Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Моделирование мехатронных систем

(наименование дисциплины/модуля)

Направление подготовки / специальность

15.03.06 Мехатроника и робототехника

(код и наименование)

Направленность (профиль)/специализация

Проектирование робототехнических систем

Содержание

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. Пояснительная записка

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Формы промежуточной аттестации: зачет-4 семестр, экзамен -5 семестре.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции				
ОПК-2 Способен применять основные методы, способы и средства получения, хранения, переработки информации при решении задач профессиональной деятельности;					

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные				
достижения компетенции		материалы				
ОПК-2.1. Использует программные	Обучающийся знает: основные понятия	Вопросы (1-10)				
средства при моделировании	средства при моделировании математического моделирования					
технологических процессов	Обучающийся умеет: использовать теоретические и	Задания (1-5)				
ОПК-2.4 Использует методы						
искусственного интеллекта (машинного	моделирования					
обучения) и анализа больших данных	Обучающийся владеет программным обеспечением	Задания (1-6)				
для решения прикладных задач	для моделирования мехатронных систем	·				

Промежуточная аттестация (Экзамен) проводится в одной из следующих форм:

- 1) ответ на билет, состоящий из теоретических вопросов и практических заданий;
- 2) выполнение заданий в ЭИОС СамГУПС.

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) Собеседование.
- 2) Выполнение заданий электронного курса в ЭИОС СамГУПС.

2. Типовые¹ контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций

2.1 Типовые вопросы для оценки навыков образовательного результата

Проверяемый образовательный результат:

	1
Код и наименование индикатора	Образовательный результат
достижения компетенции	
ОПК-2.4 Использует методы	Обучающийся знает: основные понятия математического моделирования
искусственного интеллекта	
(машинного обучения) и	
анализа больших данных для	
решения прикладных задач	

- 1. Эффективность математической модели определяется ...
 - 1) Оценкой точности модели
 - 2) Функцией эффективности модели!!
 - 3) Соотношением цены и качества
 - 4) Простотой модели
- 2. Адекватность математической модели и объекта это...
 - 1) правильность отображения в модели свойств объекта в той мере, которая необходима для достижения цели моделирования!!
 - 2) Полнота отображения объекта моделирования
 - 3) Количество информации об объекте, получаемое в процессе моделирования
 - 4) Объективность результата моделирования
- 3. Состояние объекта определяется ...
 - 1) Количеством информации, полученной в фиксированный момент времени
 - 2) Множеством свойств, характеризующим объект в фиксированный момент времени относительно заданной цели!!
 - 3) Только физическими данными об объекте
 - 4) Параметрами окружающей среды
- 4. Изменение состояния объекта отображается в виде ...
 - 1) Статической модели
 - 2) Детерминированной модели
 - 3) Динамической модели!!
 - 4) Стохастической модели
- 5. Фазовое пространство определяется ...
 - 1) Множеством состояний объекта, в котором каждое состояние определяется точкой с координатами эквивалентными свойствам объекта в фиксированный момент времени!!
 - 2) Координатами свойств объекта в фиксированный момент времени
 - 3) Двумерным пространством с координатами х,у
 - 4) Линейным пространством
- 6. Фазовая траектория это
 - 1) Вектор в полярной системе координат
 - 2) След от перемещения фазовой точки в фазовом пространстве!!
 - 3) Монотонно убывающая функция
 - 4) Синусоидальная кривая с равными амплитудами и частотой
- 7. Точка бифуркации это...
 - 1) Точка фазовой траектории, характеризующая изменение состояния объекта
 - 2) Точка на траектории, характеризующая состояние покоя
 - 3) Точка фазовой траектории, предшествующая резкому изменению состояния объекта!!
 - 4) Точка равновесия
- 8. Декомпозиция это ...
 - 1) Процедура разложения целого на части с целью описания объекта !!
 - 2) Процедура объединения частей объекта в целое
 - 3) Процедура изменения структуры объекта
 - 4) Процедура сортировки частей объекта
- 9. Установление равновесия между простотой модели и качеством отображения объекта называется...
 - 1) Дискретизацией модели
 - 2) Алгоритмизацией модели

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

- 3) Линеаризацией модели
- 4) Идеализацией модели !!
- 10. Имитационное моделирование ...
 - 1) Воспроизводит функционирование объекта в пространстве и времени
 - 2) Моделирование, в котором реализуется модель, производящая процесс
 - функционирования системы во времени, а также имитируются элементарные явления, составляющие процесс!!
 - 3) Моделирование, воспроизводящее только физические процессы
 - 4) Моделирование, в котором реальные свойства объекта заменены объектами аналогами

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

провериемый	г ооразователы	пын результат.				
Код и наи	именование	Образовательный результат				
индикатора	а достижения					
компе	етенции					
ОПК-2.1.	Использует	Обучающийся умеет: использовать теоретические и практические знания в области				
программные	средства при	математического моделирования				
моделировании	И					
технологическ	их процессов					

Примеры заданий

Дана система дифференциальных уравнений:

$$\begin{cases} \frac{dx_1}{dt} = a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ \frac{dx_2}{dt} = a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ \frac{dx_3}{dt} = a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \end{cases}$$

С начальными условиями

$$\begin{bmatrix} x_{10} \\ x_{20} \\ x_{30} \end{bmatrix}.$$

Вари- анты зада-	a ₁₁	a ₁₂	a ₁₃	a ₂₁	a ₂₂	a ₂₃	a ₃₁	a ₃₂	a ₃₃	X ₁₀	X ₂₀	X ₃₀
ния												
1.	-4	-3	-2	0	0	1	6	5	2	1	1	2

Задание 1.

Решить систему уравнений классическим методом и построить графики.

Задание 2.

Записать систему уравнений в операторной форме.

Задание 3.

Решить систему уравнений в операторной форме.

Задание 4.

Записать преобразования Фурье и построить частотные характеристики.

Задание 5.

Реализовать задание 1-4 в Matlab.

ОПК-2.1.	Использует	программные	Обучающийся владеет	Программным	обеспечением	для	моделирования
средства	при	моделировании	мехатронных систем				
технологиче	ских процессо	В					

Тема работы: Расчет электрических цепей мехатронных и робототехнических устройств в системе математического моделирования Matlab

Расчетно-графическая работа полностью выполняется в системе Matlab и состоит из следующих этапов:

- 1. Согласно вашему варианту составить дифференциальные уравнения состояния электрической цепи по второму закону Кирхгофа. Номер схемы выбирается из табл. 1;
- 2. Определить зависимости контурных токов от времени, решив систему дифференциальных уравнений;
- 3. Осуществить переход от временного аргумента к комплексным переменным(преобразование Лапласа);
- 4. Определить передаточную функцию относительно напряжения Uвых на выходе элемента, указанного в табл. 1, столбец8;
 - 5. Определить вид переходного процесса по корням характеристического уравнения;
- 6. При помощи передаточной функции определить сигнал на выходе системы при подаче сигнала E(t) на вход(таблица1, второй столбец); Определить амплитудно-частотную (AЧX) и фазочастотную (ФЧX) характеристики.

Вариант задания задается преподавателем из таблицы1 (первый столбец).

Таблина 1

№	E(t)	Инд-ть	Ем-сть	Сопротивление		рис.	И вых на
Bap.		L. Гн	С, мФ	RI.OM	R2. Ом	Схемы	эл-тс
1	2	3	4	5	6	7	8

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

- 1. Физическое и математическое моделирование.
- 2. Применение вычислительной техники при математическом моделировании.
- 3. Классификация видов моделирования систем.
- 4. Обзор математических пакетов прикладных программ.
- 5. Подходы к моделированию систем.
- 6. Типовые схемы моделирования. Метод Гаусса.
- 7. Нормы векторов и матриц.
- 8. Итерационные методы решения систем линейных алгебраических уравнений.
- 9. Метод простой итерации.
- 10. Метод Ньютона.
- 11. Метод Гаусса-Зейделя.
- 12. Задача о регуляторе состояния.
- 13. Метод моментов в управлении линейными системами.
- 14. Формальная модель объекта. Типовые математические схемы.
- 15. Непрерывно-детерминированные модели (D-схемы).
- 16. Дискретно-детерминированные модели (F-схемы).
- 17. Дискретно-стохастические модели (Р-схемы).
- 18. Непрерывно-стохастические модели (Q-схемы).
- 19. Комбинированные модели (А-схемы).
- 20. Математические модели решения дифференциальных уравнений, интегралов, специальных функций, интегрирование функций.
- 21. Квадратурные формулы, метод Гаусса, трапеции.
- 22. Примеры моделирования электрического четырехполюсника.
- 23. Программирование в Matlab.

- 24. Понятия линейной и нелинейной системы.
- 25. Методы решения систем.
- 26. Динамические системы.
- 27. Самоорганизация систем и обратная связь.
- 28. Программная реализация методов решения систем.
- 29. Этапы моделирования систем.
- 30. Построение концептуальных моделей систем и их формализация.
- 31. Алгоритмизация моделей систем и их машинная реализация.

3. Методические материалы, определяющие процедуру и критерии оценивания сформированных компетенций при проведении промежуточной аттестации

Критерии формирования оценок по ответам на вопросы, выполнению тестовых заданий

- оценка **«отлично»** выставляется обучающемуся, если количество правильных ответов на вопросы составляет 100 90 % от общего объёма заданных вопросов;
- оценка **«хорошо»** выставляется обучающемуся, если количество правильных ответов на вопросы -89-76 % от общего объёма заданных вопросов;
- оценка **«удовлетворительно»** выставляется обучающемуся, если количество правильных ответов на тестовые вопросы –75–60 % от общего объёма заданных вопросов;
- оценка **«неудовлетворительно»** выставляется обучающемуся, если количество правильных ответов менее 60 % от общего объёма заданных вопросов.

Критерии формирования оценок по результатам выполнения заданий

«Отлично/зачтено» – ставится за работу, выполненную полностью без ошибок и недочетов.

«Хорошо/зачтено» – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно/зачтено» — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«**Неудовлетворительно**/**не зачтено**» — ставится за работу, если число ошибок и недочетов превысило норму для оценки «удовлетворительно» или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, норм; незнание приемов решения задач; ошибки, показывающие неправильное понимание условия предложенного задания.
- негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы выполнения задания; отдельные погрешности в формулировке выводов; небрежное выполнение задания.

Критерии формирования оценок по зачету

«Зачтено» — студент приобрел необходимые умения и навыки, продемонстрировал навык практического применения полученных знаний, не допустил логических и фактических ошибок, допустил незначительные ошибки и неточности.

«**Не зачтено**» – студент демонстрирует фрагментарные знания изучаемого курса; отсутствуют необходимые умения и навыки, допущены грубые ошибки.

Критерии формирования оценок по экзамену

«Отлично» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«**Хорошо**» (4 балла) – обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки,

освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.