и простоя системы.

17 Вероятность отказа – это:

- 1) вероятность появления отказа по окончании заданного интервала;
- 2) вероятность появления отказа до конца заданного интервала;

- 3) вероятность того, что объект сохранит работоспособность, т.е. не будет отказов в течение заданного интервала;
- 4) вероятность того, что объект сохранит работоспособность, но при этом произойдет сбой в течение заданного интервала.

18 Вероятность безотказной работы – это:

- 1) вероятность появления отказа по окончании заданного интервала;
- 2) вероятность появления отказа до конца заданного интервала;
- 3) вероятность того, что объект сохранит работоспособность, т.е. не будет отказов в течение заданного интервала;
- 4) вероятность того, что объект сохранит работоспособность, но при этом произойдет сбой в течение заданного интервала.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
индикатора достижения	
компетенции	
ОПК-4.3: Использует методы	Обучающийся умеет: выполнять проектирование и расчёт транспортных объектов в
расчета показателей	соответствии с требованиями нормативных документов;
надежности объектов	применять системы автоматизированного проектирования на базе отечественного и
транспортной инфраструктуры	зарубежного программного обеспечения для проектирования транспортных объектов;
при проектировании и	
эксплуатации	

Примеры заданий

Кейс-задание 1.

Определить статистическую оценку среднего времени безотказной работы изделия и абсолютную погрешность при:

- 1. t1 =560 час.; t2=700 час.; t3 =800 час.; t4=650 час.; t5=580 час.; t6=760 час.;
- 2. t1 =15 мин.; t2=20 мин.; t3 =10 мин.; t4=28 мин.; t5=22 мин.; t6=30 мин.
- 3. t1 =45 мин.; t2=50 мин.; t3 =40 мин.; t4=58 мин.; t5=52 мин.; t6=60 мин.
- 4. t1 = 150 мин.; t2 = 200 мин.; t3 = 100 мин.; t4 = 280 мин.; t5 = 220 мин.; t6 = 300 мин.

Кейс-задание 2.

Определить интенсивность отказов и вероятность безотказной работы объекта P(t) по данным наблюдений во время рабочего периода:

$$y=N_{H} - N_{K} / 0.5(N_{H} + N_{K})$$

 $P(t) = 1 - (N_{H} - N_{K}) / N_{H}$.

- 1. Nн количество изделий при предыдущем осмотре 70 Nк количество изделий при очередном осмотре 65.
- 2. Nн количество изделий при предыдущем осмотре 90.Nк количество изделий при очередном осмотре 75.
- 3 Nн количество изделий при предыдущем осмотре 100.Nк -количество изделий при очередном осмотре 85
- 4 Nн количество изделий при предыдущем осмотре 110.Nк -количество изделий при очередном осмотре 95

Вероятность безотказной работы устройства при количестве наблюдений (N=100)

Кейс-задание 3.

Вероятность безотказной работы устройства при количестве наблюдений (N=100)

$$P(240) = \frac{N_0 - n(t)}{N_0} = \frac{100 - 10}{100} = 0.9$$

- 1. число отказов (n=10)
- 2. число отказов (n=20)
- 3. число отказов (n=30)
- 4. число отказов (n=40)

Кейс-задание 4.

Имеются следующие данные о размерах изделия

4,2; 2,4; 4,9; 6,7; 4,5; 2,7; 3,9; 2,1; 5,8; 4,0; 2,8; 7,3; 4,4; 6,6; 2,0; 6,2; 7,0; 8,1; 0,7; 6,8; 9,4; 7,6; 6,3; 8,8; 6,5; 1,4; 4,6; 2,0; 7,2; 9,1.

- 1. построить интервальную таблицу частот с шириной интервала 2 и гистограмму
- 2. построить интервальную таблицу частот с шириной интервала 3 и гистограмму
- 3. построить интервальную таблицу частот с шириной интервала 4 и гистограмму
- 4. построить интервальную таблицу частот с шириной интервала 5 и гистограмму

Кейс-задание 5.

Определить интенсивность отказа приборов грузоподъемного устройства, состоящего из пяти приборов и наработку на отказ, если справедлив экспоненциальный закон распределения.

$$\lambda_1 = \frac{n_1}{t_1} = \frac{2}{360} = 0,55 \cdot 10^{-2} 1/\text{ yac } t_{cp} = \frac{\sum_{i=1}^{n} t_i}{n} = \frac{1800}{10} = 180$$

При обследовании установлено, что

- 1. первый прибор отказал два раза (n=2)в течение (t=360) часов работы,
- 2.второй три раза(n=3) в течение (t=500) часов,
- 3.третий один раз (n=1)в течение (t=280) часов,
- 4.четвертый четыре раза(n=4) в течение(t=150) часов

ОПК-4.3: Использует методы расчета показателей надежности объектов транспортной инфраструктуры при проектировании и эксплуатации

Обучающийся владеет: использует методы расчета надежности систем при проектировании транспортных объектов; применяет показатели надежности при формировании технических заданий и разработке технической.

Задание 1.

Система состоит из 10 равнонадежных элементов, среднее время безотказной работы элемента Тср = 10000ч.Предполагается, что справедлив экспоненциальный закон надежности для элементов системы и основная и резервная системы равнонадежны. Необходимо найти среднее время безотказной работы системы Tcp = 1000, а также частоту отказов $\phi(t)$ и интенсивность отказов λc (t) в момент времени t = 50 ч в следующих случаях:

а) нерезервированной системы

Решение:

а) $\lambda c = \sum \lambda i$, где λc – интенсивность отказов системы;

 λ і – интенсивность отказов і – го элемента; n=10.

 $\lambda i = 1/mti = 1/1000 = 0,001$; i = 1,2...,n; $\lambda = \lambda i$;

 $\lambda c = \lambda \cdot n = 0.001 \cdot 10 = 0.01 1/4;$

 $Tcp = 1 \lambda c = 100$ ч;

 $\phi c(t) = \lambda c(t) \cdot Pc(t);$

 λc (50) = λ ; P (t) = $e^{-\lambda ctc}$

 $\phi c (50) = \lambda \cdot e^{-\lambda ct} = 0.01 \cdot e^{-0.01.50} - 3cc \approx 6 \cdot 10^{-3} 1/\text{y};$

 $\lambda c (50) = 0.01 1/4.$

Задание 2.

Нерезервированная система управления состоит из n=5000 элементов. Для повышения надежности системы предполагается провести общее дублирование элементов. Чтобы приближенно оценить возможность достижения заданной вероятности безотказной работы системы Pc(t)=0.9 при t=10 ч, необходимо рассчитать среднюю интенсивность отказов одного элемента при предположении отсутствия последействия отказов.

Решение: Вероятность безотказной работы системы при общем дублировании и равнонадежных элементах равна

 $Pc(t) = 1 - (1 - e)^{-\lambda t^2}$ или $Pc(t) = 1 - [1 - P(t)]^2$, где $Pc(t) = e - \lambda t$.

Здесь P(t) – вероятность безотказной работы одного элемента. Так как должно быть $1-[1-P(t)]2 \ge 0.9$, то

 $P(t) \ge (1 - \sqrt{0.1})^{1/n}$.

Разложив $(1-\sqrt{0,1})$ по степени 1/n в ряд и пренебрегая членами ряда высшего порядка малости, получим $(1-\sqrt{0.1})^{1/5000} \approx 1-\frac{1}{5000}\sqrt{0.1} = 1-6.32 \cdot 10^{-5}.$ Учитывая, что $P(t) = \exp(-\lambda t) \approx 1 - \lambda t$, получим 1- λ t≥1 - 6,32· 10^{-5} или λ ≤ (6,32 · 10^{-5}) /t=(6,32 · 10^{-5}) /10=6,32· 10^{-6} 1/час. Задание 3. Система состоит из 10 равнонадежных элементов, среднее время безотказной работы элемента Тср =1000 ч. Предполагается, что справедлив экспоненциальный закон надежности для элементов системы и основная и резервная системы равнонадежны. Необходимо найти вероятность безотказной работы системы Pc(t), среднее время безотказной работы системы Tcp, а также частоту отказов фс (t) и интенсивность отказов λc (t) в момент времени t = 50 час в следующих случаях: а) нерезервированной системы, б) дублированной системы при включении резерва по способу замещения (ненагруженный резерв). Решение: $\lambda c = \sum \lambda i$, i=1где λc – интенсивность отказов системы, λi – интенсивность 11 отказов i-го элемента; n = 10, $\lambda i =$ 0.001; i =1,n; $\lambda = \lambda$ i, Tcp10001 $\lambda c = \lambda \cdot n = 0.001 \cdot 10 = 0.011/4$, $C = 100 \cdot 4$; $C = 100 \cdot 4$

 λ e- λ c t = 0,01· e-0,01·50cc≈ 6 ·10-31/ч; λ c (50) = 0,01 1/ч. m +12Tcp =; m=1; Tcp == 200ч. λ c0,01Определяем Pc(t) по формуле: m (λ t)iP (t) = e- λ 0 t Σ 0= e- λ 0 tc (1+ λ i! 0t). i=0 Так как λ 0= λ c, то Pc(t) = e- λ c t (1+ λ ct). Определяем фc (t). Имеем dP (t) ф (t) =c= [λ e- λ Ctcc (1+ λ t) + λ - λ Ctcce]= λ 2 te- λ Ct . dtc Определяем λ c (t). ϕ 2c (t) λ c te- λ ct λ 2 t Получим λ c(t) =c. Pc (t) e- λ ct (1+ λ c t) 1+ λ c t Определяем Pc (50), ϕ c (50), λ c (50). Имеем Pc (50) = e-0,01·50 (1+ 0,0150) = e-0,5 ·1,5 = 0,6065 ·1,5 ≈ 0.91. ϕ (50) = 0.012 ·50 · e- $\frac{0.01.50c}{0.012.50c}$ = 0.01 · 0.5 · e^{-0.5} ≈ 3 ·10⁻³ 1/ч.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Понятия о технических объектах, технических системах.
- 2. Понятия о характерных событиях и состояниях технических объектов.
- 3. Взаимосвязь состояний, событий при эксплуатации технических объектов.
- 4. Понятия об эксплуатационных свойствах технических объектов.
- 5. Физические основы належности.

 $\lambda \phi c (50)(50) = 3.10c/0.91 = 23.3.10^{-3}1/4$

- 6. Надежность как комплексное свойство технических объектов.
- 7. Понятия о показателях надежности. Показатели безотказности, сохраняемости, долговечности, ремонтопригодности, живучести.
 - 8. Понятия о моделях эксплуатации технических объектов.
 - 9. Понятия о планах наблюдения за техническими объектами.
 - 10. Понятия о законах и параметрах распределений.
 - 11. Модель эксплуатации невосстанавливаемых технических объектов.
- 12. Статистическая оценка безотказности и живучести невосстанавливаемых технических объектов в условиях эксплуатации.
- 13. Оценка безотказности и живучести невосстанавливаемых технических объектов при экспоненциальном распределении, при нормальном распределении, при логнормальном распределении, при распределении Вейбулла.
 - 14. Модели эксплуатации восстанавливаемых технических объектов.
- 15. Оценка безотказности и живучести восстанавливаемых объектов при экспоненциальном распределении, при смеси двух экспоненциальных распределений.
- 16. Статистическая оценка безотказности восстанавливаемых технических объектов в условиях эксплуатации.
 - 17. Оценка сохраняемости, ремонтопригодности и долговечности технических объектов.

- 18. Понятия о системах и структурных схемах надежности объектов.
- 19. Безотказность системы при последовательном и параллельном соединении элементов.
- 20. Оценка надежности и живучести объектов с параллельным и последовательным соединением элементов.
 - 21. Понятия о резервировании объектов.
- 22. Виды резервирования (функциональное и структурное резервирование; нагруженный, ненагруженный и облегченный резервы; раздельное и общее резервирование; динамическое, с замещением, скользящее резервирование).
 - 23. Безотказность резервированных объектов.
 - 24. Оценка показателей безотказности резервированных объектов.
 - 25. Общие понятия о моделях изменения надежности.
 - 26. Параметрическая модель возникновения отказа.
 - 27. Вероятностная модель возникновения отказа.
 - 28. Классическая модель изменения надежности.
 - 29. Лямбда-характеристики технических объектов.
 - 30. Факторы, влияющие на надежность технических объектов.
 - 31. Математические средства анализа надежности технических объектов.
 - 32. Прогнозирование надежности.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы 89 76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

«Отлично/зачтено» – студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок

«**Хорошо**/зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний; допустил незначительные ошибки и неточности.

«Удовлетворительно/зачтено» - студент допустил существенные ошибки.

«**Неудовлетворительно/не зачтено**» — студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».