Документ подписан простой электронной подписью Информация о владельце:
ФИО: Гарании Максий Информация о Владельце:
ФИО: Гарании Максий Информация о Владельце:
ФИО: Гарании Максий Информация Образовательное образовательное образовательное учреждение высшего образования 7708e2 347 666 38 ee 027 11 123 347 c 78 641 340 658 PC ТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основы мехатроники и робототехники

(наименование дисциплины (модуля)

Направление подготовки

15.03.06 Мехатроника и робототехника

(код и наименование)

Направленность (профиль)

Проектирование робототехнических систем

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет, семестр 3.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	
ОПК-1. Способен применять естественнонаучные и	ОПК-1.5 Применяет методы дискретно-
общеинженерные знания, методы математического	логических систем для решения задач
анализа и моделирования в профессиональной	управления
деятельности;	

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование компетенции	Результаты обучения по дисциплине	Оценочные материалы(семестр)
ОПК-1.5 Применяет методы дискретно-логических систем для решения задач управления	Обучающийся знает: базовые понятия и определения мехатроники; состав и структуру современных мехатронных модулей и систем; принципы действия основных элементов мехатронных модулей; современные принципы и методы управления мехатронными объектами; процедуру подготовки конструкторскотехнологической документации.	Вопросы (№1 - №22)
	Обучающийся умеет: выявлять характерные признаки и классифицировать мехатронные модели и системы; определять структуру, состав и принцип действия мехатронных модулей и систем; определять принципы управления мехатронными и робототехническими системами; применять машинную графику при проектировании систем и их отдельных модулей; соблюдать основные требования информационной безопасности.	Задания (№ 1- №4)
	Обучающийся владеет: принципами управления мехатронными модулями и системами; навыками оценивания целесообразности создания мехатронных объектов в различных областях производства; современными информационными технологиями в области мехатроники и робототехники.	Задания (№5 - №9)

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение заданий в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат	
компетенции		
ОПК-1.5 Применяет методы	Обучающийся знает: базовые понятия и определения мехатроники; состав и	
дискретно-логических систем для решения задач управления	структуру современных мехатронных модулей и систем; принципы действия основных элементов мехатронных модулей; современные принципы и методы управления мехатронными объектами; процедуру подготовки конструкторскотехнологической документации.	

Примеры вопросов

- 1. Мехатроника это совокупность пяти дисциплин:
 - а) физики;
 - б) механики;
 - в) математики;
 - г) экономики;
 - д) теории управления;
 - е) электроники;
 - ж) сопромата;
 - з) информатики;
 - и) методологии проектирования
- 2. Подсистема, которая осуществляет преобразование материалов или вещества в требуемое изделие называется:
 - а) энергетической;
 - б) технологической;
 - в) электрической;
 - г) механической;
 - д) информационной.
- 3. Подсистема, которая производит и преобразует энергию к виду, требуемому технологической подсистемой называется:
 - а) информационной;
 - б) механической;
 - в) энергетической;
 - г) электрической.
- 4. Подсистема, которая реализует функции управления и планирования называется:
 - а) энергетической;
 - б) технологической;
 - в) информационной;
 - г) электрической.
- 5. Промышленный робот это:
- а) робот, управляющая программа которого может автоматически меняться в процессе работы в зависимости от функционирования робота и (или) контролируемых параметров рабочей среды;
 - б) робот для выполнения одной операции одного вида;
- в) робот, предназначенный для выполнения технологических и (или) вспомогательных операций в промышленности;
- г) робот, способный перемещаться в рабочей среде в соответствии с управляющей программой.
- 6. Роботизированный технологический комплекс это:
 - а) робот, предназначенный для выполнения технологических и (или) вспомогательных

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

операций в промышленности;

- б) совокупность одного или нескольких ПР, другого технологического оборудования и оснастки для выполнения единого технологического процесса;
 - в) робот для выполнения различных операций одного вида;
- г) ПР для выполнения технологических переходов, операций, процессов, оснащенный рабочим или измерительным инструментом.
- 7. Интеллектный робот это:
- а) робот, управляющая программа которого может полностью или частично формироваться автоматически в соответствии с поставленным заданием и в зависимости от состояния рабочей среды;
- б) усилитель с обратной связью, в котором причина, приводящая систему в действие, зависит от разности выходного и входного сигнала;
 - в) робот с оснасткой или РТК, выполняющий технологический процесс;
 - г) робот для выполнения одной операции одного вида.
- 8. Робототехническая система это:
- а) робот на неподвижном основании, выполняющий операции по переносу объектов манипулирования;
 - б) робот, имитирующий и расширяющий возможности органов чувств человека;
 - в) робот с оснасткой или РТК, выполняющий технологический процесс;
 - г) робот, который не изменяет свое поведение при изменении среды.
- 9. Что из перечисленного не является степенями подвижности манипулятора?:
 - а) координатные;
 - б) переносные;
 - в) ориентирующие;
 - г) объемные.
- 10. По виду управления захватные устройства делятся на четыре группы: неуправляемые; командные; жесткопрограммируемые. Укажите четвертый вид:
 - а) ограниченные;
 - б) широкого профиля;
 - в) адаптивные;
 - г) специализированные.
- 11. Погрешность обработки траектории это:
- а) максимальное отклонение фактической траектории движения рабочего органа от траектории, заданной УП;
- б) среднее отклонение фактической траектории движения рабочего органа от траектории, заданной УП;
 - в) минимальное отклонение рабочего органа от положения в пространстве, заданного УП;
 - г) максимальное отклонение рабочего органа от положения в пространстве, заданного УП.
- 12. Погрешность позиционирования это:
- а) максимальное отклонение фактической траектории движения рабочего органа от траектории, заданной УП;
- б) среднее отклонение фактической траектории движения рабочего органа от траектории, заданной УП;
 - в) минимальное отклонение рабочего органа от положения в пространстве, заданного УП;
 - г) максимальное отклонение рабочего органа от положения в пространстве, заданного УП.
- 13. Аналоговым датчиком угловой скорости для обратной связи в приводе служит:
 - а) генератор;
 - б) тахометр;
 - в) тахогенератор;
 - г) вольтметр.
- 14. Силомоментные системы очувствления это:
- а) сенсорные устройства, обеспечивающие изменения компонент вектора тяги и вектора направления сил, развиваемые роботом в процессе взаимодействия с изделием;
- б) сенсорные устройства, обеспечивающие постоянство компонент вектора силы и вектора направления сил, развиваемых роботом в процессе взаимодействия с изделием;
 - в) сенсорные устройства, обеспечивающие изменение компонент вектора силы и вектора

момента сил, развиваемых роботом в проекции на некоторую систему координат;

- г) сенсорные устройства, обеспечивающие изменение компонент вектора силы и вектора момента сил, развиваемых роботом в процессе взаимодействия с изделием в проекции на некоторую систему координат.
- 15. По уровню проектирование мехатронной системы разделяют на два вида:
 - а) функциональное;
 - б) конструкторское;
 - в) геометрическое;
 - г) планировочное.
- 16. Конструкторское проектирование мехатронной системы делится на два вида:
 - а) предварительное;
 - б) геометрическое;
 - в) компоновочное;
 - г) функциональное.
- 17. Скольким уровням должна удовлетворять каждая мехатронная система?:
 - а) двум;
 - б) трем;
 - в) четырем;
 - г) пяти.
- 18. Описание существования технической системы в пространстве приводит к понятию:
 - а) пространственной системы;
 - б) жизненного цикла;
 - в) внешней среды;
 - г) автономной системы.
- 19. Модуль-мерой является:
 - а) конструктивный модуль;
 - б) физический модуль;
 - в) проектный модуль;
 - г) функциональный модуль.
- 20. Как называется мехатронная система образованная однородными элементами:
 - а) однородной;
 - б) простой;
 - в) гетерогенной
 - г) гомогенной.
- 21. Как называется мехатронная система образованная разнородными элементами:
 - а) сложной;
 - б) неоднородной;
 - в) гетерогенной
 - г) гомогенной.
- 22. Описание существования технической системы во времени приводит к понятию:
 - а) внешней среды; реальной системы;
 - в) пространственной системы;
 - г) жизненного цикла.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование	Образовательный результат
компетенции	
ОПК-1.5 Применяет методы	Обучающийся умеет: выявлять характерные признаки и классифицировать
дискретно-логических	мехатронные модели и системы; определять структуру, состав и принцип действия
систем для решения задач	мехатронных модулей и систем; определять принципы управления мехатронными и
управления	робототехническими системами; применять машинную графику при проектировании
J F	систем и их отдельных модулей; соблюдать основные требования информационной

	безопасности.
	

Примеры заданий

- 1) Составить программу чтения байта из регистра системы управления роботом УРТК
- 2) Составить программу записи байта в порт системы управления роботом УРТК
- 3) Составить программу инициализации системы управления роботом УРТК
- 4) Составить программу тестирования процедур чтения и записи байта в регистр системы управления роботом УРТК

ОПК-1.5 Применяет методы дискретно-логических систем для решения задач управления

Обучающийся владеет: принципами управления мехатронными модулями и системами; навыками оценивания целесообразности создания мехатронных объектов в различных областях производства; современными информационными технологиями в области мехатроники и робототехники.

Примеры заданий

- 5) Составить программу управления состоянием двигателей УРТК, считывания состояния его датчиков и включения СУ УРТК
- 6) Составить программу управлением мехатронным модулем линейного перемещения в цикловом режиме
- 7) Элементы мехатронных и робототехнических систем
- 8) Построение мехатронных и робототехнических систем
- 9) Применение мехатронных и робототехнических систем

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Определения и терминология мехатроники. Содержание мехатроники.
- 2. Анализ последовательно появлявшихся (во времени) определений понятия «мехатроника».
- 3. Основные концепции мехатроники при построении машин.
- 4. Синергетический принцип мехатроники.
- 5. Принцип интеграции в мехатронике.
- 6. Базовые объекты изучения в мехатронике.
- 7. Проблемная ориентация в мехатронике.
- 8. Основные признаки мехатронных устройств.
- 9. Состав мехатронного узла.
- 10. Классификация мехатронных узлов.
- 11. Редукционизм и моделирование в мехатронике.
- 12. Основные задачи и разделы мехатроники. Задача анализа. Задача синтеза.
- 13. Эксплуатация мехатронного объекта.
- 14. Принцип построения мехатронных систем.
- 15. Составные части мехатронного объекта.
- 16. Функции устройства компьютерного управления мехатронным модулем.
- 17. Многоуровневая классификация мехатронных систем.
- 18. Уровни интеграции иехатронных систем.
- 19. Принцип синергетической интеграции элементов при построении мехатронных модулей.
- 20. Электромеханический мехатронный модуль.
- 21. Различие метатрофного и традиционного подходов к проектированию и изготовлению модулей.
- 22. Построение электромеханических меха тронных модулей на основе синкретической интеграции элементов.
- 23. Развитие меха тронных модулей по поколениям.
- 24. Особенности и преимущества конструкции «мотор-редуктор».
- 25. Замена привода «мотор-редуктор» на высокомоментный двигатель. Его характеристики и особенности
- 26. Характеристики приводов с использованием высокомоментных двигателей и линейных высокомоментных двигателей.
- 27. Мехатронный модуль «двигатель-рабочий орган».
- 28. Пути построения интеллектуальных мехатронных модулей.
- 29. Мехатронные технологии обработки материалов резанием.
- 30. Задача минимизации параметрических колебаний инструмента в мехатронных станочных системах.

- 31. Минимизация вынужденных колебаний в процессе обработки материалов резанием.
- 32. Перспективы развития мехатронных станочных систем (МСС).
- 33. Особенности МСС традиционной конструкции. Преимущества и недостатки.
- 34. Особенности МСС нетрадиционной конструкции. Преимущества и недостатки.
- 35. Процесс резания как система. Управляемость и наблюдаемость процесса резания.
- 36. Обоснование структуры адаптивной системы управления процессом механической обработки на МСС.
- 37. Стабилизирующие и следящие системы при адаптивном резании.
- 38. Алгоритм работы адаптивной системы управления процессом резания.
- 39. Основные направления построения адаптивных систем.
- 40. Методы контроля за состоянием режущего инструмента.
- 41. Косвенные методы контроля состояния режущего инструмента.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90% от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76% от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы -75-60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60% от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**/зачтено» — ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно/не зачтено»** — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому

мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.